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Abstract. In this paper we show an interesting application P.C.B Philips’

[14] result for AR(p) process. In the first point we give a summary of

results concerning the nearly unstable models. In the second point the

notion of mixing properties are investigated and a suitable transformation

is introduced which allows us to prove results for the nearly unstable AR(1)

process with autoregressive innovation having strong mixing property. In

the third point the theorem and the proof are given.

1. Introduction

1.1. Classical results

Consider the autoregressive AR(p) model

(1)
Xk = β1Xk−1 + . . . + βpXk−p + εk, k = 1, 2, . . . ,

X0 = X−1 = . . . = X1−p = 0,

where εk is the (unobservable) random disturbance (noise) at time k and
β1, . . . , βp are unknown parameters. The least-squares estimator (LSE) of the
parameter B = (β1, . . . , βp)′ based on the observation X1, . . . , Xn is given by

B̂n =

(
n∑

k=1

X̃k−1X̃
′
k−1

)−1 n∑

k=1

XkX̃k−1,
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where
X̃k = (Xk, Xk−1, . . . , Xk−p+1)′.

The polynomial φ defined by

(2) φ(z) = 1− β1z − . . .− βpz
p

is called the characteristic polynomial of the AR(p) model (1).
When all roots of φ are outside the unit circle, the model (1) is said

to be asymptotically stationary. Under the assumption that the εk’s are
independent and identically distributed (i.i.d.) with Eε2k = σ2 the LSE of
B̂n is asymptotically normal

(
n∑

k=1

X̃k−1X̃
′
k−1

)−1/2

(B̂n − B) D→ N (0, I), as n →∞,

where D→ denotes convergence in distribution and I is the unit matrix (Mann,
Wald [12], Anderson [2]). By another normalization

√
n(B̂n − B) D→ N (0, Σ−1), n →∞,

where the matrix Σ can be expressed by the help of σ2.
When φ has no roots inside the unit circle but has at least one root on the

unit circle the model is said to be unstable. It was shown by White ([15],[16])
that in case of the unstable AR(1) model

Xk = βXk−1 + εk, k ≥ 1

with β = 1

n(β̂n − β) D→

1∫
0

W (t)dW (t)

1∫
0

W 2(t)dt

,

where W (t), t ≥ 0 is a standard Wiener process.

In the “explosive” case, when |β| > 1 the serial (β̂n)n≥1 limit distribution
of β̂n is not asymptotically normal. For example, if ε1 ∼ N (0, 1) then

n(β̂n − β) D→ Cauchy(0, β2 − 1).
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1.2. Nearly unstable model

These results led to the study of the following so-called nearly nonstation-
ary (better to call it nearly unstable) AR(1) model

Xn,k = βnXn,k−1 + εn,k, k = 1, 2, . . . , n,

Xn,0 = 0,

where βn = 1 + γ/n. It can be shown that

(
n∑

k=1

X2
n,k−1

)1/2

(β̂n − βn)

1∫
0

Y (t)dW (t)

(
1∫
0

Y 2(t)dt

)1/2
,

where Y (t), t ∈ [0, 1] is an Ornstein-Uhlenbeck process defined as the solution
of the stochastic differential equation

dY (t) = γY (t)dt + dW (t), Y (0) = 0.

By another normalization

n(β̂n − βn) D→

1∫
0

Y (t)dW (t)

1∫
0

Y 2(t)dt

.

Meer, Pap and Zuijlen [13] considered the following nearly unstable AR(p)
model

(3)

Xn,k = β1,nXn,k−1 + . . . + βp,nXn,k−p + εn,k,

k = 1, 2, . . . , n,

Xn,0 = Xn,−1 = . . . = Xn,−p = 0,

where the vector of parameters

Bn = (β1,n, . . . , βp,n)′

is given by
Bn = B + σnhn,
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where
B = (β1, . . . , βp)′

is a vector such that the polynomial

φ(z) = 1− β1z − . . .− βpz
p

corresponds to an unstable AR(p) model, {σn} are the normalizing matrices,
and

hn = (h1,n, . . . , hn,n)′

is a sequence of vectors with hn → h. (Jeganathan [10] proved that the
sequence σ−1

n (B̂n−Bn) converges in law and gave a complicated representation
for the limiting distribution in terms of multiple stochastic integrals with
respect to the Wiener processes.)

For the sake of simplicity they supposed that φ has all its roots on the
unit circle. Then φ can be written as

φ(z) = (1− z)a(1 + z)b
l∏

j=1

((1− eiαj z)(1− e−iαj z))mj ,

where a, b, l,mj , j = 1, . . . , l are nonnegative integers, αj ∈ (0, π), j = 1 . . . l.
They suggested writing φ in the form

φ(z) =
q∏

j=1

(1− ajz)rj ,

where q = 2 + 2l, aj = eiθj and θ1, . . . , θq ∈ (−π, π] are all different. They
supposed that in the nearly unstable AR(p) model the characteristic polynomial
φn can be written as

φn(z) =
q∏

j=1

rj∏

k=1

(1− aj,k,nz),

where aj,k,n = ehj,k,n/n+iθj , hj,k,n, j = 1, . . . , rj , n ≥ 1 are complex numbers
such that hj,k,n → hj,k as n →∞.

It is clear that

φn(z) → φ(z) =
q∏

j=1

(1− ajz)rj ,
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where aj = eiθj , j = 1, . . . , q. Obviously p =
q∑

j=1

rj .

They supposed that the system εn,k in (3), k = 1, . . . , n, n ≥ 1 is a
triangular array of real squares integrable martingale differences with respect
to the filtrations (Fnk)k=0,1,...,n;n≥1 such that for all t ∈ [0, 1]

1
nt

[nt]∑

k=1

E(ε2nk|Fn,k−1)
P→ 1,

(4) and

∀α > 0
1
n

[nt]∑

k=1

E(ε2nkχ{|εnk|>α
√

n}|Fn,k−1)
P→ 0

as n →∞.
As the main result they described the asymptotic behaviour of the least-

squares estimator of the coefficients. A convergence result was presented for
the general complex-valued case. The limit distribution was given by the help
of some continuous time AR processes.

They clarified the relationship between general complex-valued discrete
and continuous time AR(p) models. As a consequence they were able to
understand and to simplify the complicated expressions of Jeganathan [10] for
the limit distribution of the LSE’s in real-valued discrete settings. One of the
advantages of their approach of studying complex-valued models is that they
could avoid complicated formulas with sines and cosines. They showed how to
use their results for real-valued AR(p) models.

In that case the limit distribution can be identified with the maximum
likelihood estimator of the coefficients of the corresponding continuous time
AR processes.

1.3. Examples

Now for illustration of the above mentioned results we give some examples.
We shall study real-valued AR(2) models near to unstable model given by

(5)
Xn,k = β1,nXn,k−1 + β2,nXn,k−2 + εn,k, k = 1, 2, . . . , n,

Xn,0 = Xn,−1 = 0,

where {εn,k} is an array of real random variables satisfying the condition (4)
and β1,n, β2,n are real numbers.
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Example 1. First consider the case when the limit unstable model has
complex roots, i.e. its characteristic polynomial is

φ(z) = (1− eiθz)(1− e−iθz) = 1− 2z cos θ + z2.

Then we have β1 = 2 cos θ and β2 = −1. The characteristic polynomial of (5)

φ(z) = (1− ehn/n+iθz)(1− ehn/n−iθz),

where hn ∈ C such that hn → h, as n →∞ and θ ∈ (0, π).
As a consequence of the main theorems in [13] we conclude

n(B̂n − B) =
(

n(β̂1,n − β1)
n(β̂2,n − β2)

)
D→

(
2(<(ĉ) cos θ −=(ĉ) sin θ)

−2<(ĉ)

)
,

where

ĉ =

1∫
0

Y (t)dY (t)

1∫
0

|Y (t)|2dt

,

and Y (t), t ∈ [0, 1] is the continuous time complex-valued AR(1) process given
by

dY (t) = hY (t)dt + dW (t), Y (0) = 0,

where W (t), t ∈ [0, 1] is a standard complex-values Wiener process.
The preceding convergence statement can be reformulated as

n(B̂n − Bn) =
(

n(β̂1,n − β1,n)
n(β̂2,n − β2,n)

)
D→ 2

s2
Y

(
r+
Y W cos θ − r−Y W sin θ

−r+
Y W

)
,

where

s2
Y =

1∫

0

(Y 2
1 (t) + Y 2

2 (t))dt,

r+
Y W =

1∫

0

(Y1(t)dW1(t) + Y2(t)dW2(t)),

r−Y W =

1∫

0

(Y1(t)dW2(t)− Y2(t)dW1(t)),
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W1(t) and W2(t), t ∈ [0, 1] are independent real-valued standard Wiener
processes, and the process (Y1(t), Y2(t)), t ∈ [0, 1] is given by

(
dY1(t)
dY2(t)

)
=

(
λ −ω
ω λ

)(
Y1(t)dt
Y2(t)dt

)
+

(
dW1(t)
dW2(t)

)

with initial values Y1(0) = Y2(0) = 0 where λ = <(h) and ω = =(h).

We remark that Chan and Wei [3] proved convergence of n(β̂2,n + 1) in
the stable case, i.e. when hn ≡ 0.

Example 2. Now consider the case when the limit unstable model has
double roots equal to 1, i.e. its characteristic polynomial is

φ(z) = (1− z)2 = 1− 2z + z2,

and we have β1 = 2 and β2 = −1. The characteristic polynomial of the model
(5) has the form

φn(z) = (1− eh1,n/nz)(1− eh2,n/nz),

where hk,n ∈ C such that hk,n → hk, as n → ∞, for k = 1, 2, and the
polynomial φn has real coefficients. This implies that h1,n and h2,n are real
numbers or conjugated complex numbers. The same is valid for h1 and h2.

One can get
(

0 −n
n2 n2

)(
β̂1,n − β1

β̂2,n − β2

)
=

(
ĉ1,n

ĉ2,n

)
D→

(
ĉ1

ĉ2

)
,

where

(
ĉ1

ĉ2

)
= S−1




1∫
0

Ẏ (t)dẎ (t)

1∫
0

Y (t)dẎ (t)


 ,

S =




1∫
0

(Ẏ (t))2dt
1∫
0

Ẏ (t)Y (t)dt

1∫
0

Y (t)Ẏ (t)dt
1∫
0

(Y (t))2dt


 ,

and Y (t), t ∈ [0, 1] is the continuous time real-valued AR(2) process

dẎ (t) = ((h1 + h2)Ẏ (t)− h1h2Y (t))dt + dW (t),

dY (t) = Ẏ (t)dt,

Y (0) = Ẏ (0) = 0,
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where W (t), t ∈ [0, 1] is a standard real-valued Wiener process. Moreover
ĉ1, ĉ2 can be interpreted as the MLE of c1 = h1 + h2 and c2 = −h1h2. By Ito’s
formula we can also derive

(
0 −n
n2 n2

)(
β̂1,n − β1,n

β̂2,n − β2,n

)
D→ S−1




1∫
0

Ẏ (t)dW (t)

1∫
0

Y (t)dW (t)


 .

Comparing the complex-valued AR(2) models with real-valued AR(2)
models we observe that convergence of LSE’s in the real-valued models can
be derived from the complex-valued case by taking into account the extra
requirement that the coefficients should be real numbers. However, the
formulations in the context of complex-valued models are remarkably simpler.

As we have seen, a multiple root in the model implies a higher order au-
toregressive component in the corresponding continuous time model. Different
but not conjugated roots imply components driven by independent Wiener
processes in the continuous time model. In case the roots are conjugated
pairs, then the components are driven by conjugated complex-valued Wiener
processes. A real root is connected to a real-valued Wiener process, and a
complex root is connected to a complex-valued Wiener process, even if the
model has real coefficients!

We finally note, that convergence of LSE’s in models with complex-valued
disturbances {εn,k} can be handled similarly (see the AR(1) case in Kormos,
van der Meer, Pap and van Zuijlen [11]).

2. The problem, preliminary

Let us consider the p-order autoregressive process

(1′) Xk + β1Xk−1 + . . . + βpXk−p = εk

and instead of (2) characteristic polynomial we deal with Φ(Z) = Zp+β1Z
p−1+

+ . . .+βp. Let us suppose that one of the zeros of the characteristic polynomial
is on the unit circle, and the absolute value of the others is less than one, i.e.

(6) 1 ≥ |Z1| > |Z2| ≥ . . . ≥ |Zp|.
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The sharp inequality between |Z1| and |Z2| means that Z1 is a real zero (the
complex conjugate does not appear). Using the B backshift operator we can
write (1’) in the following form of

Ap(B)Xk = εk,

where
Ap(B) = (1− Z1B)(1− Z2B) . . . (1− ZpB);

where p is the degree of the operator-polynomial.
From this it follows that

(1− Z1B)Xk = (1− ZpB)−1 . . . (1− Z2B)−1εk.

Denoting the expression on the right hand side of the equation by Yk we
can get

Ap−1(B)Yk = εk,

which is a stochastic difference equation defining a (p− 1)-order autoregressive
process, where (of course) Ap−1(B) = (1− Z2B) . . . (1− ZpB). It results that
the last two equations can be written with coefficients in the form of

(7) Xk − ρXk−1 = Yk,

(8) Yk + c1Yk−1 + . . . + cp−1Yk−p+1 = εk,

which is an equivalent form of the equation (1’) taking into consideration that

(9)

β1 = −ρ + c1,

βi = −ci−1ρ + ci, i = 2, . . . , (p− 1),

βp = −cp−1ρ.

We can interpret the above also in the following way: The examination
of the stationarity properties of the (1’) AR(p) process is traced back to the
behaviour of such AR(1) process, where the innovation process Yk is an AR(p-
-1) stationary process. (We have implicitly used the fact that the stationarity of
an autoregressive process could be determined by the zeros of its characteristic
polynomial with maximum absolute values.)

A stationary (in strong sense) process (Xt) satisfies the strong mixing
condition, if

sup
A,B

|P (AB)− P (A)P (B)| = α(k) → 0,



216 J. Kormos

when k →∞, where
A ∈ FX

(−∞,0], B ∈ FX
(k,∞].

Regarding the equations (7)-(8), let us examine now, when is a stationary
finite-order autoregressive model strong mixing. The complexitiy of the prob-
lem is underlined by the fact that C.S. Withers [17] created an example for
stationary first-order processes, that are not strong mixing.

Let Y = (Yk) be q-order stationary autoregressive process, with zero mean,
that is let the following equation be fulfilled

(10) Yk + c1Yk−1 + . . . + cqYk−q = εk.

The stationarity condition results that for the zeros of the characteristic
polynomial it is true that

|Zi| < 1, i = 1, . . . , q,

and the moving average representation of the process (Yk)

(11) Yk =
∞∑

i=0

giεk−i

does exist.
Let

b′ = (bl, . . . , bl+m−1); γ′ = (γl, . . . , γl+m−1);

α′n = (αnl, . . . , αn(l+m−1)); β′
n

= (βnl, . . . , βn(l+m−1))

be m-dimensional vectors with scalar elements.
Let Vt from the (11) be defined by

Vt =
t−1∑

i=0

giεt−i, t = l, . . . , l + m− 1,

and compose the vector V ′ = (Vl, . . . , Vl+m−1). Let us define the open interval
Dn in the form of

Dn = {b | αnt < bt < βnt}
and let

D =
s⋃

n=1

Dn.
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Let us consider the following conditions for (εl), (l ∈ Z):
– the random variables εl are independent,
– for some δ > 0

max
l

E|εl|δ < ∞,

– if Φl denotes the characteristic function of εk then

(12) max
l

∞∫

−∞
|Φl(t)|dt < ∞,

sup
m,s,l

sup
α,β,γ

max
t

∣∣∣∣
∂

∂γt
P (V + γ ∈ D)

∣∣∣∣ < ∞,

where m ∈ N, s ∈ N, l ∈ Z.

After all this the following lemma can be formulated.

Lemma. Let the process Y = (Yk) be the (10) q-order stationary
autoregressive process. Let the conditions (12) be satisfied for the innovation
process εk. Then the process (Yk) is strong mixing and for the coefficients α(l)

α(l) = O(Zλl
0 ),

where

λ =
δ

1 + δ

and
max

j
|Zj | < Z0 < 1.

The detailed proof of the lemma can be found in the papers of K.C. Chanda
[4], V.V. Gorodetskij [6] and C.S. Withers [17]. These authors found the
solution of the general but not trivial problem, when a linear process shows
strong mixing characteristics. The main topic of the present paper and the
limited space do not allow us to treat these questions in due depth.

Corollary. It follows from the lemma that

∞∑

l=1

α(l)1−2/β < ∞,

where β > 2.
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Note. Concerning the behaviour of coefficients α(m) the following rela-
tions are known. Denote the maximal correlation between the past and the
future of (Yk) by r∗(m), i.e. let

r∗(m) = sup
ξ,η

Eξη,

where ξ is any F y
(−∞,0] measureable random variable, and η is a F y

[m,∞)

measureable random variable. The condition r∗(m) → 0 (m → ∞) is the
condition of the asymptotic independence between the past and the future of
the process.

The followings are true for the r∗(m) sequence

r∗(m) ≥ 4α(m), m = 1, 2, . . .

If (Yk) is a Gaussian process, then r∗(m) and α(m) are asymptotically
equivalent, more precisely

4α(m) ≤ r∗(m) ≤ 2πα(m)

(see I.A. Ibragimov - Yu.V. Linnik [9] and P. Hall - C.C. Heyde [7]).

3. Results, proofs

Then we can form our statement concerning AR(p) processes from which
a real zero could be separated.

Theorem. Let X = (Xk) be a p-order autoregressive process defined by
the stochastic difference equation (1’) and let Xk = 0, k ≤ 0. The innovation
process (εk) satisfies the conditions (12), and the zeros of the characteristic
polynomial satisfy the condition (6). Let us perform the transformations (7)-
(9) and denote by

ρ̂ =

n∑
k=1

XkXk−1

n∑
k=1

X2
k−1

the least squares estimator of the unknown ρ parameter in the first-order
autoregressive process according to (7)

Xk = ρXk−1 + Yk
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and let
sup

k
E|Yk|β < ∞

be fulfilled for some β > 2.
Then, if ρ = 1,

(13) n(ρ̂− 1) D→
n→∞

1
2

(
W 2(1)− σ2

y

σ2

) / 1∫

0

W 2(s)ds,

and if ρ = ρn = e−λ/n, then

(14) n(ρ̂− ρ) D→
n→∞

1∫
0

X(s)dW (s) + 1
2

(
1− σ2

y

σ2

)

1∫
0

X2(s)ds

,

where

(15) σ2
y = lim

n→∞
1
n

n∑

k=1

E(Y 2
k ),

σ2 = lim
n→∞

E


1

2

(
n∑

k=1

Yk

)2

 ,

and the process (X(s)) is defined by the following equation

(16) X(s) = W (s)− λ

s∫

0

e−(s−r)λW (r)dr,

where W (s) is the standard Wiener process.

Proof. The technique of the proof is standard, it is not different from
the methods used in similar problems (Donsker-Prohorov invariance principle,
application of the continuous mapping theorem), we will only show the most
important steps.

Notice that

(17) n(ρ̂− ρ) =

1
n

n∑
k=1

Xk−1Yk

1
n2

n∑
k=1

X2
k−1

,
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and for ρ = 1

n(ρ̂− 1) =

1
n

n∑
k=1

Xk−1(Xk −Xk−1)

1
n2

n∑
k=1

X2
k−1

.

Denote by Xk(t) the random element in D[0, 1]

Xn(t) =
1√
nσ

[nt]∑

k=1

Yk =
1√
nσ

k−1∑

k=1

Yk,

k − 1
n

≤ t <
k

n
(k = 1, . . . , n),

Xn(1) =
1√
nσ

n∑

k=1

Yk.

One can show that, if n →∞

(18) Xn(t) D→ W (t),

where W (t) is the standard Wiener process, see N. Herrndorf [8].
After simple transformations it can be seen that

1
n2

n∑

k=1

X2
k−1 = σ2

1∫

0

X2
n(t)dt,

and
1
n

n∑

k=1

Xk−1(Xk −Xk−1) =
σ2

2
X2

n(1)− 1
2n

n∑

k=1

Y 2
k ,

thus applying the continuous mapping theorem for (18) and taking into
consideration that

(19)
1
n

n∑

k=1

Y 2
k → σ2

y, with probability 1,

if n →∞ we get the statement (13).
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In the case of ρ = e−
λ
n

Xk =
k∑

j=1

e−
(k−j)λ

n Yj ,

hence

1√
n

X[nt] = σ

[nt]∑

j=1

e−
([nt]−j)λ

n

j/n∫

(j−1)/n

dXn(s) = σ

t∫

0

e−(t−s)λdXn(s).

By partial integration we get the expression

σ


Xk(t)− λ

t∫

0

e−(t−s)λXn(s)ds


 ,

for which in case of n →∞ the following statement is true

σ


Xn(t)− λ

t∫

0

e−(t−s)λXn(s)ds


 D→ σX(t),

where X(t) is defined by (16).
From these it follows directly by the re-application of the continuous

mapping theorem

(20)
1
n2

n∑

k=1

X2
k−1

D→ σ2

1∫

0

X2(s)ds,

when n →∞.
Now only the limit distribution specification of the numerator n(ρ̂− ρ) in

the expression (17) is to be done. Let us consider the following identity

1
n

X2
n = −2λ

n2

n∑

k=1

X2
k−1 +

1
n

n∑

k=1

Y 2
k +

2
n

n∑

k=1

Xk−1Yk.

From this applying (19), (20) and the continuous mapping theorem we get

(21)
2
n

n∑

k=1

Xk−1Yk
D→ σ2X2(1) + 2λσ2

1∫

0

X2(s)ds− σ2
y,
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when n →∞. (21) and (20) result the statement (14) of the theorem directly.

Corollary. (i) Because (Yk) is a stationary sequence, the condition (15)
needs the satisfaction of EY 2

1 < ∞, which comes from the conditions trivially.
The limit distribution (13) also exists and is positive, and can be written in
the form of

σ2 = EY 2
1 + 2

∞∑

k=2

EY1Yk.

(ii) If the innovation process (Yk) is a sequence of independent and
identically distributed random variables the (13) gives back the classical result
of J.S. White [15] and T.W. Anderson [1] exactly.

(iii) The process (16) satisfies the following first-order stochastic differen-
tial equation

dX(s) + λX(s)ds = dW (s).

We supposed that we had some preliminary knowledge about the behaviour
of the process (1’), i.e. about the zeros of the process and we supposed that
they could be characterized by the condition (6). So whether the coefficients
β2, . . . , βp(c1, . . . , cp−1) are known or unknown, the behaviour of the process is
determined by the value of the parameter ρ, or more precisely by the distance
of its absolute value from 1.
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