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ON ANALYTIC PROBLEMS FOR
ADDITIVE ARITHMETICAL SEMIGROUPS

E. Manstavičius and R. Skrabutėnas (Vilnius, Lithuania)

On the occasion of the 60th jubilee of Professor Karl-Heinz Indlekofer

Abstract. We examine the asymptotic behaviour of the n-th Taylor

coefficient of an analytic in the unit disc function having some product

representation. It is assumed that the function has a fixed number of zeros

and singularities on the unit circumference. The obtained analytic result is

applied in some enumerative problem for an additive arithmetical semigroup

and to prove a local limit theorem for an additive function defined on such

semigroup.

1. Introduction and results

In most cases the generating series appearing in the abstract analytic
number theory or combinatorics have a fairly particular form. So, as the
favorite object of Professor Karl-Heinz Indlekofer an additive arithmetical
semigroup (G, δ) (for a multiset, in the definitions preferred by statisticians
[1], [2] or for an additive number system, in the terminology of logicians [3]),
we deal with the function

Z(y) =
∑

n≥0

g(n)yn =
∞∏

j=1

(
1− yj

)−π(j)
,

where g(n) denotes the number of semigroup elements a of degree δ(a) = n,
while π(j) stands for the number of prime elements p with δ(p) = j. Typically,
the function Z(y) is analytic in a nontrivial disk and have singularities and,
sometimes, zeros on the convergence circle. An analytic investigation of
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the mean value problems for mappings defined on such or other structures
leads to more complicated generating functions but also having a product
representation. In some neighborhood of the convergence circle, these functions
are first compared with a relevant function Z(y) or with its complex powers.
The Cauchy formula is applied in the next step. As a rule, the desire to obtain
a possibly general mean value theorem encounters the main obstacle: there
is no information about the functions outside the convergence disk and only
mild conditions can be assumed for the generating functions on the convergence
circle. The attempts to get over this obstacle can be seen in [9-13], [6], and
other papers. Observe that the remark concerning priorities on page 461 in
[6] is not true, apart from the classical Tauber type theorems, the history on
asymptotic analysis without information beyond the convergence disc goes back
to [12] and even to some previous number-theoretic papers. Now, motivated
by the combinatorial applications, we do a comparative analysis of the Taylor
coefficients of two functions one of which has a finite number of singularities
and zeros on the the unit circumference. In contrast to the very influential
paper written by Ph. Flajolet and A.M. Odlyzko [4], we do not assume any
condition beyond the unit disc.

The aforementioned powers of Z(y) and of many other generating series
of combinatorial structures are representable as a function V (y) = W (y)H0(y),
where

W (y) :=
m−1∏

l=0

(
1− yξ−1

l

)−ϑl ,

where ξl are different points on the convergence circle and ϑl ∈ C are bounded
complex valued quantities, 0 ≤ l ≤ m−1 and m ≥ 1. Substituting, if necessary,
the argument we may assume that ξl = exp{2πiϕl} and 0 = ϕ0 < ϕ1 < . . . <
< ϕm−1 < 1. Typically, the function H0(y) is analytic in |y| < 1, has no
zeros in |y| ≤ 1, and has some smoothness properties on |y| = 1. Therefore
comparing some other function with V (y) we can use only its factor W (y). Set

log W (y) =
∞∑

j=1

γj

j
yj , γj =

m−1∑

l=0

ϑlξ
−j
l , |y| < 1.

Let the other generating function have the following expression

(1.1) F (y) =
∞∑

n=1

fnyn = H(y) exp
{
L(y)

}
=:

∞∑

k=1

hkyk exp
{ ∞∑

j=1

aj

j
yj

}

with analytic in |y| < 1 functions H(y) and L(y). The function H(y) will also
satisfy some smoothness conditions on |y| = 1. The function F (y) can be a
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bivariate generating function or depend on other parameters. We will check
uniformity with respect to them in our estimates.

Let in what follows r(u) be a monotone decreasing function on [1,∞) such
that r(u)/u is integrable. For 1 ≤ q ≤ q0, we set

ρ(u) :=
∑

j≤u

qj
(
aj − γj

)
.

The main condition which allows us to find an asymptotic formula for fn as
n →∞ is the bound

(1.2) |ρ(u)| ≤ qur(u),

∞∫

1

r(u)
u

du ≤ C < ∞.

Denote

G(y) = L(y)− log W (y), H1(y) = H(y) exp{G(y)},

and
Wk(y) = (1− yξ−1

k )ϑkW (y) =
∏

0≤l≤m−1
l6=k

(
1− yξ−1

l

)−ϑl .

Set

R(n) := max
{

r(n),
1
n

,
1
n

n∫

1

r(u)du,

∞∫

n

r(u)
u

du

}

and a+ = 1{a ≥ 0}a. In what follows we will assume that

(1.3) max
0≤k≤m−1

|ϑk| ≤ C1

and

(1.4) min
{

min
0≤k≤m−2

(ϕk+1 − ϕk), 1− ϕm−1

}
≥ c1 > 0.

We now formulate the main analytic result.

Theorem 1. Let the function F (y) have the above described form (1.1)
with a function H(y), analytic in |y| < 1, continuous in |y| ≤ 1, and such that

(1.5)
∞∑

k=1

k|hk| ≤ C2.
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If conditions (1.2), (1.3), and (1.4) are satisfied, then

(1.6) fn =
m−1∑

k=0

H1(ξk)Wk(ξk)
Γ(ϑk)

ξ−n
k nϑk−1 + BR∗(n),

where Γ(z) denotes the Euler gamma-function with the agreement that Γ(z)−1 =
= 0 for z = 0, 1, . . . and

R∗(n) = R(n)max
k

{
n(<ϑk−1)+ min

{
log n, |1−<ϑk|−1

}}
.

Here and in what follows B denotes a quantity bounded by a constant depending
on q0, C, C1, C2, c1, and m only.

Stressing advantages of our approach, we note that condition (1.2) allows
us to avoid the individual requirements put on |ak − γk| for each k ≥ 1 used,
for instance, in [6]. Moreover, we can consider the cases when r(u) is a rather
slowly decreasing function, say, r(u) = (log(u + 1))−2−ε, ε > 0. If m = 1 and
r(u) = u−c with c > 0, an asymptotic formula for fn is given on page 465 of
Hwang’s paper [6]. Nevertheless, seeking for generality, we are failing in the
expression of the remainder R∗. Sometimes it swallows the main term.

The condition (1.2) naturally appears if the sequence {aj} in the definition
of F (y), it satisfies some arithmetical constraint. For instance, we have the
following corollary of Theorem 1.

Theorem 2. Assume that (1.2) is changed by

(1.7)
m−1∑
s=0

∑
1≤j≤u
j≡s(m)

qj
(
aj − βs

)
=: ρ̃(u), |ρ̃(u)| ≤ qur(u)

with some βs ∈ C and the same condition on r(u). Let other conditions of
Theorem 1 be satisfied. Then formula (1.6) holds with ξk = ζk := exp{2πik/m}
and

ϑk :=
1
m

m−1∑
r=0

βrζ
kr.

Theorem 2 generalizes the main result of our remark [13]. It can be applied
to solve the converse problems of additive arithmetical semigroups. By this we
mean that the number g(n) of semigroup elements of degree n is sought when
an asymptotical formula for the number π(j) of prime or generating elements
is known a priori. Such problems are very common for weighted multisets (see
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[1], [2], [13]). For this purpose we examine the generating function Z(y). Check
that formally

Z(y) = exp
{ ∞∑

k=1

Π(yk)
k

}
= eΠ(y)K(y),

where

Π(y) =
∞∑

j=1

π(j)yj , K(y) = exp
{ ∞∑

k=2

Π(yk)
k

}
.

As a corollary of Theorem 2 we have

Theorem 3. Assume that for an additive arithmetical semigroup the
number π(j) of prime elements of degree j satisfies the relation

(1.8)

∣∣∣∣∣∣∣

m−1∑
s=0

∑
1≤j≤u
j≡s(m)

qj
(
jπ(j)q−j − πs

)
∣∣∣∣∣∣∣
≤ qur(u)

for some q > 1, m ≥ 1, πs ≥ 0, 0 ≤ s ≤ m − 1, and a function r(u) having
the above mentioned properties. Then the assertion of Theorem 2 is true for
fn = q−ng(n) if we substitute βs = πs, aj = jπ(j)q−j, L(y) = Π(q−1y), and
H(y) = K(q−1y).

Considering the most popular cases (see [7], [8]) we have, for instance, the
following result.

Corollary. Let I(G) ∈ {0, 1} and

(1.9)

∣∣∣∣∣∣
∑

j≤u

qj

(
jπ(j)q−j − (

1− I(G)(−1)j
))

∣∣∣∣∣∣
≤ C3q

u log−3(u + 1)

for some q > 1 and C3 > 0. Then

(1.10) g(n) = Aqn + Bqn log−1 n

with

A =
(
1 + I(G)

)
K(q−1) exp

{ ∞∑

j=1

j−1

(
jπ(j)q−j − (

1− I(G)(−1)j
))}

=

= (1 + I(G))
∞∏

j=1

[(
1− 1

qj

)−π(j)

e−
(
1−I(G)(−1)j

)
/j

]
> 0.
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Conversely, to obtain an asymptotic formula for π(n), one needs (1.10)
with the remainder Bqnn−2−ε (see Theorem 5.4.1 in [8]). In [18] and some
earlier papers W.-B. Zhang uses conditions involving asymptotical expressions

q−ng(n) =
s∑

r=1

Arn
ηr−1 + Remainder,

where As ∈ R, As > 0 and 0 ≤ η1 < · · · < ηs with ηs ≥ 1. Observe that such
type of formulas does not exhaust all possibilities. Theorem 3 shows that in
the asymptotic formulas for g(n) terms like a(−1)nqnnη−1 with a 6= 0, η ≥ 1,
and having the alternating factor (−1)n can appear as well. To see this, take,
for instance, m = 2 together with π0 = 3 and π1 = 1 and calculate the terms in
(1.6). Finally, the possible different asymptotic expressions for π(n) show also
that K.-H.Indlekofer’s [7] analytic axioms A1 or A2 on the generating series
Z1(y) can be further generalized. One can, for instance, assume that Z(y)
has general factors like W (y) defined above and to derive new prime element
theorems.

Stressing the uniformity with respect to possible parameters in the esti-
mates of the remainder terms, we now demonstrate that Theorem 1 is applicable
to prove limit theorems for additive functions defined on an additive arithmetic
semigroup (G, δ) generated by a countable set P of prime elements. We now can
do this under rather mild conditions. In general the asymptotic formulas are
rather complicated therefore we confine ourselves with the semigroups discussed
in Corollary above. We examine the asymptotic local value distribution for an
additive function h : G → Z having regular behavior on the prime elements.

Definition. We say that an additive function h : G → Z belongs to the
class A(G) if

∑
p∈P,δ(p)=j

h(p)=l

1 =: π(j)
(
λl + ρl(j)

)
, l ∈ Z, j ≥ 1,

where λl ∈ [0, 1] are constants and the remainder terms ρl(j) =: Cl(j)
(
log(j +

+1)
)−3 satisfy the condition

∑

l

|Cl(j)| < ∞

uniformly in j ≥ 1.

The properties of the lattice distribution with the characteristic function

κ(t) =
∑

l

λle
ilt
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play an essential role. If the maximal step is not one, apart from t = 0, in the
interval (−π, π] we have finitely many points t0 and t1 such that κ(t0) = 1 and
κ(t1) = −1. They are solutions of the equations

(1.11)
∑

l

λl sin2(lt/2) = 0,
∑

l

λl cos2(lτ/2) = 0,

respectively. Let further,

E =
∑

l

lλl, σ2 =
∑

l

l2λl, β =
∑

l

|l|3λl,

provided that they exist, x = (m − E log n)/σ
√

log n and ϕ(u) be the density
of the standard normal law.

Denote ||a|| = qδ(a) for a ∈ G and

Ss(m;h) =
∑
ts

e−itsm
∏

p∈P

(
1− (−1)sδ(p)

||p||
)(−1)s ∞∑

α=0

(−1)sαδ(p) exp{itsh(pα)}
||p||α ,

where m ∈ Z, s ∈ {0, 1}, and ts run through the set of solutions of (1.11),
respectively. If I(G) = 1, we also set

A1 = 2
∞∏

j=1

(
1− (−1)j

qj

)π(j)

e−
(
1−(−1)j

)
/j .

Theorem 4. Let the semigroup (G, δ) satisfy the prime element law (1.9).
If h ∈ A(G), λ0 < 1, and the series

(1.12)
∑

l

|l|3λl,
∑

p,j≥2

|h(pj)|q−jδ(p),
∑

l

|l|Cl(k)|

converge (the last one uniformly in k ≥ 1), then

νn(m) :=
1

Aqn
#{a ∈ G; δ(a) = n, h(a) = m} =

=
ϕ(x)

σ
√

log n

(
S1(m;h) + (−1)nI(G)A1A

−1S2(m; h)
)

+
B

log n

as n →∞.
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The zone of non-triviality of the asymptotic formula for νn(m) is deter-
mined by the function ϕ(x) used in the main term and the remainder. In fact,
it agrees with

|m− E log n| ≤ (1 + o(1))σ
√

(log n) log log n.

W.-B. Zhang has announced a large deviation theorem for the functions h with
h(p) ∈ {0, 1} under mild conditions on the semigroup (G, δ). If h ∈ A(G) and
the distribution in Definition has exponential moments, the large deviation
theorems can also be proved by our approach. Under classical Axiom A#

asserting that g(n) = Aqn+Bqνn with q > 1, A > 0 and ν < 1, more results can
be found in [15], [17]. The second author [16] has started to examine the local
distributions for multiplicative functions. K.-H. Hwang’s deep investigations
[5], [6] concern only the counting functions of prime divisors and require strong
conditions on the semigroup.

Corollary. Let h(a) = Ω(a) be the number of all prime divisors of a ∈ G.
Then

νn(m) =
ϕ(y)
λσ

{
1 + (−1)n+mI(G)

∏

p∈P

(
1 +

1
||p||

)−1(
1− (−1)δ(p)

||p||
)}

+
B

λ2
.

When I(G) = 1, by virtue of (1.9) the product over primes is a nonzero
constant. It is worthwhile to stress that the zeros of the generating series Z(y)
on the convergence circumference have influence to the main terms of the local
probabilities.

2. Proofs of Theorems 1, 2, and 3

We will use the Cauchy integral formula

(2.1) fn =
1

2πi

∫

|y|=r

F (y)
yn+1

dy,

where r = max{q, e}−1/n. All neighborhoods of the points ξk, 0 ≤ k ≤ m − 1
will contribute to the main term of the integral. Let τ = (arg y)/2π, 0 < ε <

< c1/2, ∆k =
{
y : |y| = r, |τ − ϕk| ≤ ε

}
for k = 1, . . . ,m− 1,

∆0 =
{
y : |y| = r, 0 ≤ τ ≤ ε

} ∪ {
y : |y| = r, 1− ε ≤ τ ≤ 1

}
,
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and
∆ =

{
y : |y| = r

} \ m−1∪
k=0

∆k.

We first investigate the asymptotic behavior of the integrand F (y) in (2.1).

Lemma 1. If condition (1.2) is satisfied, then
(i) the function G(y) is analytic in |y| < 1;
(ii) G(y) = B in |y| ≤ 1 and G′(y) = BnR(n) for |y| = r;
(iii) exp{G(y)} = exp{G(ξk)}(1 + BnR(n)|y − ξk|

)
for y ∈ ∆k and 0 ≤

≤ k ≤ m− 1;
(iv) if, in addition, (1.5) holds, then H1(y) = H1(ξk)+BnR(n)|y− ξk| for

y ∈ ∆k and 0 ≤ k ≤ m− 1.

Proof. Summation by parts yields

G(y) = L(y)− log W (y) =
(

log
q

y

) ∞∫

1

ρ(u)
yudu

quu
+

∞∫

1

ρ(u)
yudu

quu2

if |y| ≤ 1. Condition (1.2) shows that the integrals converge uniformly in
|y| ≤ 1. This proves (i) and the first part of (ii). Further we introduce

I1n(y) =

n∫

1

ρ(u)
yudu

quu
, I2n(y) =

n∫

1

ρ(u)
yudu

quu2
,

and Gn(y) := log(q/y)I1n(y) + I2n(y). Now by (1.2),

(2.2) G(y) = Gn(y) + B

∞∫

n

r(u)
u

e−u/ndu = Gn(u) + Br(n)

if |y| ≤ 1 and

G′(y) = G′n(y) + B

∞∫

n

r(u)e−u/ndu = G′n(u) + Bnr(n) =

= B

n∫

1

r(u)du + Bnr(n) = BnR(n)
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if |y| = r. If y ∈ ∆k, then
(2.3)

Gn(y)−Gn(ξk) =

=
(

log
ξk

y

)
I1n(y) +

(
log

q

ξk

) (
I1n(y)− I1n(ξk)

)
+

(
I2n(y)− I2n(ξk)

)
=

=B|y − ξk|+ B|y − ξk|
n∫

1

r(u)du = BnR(n)|y − ξk|.

Here we have used the estimate 1 − zu = Bu|1 − z| if |1 − z| ≤ 1/2 and the
inequality n|y − ξk| ≥ 1 for y ∈ ∆k. Estimates (2.2) and (2.3) imply

exp{G(y)} = exp{Gn(y)}(1 + Br(n)
)

=

= exp{Gn(ξk)}(1 + B|Gn(y)−Gn(ξk)|)(1 + Br(n)
)

=

= exp{Gn(ξk)}(1 + BnR(n)|y − ξk|
)

if y ∈ ∆k and k = 0, . . . , m−1. Since by (2.2) we have G(ξk)−Gn(ξk) = Br(n),
the last estimate can be rewritten so as formulated in (iii). The estimate (iv)
follows from (iii) and condition (1.5).

Lemma 1 is proved.

Denote

Dk(y) = F (y)−Wk(ξk)H1(ξk)
(1− yξ−1

k )ϑk
=

1
(1− yξ−1

k )ϑk

(
Wk(y)H1(y)−Wk(ξk)H1(ξk)

)
.

Lemma 2. Let conditions (1.2) and (1.5) be satisfied and 0 ≤ k ≤ m− 1.
For y ∈ ∆k, we have

Dk(y) = BnR(n)|y − ξk|1−<ϑk = BnR(n)n(<ϑ−1)+

and
D′

k(y) = BnR(n)|y − ξk|−<ϑk .

For y ∈ ∆ we have Dk(y) = B and D′
k(y) = BnR(n).

Proof. Since Wk(y) is analytic at the point y = ξk and |y − ξk| ≥ 1/n if
y ∈ ∆k, the first assertion follows from (iv) of Lemma 1. The same argument
applies for the derivative of Dk(y) if y ∈ ∆k. The last assertions of Lemma 2
follow from condition (1.5) and (ii) of Lemma 1.



On analytic problems for additive arithmetical semigroups 279

Integration of integral (2.1). We split it into a few parts. Using the
estimates of Dk(y) obtained in Lemma 2 for the region ∆, we have
(2.4)∫

y∈∆

F (y)dy

yn+1
=

B

n
max
y∈∆

|F (y)|+ B

n

∫

y∈∆

|F ′(y)||dy| = B

n
+

B

n
nR(n) = BR(n).

By the definition of Dk(y),

(2.5)

Jk :=
∫

y∈∆k

F (y)
yn+1

dy = Wk(ξk)H1(ξk)
∫

y∈∆k

dy

yn+1(1− yξ−1
k )ϑk

+

+
∫

y∈∆k

Dk(y)dy

yn+1
=: Wk(ξk)H1(ξk)J1k + J2k.

Using also Lemma 2 and summing by parts, we obtain

J2k =
B

n
max
y∈∆k

|Dk(y)|+ B

n

∫

y∈∆k

|D′
k(y)||dy| = BR(n)n(<ϑ−1)++

+ BR(n)
∫

y∈∆k

|y − ξk|−<ϑk |dy| = BR(n)n(<ϑ−1)++

+ BR(n)n<ϑk−1

εn∫

1

dt

(log2 max{q, e}+ t2)<ϑk/2
=

= BR(n)n(<ϑ−1)+ min{log n, |1−<ϑk|−1}.

By the well known estimates

J1k = 2πiξ−n
k

(
n + ϑk − 1

n

)
−

∫

|y|=r, y 6∈∆k

dy

yn+1(1− yξ−1
k )ϑk

=

= 2πiξ−n
k

nϑk−1

Γ(ϑk)
+ Bn<ϑk−2 + Bn−1.

Inserting the estimates of J1k and J2k into (2.5), we obtain the desired
asymptotic formula for Jk. Further, (2.5), (2.4), and (2.1) imply the statement
of Theorem 1.
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Proof of Theorem 2. If ϑk is defined in the formulation of Theorem 2
and γk is defined as previously, then, for k ≡ s (mod m),

γk =
m−1∑

l=0

ζ−kl

(
1
m

m−1∑
r=0

βrζ
lr

)
=

m−1∑
r=0

βr

(
1
m

m−1∑

l=0

exp
{

2πi
l(r − s)

m

})
= βs.

Hence ρ(u) = ρ̃(u) and Theorem 2 follows from Theorem 1.

Proof of Theorem 3. We apply Theorem 2 for F (y) = Z(q−1y) and use
the above notation. For |y| ≤ 1, by condition (1.8), we have

|K ′(y)| =
∣∣∣∣∣∣

∞∑

k=2

∞∑

j=1

jπ(j)q−jkyjk−1

∣∣∣∣∣∣
≤

∞∑

j=1

jπ(j)q−2j ≤

≤ log q

∞∫

1

q−u
∑

j≤u

jπ(j)q−j du = B

∞∫

1

(u2 + r(u))q−u du = B.

Thus the conditions of Theorem 2 are satisfied and the desired result follows.

3. Proof of Theorem 4

First, we verify that Theorem 1 yields an asymptotic formula for the
characteristic function

ψn(t) =
1

Aqn

∑

a∈G,δ(a)=n

eith(a), t ∈ R.

Indeed, set g(a) = eith(a) and, for |y| < 1,

F (y, t) = A

∞∑
n=0

ψn(t)yn =

=
∑

a∈G

g(a)(q−1y)δ(a) = exp
{ ∞∑

j=1

(
q−j

∑

δ(p)=j

g(p)
)

yj

}
H(y, t),

where

H(y, t) =
∏

p∈P

(
1 +

∞∑
α=1

g(pα)
||p||α yαδ(p)

)
exp

{
− g(p)
||p|| y

δ(p)

}
.
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Since q > 1, in a routine way we can verify that H(y) = H(y, t) is defined in
|y| ≤ 1 where it is continuous and satisfies condition (1.5) uniformly in t ∈ R.
Now using Definition of A(G), we have the following estimate for
(3.1)

a(j)
j

:= q−j
∑

δ(p)=j

g(p) = q−j
∑

l∈Z

eitl
∑

δ(p)=j
h(p)=l

1 = q−jπ(j)
∑

l∈Z

eitl
(
λl + ρl(j)

)
=

= q−jπ(j)
(
κ(t) + B log−3(j + 1)

)
.

This and (1.9) imply (1.2) with r(u) = log−3(u + 1) uniformly in t ∈ R. Thus,

F (y, t) =
(1 + y)I(G)κ(t)

(1− y)κ(t)
eG(y,t)H(y, t)

with

G(y, t) =
∞∑

j=1

1
j

(
jq−j

∑

δ(p)=j

eith(p) − κ(t)
(
1− I(G)(−1)j

))
yj , |y| ≤ 1,

and Theorem 1 is applicable. It yields

Aψn(t) = 2I(G)κ(t)(Γ(κ(t)))−1eG(1,t)H(1, t)nκ(t)−1+

+ I(G)2−κ(t)(Γ(−κ(t)))−1eG(−1,t)H(−1, t)(−1)nn−κ(t)−1 +
B

log n
=:

=: f0(t)nκ(t)−1 + I(G)f1(t)(−1)nn−κ(t)−1 +
B

log n

uniformly in t ∈ R. Hence

(3.2) νn(m) =

=
1

2πA

π∫

−π

e−itmnκ(t)−1f0(t) dt +
1

2πA

π∫

−π

e−itmn−κ(t)−1f1(t) dt +
B

log n
=:

=: J0 + J1 +
B

log n
.

Such rather typical integral appeared already in [14]. We can use the same
argument.

We further consider two cases corresponding to s = 0 and s = 1. Let
0 < ε < 1 be a small number such that the intervals D(ts) := {t ∈ (−π, π] :
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|t− ts| < ε}, as ts runs through the solutions of the corresponding equation of
(11), do not have common points. Here, in the case ts = π, the corresponding
interval is understood as (−π,−π + ε)∪ (π− ε, π]. As in (3.1), the convergence
of the third series of (1.12) assures G(1, t) = G(1, ts) + B|t− ts| for t ∈ D(ts).
More complicated but routine calculations based upon the second series of
(1.12) yield H((−1)s, t) = H((−1)s, ts) + B|t− ts| for t ∈ D(ts). Similarly, in
the same interval,

2(−1)sI(G)
(
Γ((−1)sκ(t))

)−1 = 2(−1)sI(G) + B|t− ts|.

So, we obtain

(3.3) fs(t) = fs(ts) + B|t− ts|, t ∈ D(ts).

Moreover, if
t ∈ Ds := (−π, π] \ ∪

ts

D(ts),

then fs(t) = B.
From the properties of κ(t) we have

nκ(t+t0)−1 = nκ(t)−1 =
(
1 + B|t|3 log n

)
niEt−σ2t2/2

if |t| ≤ η := C3

(
(log log n)/ log n

)1/2 and C3 is a positive constant (later to be
chosen sufficiently large). If ε is sufficiently small and |t| ≤ ε, then nκ(t+t0)−1 =
= Bn−c2t2 with c2 = c2(ε, σ, β) > 0. In t ∈ D0, we even have nκ(t)−1 = Bn−c3

with some c3 > 0. These estimates and (3.3) yield

(3.4) J0 =
1

2πA




∑
t0

∫

D(t0)

+
∫

D0


 e−itmnκ(t)−1f0(t)dt ==

1
2πAσ

√
log n

×

×
∑
t0

e−it0m

∫

|v|≤ησ
√

log n

e−ivx−v2/2

(
f0(to) +

B(|v|3 + |v|)√
log n

)
dv+

+ B

∫

η≤|t|≤ε

n−c2t2 dt + Bn−c3 =
ϕ(x)

σ
√

log n

∑
t0

e−it0mf0(t0) +
B

log n
.
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Similarly, integrating J1, we observe that −κ(t+t1) = κ(t) therefore the typical
integral in the corresponding sum over t1 equals

1
2πA

∫

D(t1)

e−itmn−κ(t)−1f1(t) dt =

=
e−it1m

2π

∫

|t|≤ε

e−itmnκ(t)−1(f1(t1) + B|t|) dt =

=
ϕ(x)

σ
√

log n
e−it1mf1(t1) +

B

log n
.

The contribution of the integral over D1 is also Bn−c2 . The sum of these
estimates, (3.4) and (3.2) yield

νn(m) =
ϕ(x)

Aσ
√

log n

( ∑
t0

e−it0mf0(t0) + I(G)(−1)n
∑
t1

e−it1mf1(t1)
)

+
B

log n
.

The expressions of the constants A and A1 above show that this is just another
form of the desired result.

Theorem 4 is proved.
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[9] Manstavičius E., A Tauber theorem and multiplicative functions on
permutations, Number Theory in Progress, eds. K.Győry et al., Walter
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