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1. Introduction

1.1. Let P be the whole set of the primes. p, pi, pj always denote prime
numbers. For some integer n with prime decomposition n = pα1

1 . . . pαr
r the

divisor d = pβ1
1 . . . pβr

r is said to be an exponential divisor of n, if βj divides αj

for every j = 1, . . . , r. It is obvious, that the number of the exponential divisors
of n (it is denoted as τ (e)(n)) is τ(α1) . . . τ(αr), where τ(m) is the number of the
divisors of m. The notion of exponential divisors was introduced by Subbarao
[4]. In [13] Fabrykowski and Subbarao proved that

∑
τ (e)(n) = A1x + O

(
x1/2 log x

)
.

Recently Wu [2] observed that the generating Dirichlet series

F (s) :=
∞∑

n=1

τ (e)(n)
ns

can be written as F (s) = ζ(s)ζ(2s)U(s), where U(s) can be written as an
absolute convergent Dirichlet series in the halfplane σ > 1/5, whence, by using
the estimate ∑

d2≤x

({ x

d2

}
− 1/2

)
¿ x2/9 log x
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(see [6]) he was able to deduce that

∑
τ (e)(n) = A1x + A2

√
x + O

(
x2/9 log x

)
.

Smati and Wu [3] recently proved that

(1.1)
∑

p≤x

τ (e)(p− 1) = c li x + OA

(
x

(log x)A

)

holds for every fixed A.

1.2. Let B be the set of square full numbers. For some integer n, let
E(n) be the square full, and F (n) be the square free part of n. Then n =
= E(n)F (n), (E(n), F (n)) = 1 and E(n) is the largest divisor of n which
belongs to B.

For some b ∈ B let Rb be the set of those integers n for which E(n) = b.
Let

(1.2)
νx(b) : =

1
x

# {n < x, n ∈ Rb} ,

ν(b) : = lim
x→∞

νx(b).

By elementary sieve one can deduce that

(1.3) ν(b) =
1

ζ(2)b

∏

p|b

1
1 + 1/p

.

Let m ∈ N, m = pα1
1 . . . pαr

r . Let

D(m) := {pγ1
1 . . . pγr

r | γ1, . . . , γr ∈ N0} ,

where N0 is the set of nonnegative integers.
Let

(1.4) M(x) =
∑

n≤x

|µ(n)|; M(x|b) =
∑
n≤x

(n,b)=1

|µ(n)|.

It is known that

M(x)− x

ζ(2)
¿ √

x exp
(
−c(log x)3/5(log log x)−1/5

)
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(Walfisz [7]). We shall use the somewhat weaker inequality

(1.5) M(x)− x

ζ(2)
= O(

√
x).

Theorem 1. We have, for b ∈ B

(1.6) νx(b) = ν(b) + O


 1

b
√

x

∏

p|b

(
1 +

1√
p

)
 .

Remark. A. Ivić [10] proved: if f is a multiplicative function such that
f(pα) = g(α) ∈ N, g(1) = 1, then

1
x

∑
n≤x

f(n)=k

= dk + O

(
1√
x

exp
(
−c(log x)3/5(log log x)−1/5

))
.

From our Theorem 1 one can deduce a similar theorem which is weaker
than his, if k is small, and stronger than his for large |k|.

Theorem 2. Let f be a multiplicative function for which f(pα) =
= g(α), g(1) = 1, g(2) > 0. Assume furthermore that

|g(2)|
22

+
|g(3)|

23
+ . . .

is finite.
Then

(1.7)
1
x

∑

n≤x

f(n) =
∑

b∈B
f(b)ν(b) + O

(√
x(log x)g(2)−1

)
,

(1.8)
∑

b∈B
f(b)ν(b) =

1
ζ(2)

∏

p∈P


1 +

∞∑

j=2

g(j)
(1 + 1/p) pj


 .

Corollary of Theorem 1. We have

(1.9)
1
x

∑

n≤x

Ω
(
τ (e)(n)

)
= A + O

(
log log x√

x

)
,
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where

(1.10) A =
∑

b∈B
Ω

(
τ (e)(b)

)
ν(b),

and

(1.11)
1
x

∑

n≤x

ω
(
τ (e)(n)

)
= B + O

(
log log x√

x

)
,

where

(1.12) B =
∑

b∈B
ω

(
τ (e)(b)

)
ν(b).

Here ω(n) is the number of the prime divisors, and Ω(n) is the number of
prime-power divisors of n.

Remark. (1.11) is somewhat stronger than Corollary 1 in [3].

We shall prove

Theorem 3. We have

# {n ∈ [X,X + H], n ∈ Rb} =

= Hν(b) + O
(
XΘ+ε · 2ω(b)

)
+ O


H1/2Xε

∏

p|b
(1 + 1/

√
p)




uniformly as 0 < H < x. Here Θ = 0, 2204 and ε is an arbitrary positive
constant. The implied constants in the order terms may depend on ε.

1.3 We have

Theorem 4. Let Θ = 7/12, A and B be arbitrary positive constants.
Assume that xΘ+ε ≤ y ≤ x. Let b ∈ B and b < (log x)A. Then

(1.13) # {p < x | p− 1 ∈ Rb} = ρ(b) li x + O

(
x

(log x)Bb

)

(1.14)
# {p ∈ [x, x + y] | p− 1 ∈ Rb} =

= ρ(b) (li (x + y)− li x) + O

(
y

(log x)Bb

)
,



On the distribution of exponential divisors 165

where

(1.15) ρ(b) :=
c

b

∏
π|b

π∈P

π(π − 1)
π2 − π − 1

, C =
∏

p∈P

(
1− 1

p(p− 1)

)
.

Corollary of Theorem 4. Let y ∈ [
xΘ+ε, x

]
, Θ = 7/12, r ∈ N. Then

(1.16)
∑

p∈[x,x+y]

τ (e)r(p− 1) = Dr(li (x + y)− li x) + O

(
y

(log x)B1

)
,

where B1 is an arbitrary constant.
Here

(1.17) Dr =
∑

b∈B
τ (e)(b)r · ρ(b).

1.4. Let a1, a2, . . . , ak be distinct positive integers, G :=
∏
i<j

(ai − aj),

G = qγ1
1 . . . qγr

r , q1, . . . , qr be primes.

Let T = G[A log log x], and for l ∈ [1, T − 1], (l, T ) = 1, 1 ≤ l ≤ T − 1 let
t1(l), t2(l), . . . , tk(l) be defined as

tj(l) =
∏

pα‖l+aj

pα (l = 1, . . . , k).

Let furthermore e
(l)
j := E(tj(l)), the square full part of tj(l). Let c1, . . . , ck ∈ B,

such that (ci, cj) = 1 (i 6= j), and (ci, G) = 1. Assume that max cj < (log x)A.

Theorem 5. Let xΘ+ε ≤ y ≤ x, Θ = 7/12. Then
(1.18)

#
{
p ∈ [x, x + y] | p ≡ l (mod T ), p + aj ∈ Rejcj (j = 1, . . . , k)

}
=

=
(li (x + y)− li (x))

ϕ(T )
E(c1, . . . , ck) + OB

(
y

(log x)B

)
,

where

(1.19) E(c1, . . . , ck) =
1

c1, . . . , ck

∏
π|/Gc1...ck

π∈P

(
1− k

π(π − 1)

)
.
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As a consequence, for h(p) := τ (e)r1(p + a1) . . . τ (e)rk(p + ak) we have

(1.20)
∑

p∈[x,x+y]

h(p) = Kr1,...,rk
(a1, . . . , ak)(li (x+y)− li x)+OB

(
y

(log x)B

)
,

B is an arbitrary positive constant.

1.5. We would be able to prove the following theorems.

Theorem A. Let f1, f2, . . . , fk ∈ Z[x] be such that every fj is a product
of distinct irreducible polynomials of degree not higher than three. Then

∑

n≤x

τ (e) (f1(n)) τ (e) (f2(n)) . . . τ (e)(fk(n)) = Cx + o(x)

with some positive constant C.

Theorem B. If f1, . . . , fk ∈ Z[x], and every fj is a product of distinct
irreducible polynomials of degree not higher than two, then

∑

p≤x

τ (e) (f1(p)) τ (e) (f2(p)) . . . τ (e) (fk(p)) = C∗ li x + o(li x)

with some positive constant C∗.

Theorem A can be proved on a routine way by using the following theorem
of C. Hooley: if f ∈ Z[x] is irreducible, deg f ≤ 3, then the number of the
integers n ≤ x for which there is a prime p > log x such that p2|f(n) is at most
O

(
x(log x)−1/3

)
. See C. Hooley [5], Chapter 4, Theorem 3, or [12] for a better

estimate.

Let g ∈ Z[x] be an irreducible polynomial of degree 2. Let ε > 0 and
y = x1/2+ε. One can prove that the number of the integers n ∈ [x, x + y] for
which there is a prime q > (log x)2 such that q2|g(n) is at most O

(
Y/(log x)2

)
.

Hence we can deduce Theorem B, or even a short interval version of it.

Let ρ(m) be the number of solution of n2 +1 ≡ 0(mod m). We shall prove

Theorem 6. Let Y = x2/3+ε, ε > 0 be a small constant. Then, for every
fixed A > 0,

∑

n∈[X,X+Y ]

τ (e)(n2 + 1) = CY + OA

(
Y/(log x)A

)
,
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where

C =
∑

b∈B

τ (e)(b)ρ(b)ϕ(b)
b2

∏
π|/b

π∈P

(
1− ρ(π2)

π2

)
.

Theorem 7. Let Y = x2/3+ε, A be an arbitrary positive constant. Then

∑

p∈[X,X+Y ]

τ (e)(p2 + 1) = C1(li (X + Y )− li X) + OA

(
Y/(log x)A

)
,

where

C1 =
∑

b∈B

τ (e)(b)ρ(b)
b

∏
π|/b

π∈P

(
1− ρ(π)

π(π − 1)

)
.

2. Proof of Theorems 1, 2

Since
∑

(n,b)=1

|µ(n)|
ns

=
∏

p|b

(
1 +

1
ps

)−1

·
∞∑

n=1

|µ(n)|
ns

holds for Re s > 1, therefore

M(x|b) =
∑

v∈D(b)

λ(v)M
(x

v

)
,

whence

M(x|b) =
x

ζ(2)

∑

v∈D(b)

λ(v)
v

+ O


x1/2

∑

v∈D(b)

1
v1/2


 + O


x

∑
v≥x

v∈D(b)

1/v


 .

Since v ≥ √
x · v1/2 in the last sum, therefore

M(x|b) =
x

ζ(2)

∏

p|b

1
1 + 1/p

+ O


x1/2

∏

p|b

(
1 +

1√
p

)
 .
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Observing that νx(b) = x−1M
( x

b

∣∣∣ b
)
, Theorem 1 immediately follows.

To prove Theorem 2, we start from the equation

1
x

∑

n≤x

f(n) =
∑
b≤x
b∈B

f(b)νx(b) =
∑

1
+

∑
2
,

where ∑
1

=
1

ζ(2)

∑
b∈B
b<x

f(b)
b
∏
p|b

(1 + 1/p)
,

∑
2

= O


x−1/2

∑

b∈B

f(b)
b

∏

p|b

(
1 +

1√
p

)
 .

Let t(y) =
(
1 +

√
y
) (|g(2)| · y2 + |g(3)| · y3 + . . .

)
. Then

∑

b∈B

|f(b)|
b

∏

p|b

(
1 +

1√
p

)
≤ exp

(
2

∑
p

t(1/p)

)
.

Since ∑

p∈P

1
ps
≤ 1

2s−2

∑ 1
p2

, s = 3, 4, . . . ,

therefore

∑
p

t(1/p) ≤
(∑ 1

p2

)(
|g(2)|+ |g(3)|

2
+
|g(4)|

22
+ . . .

)

and the right hand side is finite. Thus
∑

2 = O
(
X−1/2

)
.

We shall prove that

∑
0

:=
∑
b∈B
b≥x

f(b)
b
∏
p|b

(1 + 1/p)
¿ 1√

x
(log x)g(2)−1,

and this completes the proof of Theorem 2.

We can write each b as v2u, where v is square free and u is three full, i.e.
p|u implies that p3|u.
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Thus

∆(Y ) :=
∑

uv2≤Y

|f(uv2)| ≤
∑

u≤Y

|f(u)| ·
∑

v<
√

Y/u

∣∣f(v2)
∣∣ .

Since ∑
v<κ

|f(v2)| ¿ κ(log κ)g(2)−1,

therefore

∆(Y ) ¿ (log Y )g(2)−1
√

Y
∑

u≤Y

|f(u)|
u1/2

.

Furthermore

(2.1)
∑ |f(u)|

u1/2
≤

∏

p≤Y

(
1 +

|g(3)|
p3/2

+
|g(4)|

p2
+ . . .

)
.

Arguing as earlier, we can deduce that

∑

p∈P

( |g(3)|
p3/2

+
|g(4)|

p2
+ . . .

)

is convergent, thus the right hand side of (2.1) is bounded.

Thus ∆(Y ) ¿ (log Y )g(2)−1
√

Y , and so

∑
0
¿

∞∑

j=0

1
2jX

∆(2jX) ¿ (log X)g(2)−1

√
X

.

3. Proof of the Corollary of Theorem 1

We shall prove (1.9) only. The proof of (1.11) is almost the same.
From (1.6) we obtain that

1
x

∑

n≤x

Ω
(
τ (e)(n)

)
= A + O

(∑
1

)
+ O

(
1√
x

∑
2

)
,
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where
∑

1
=

∑
b>x
b∈B

Ω
(
τ (e)(b)

)

b
,

∑
2

=
∑
b<x
b∈B

Ω
(
τ (e)(b)

)

b

∏

p|b

(
1 +

1√
p

)
.

Let h(n) := Ω
(
τ (e)(n)

)
. h is completely additive, therefore

∑
2
≤ 2

∑
pν

h(pν)
pν


∑

c∈B

1
c

∏

p|c
(1 + 1/

√
p)


 .

The inner sum is convergent,

=
∏
p

(
1 +

(
1 +

1√
p

)(
1
p2

+
1
p3

+ . . .

))
≤ C

∏
p

(
1 +

2
p2

)
.

Furthermore ∑
p∈P
ν≥2

h(pν)
pν

= O(1),

thus
∑

2 = O(1).

Since
E(Y ) : =

∑
b<Y
b∈B

h(b) =
∑

pν≤Y
ν≥2

h(pν)
∑

c≤Y/pν

c∈B

1 ≤

≤
√

Y
∑

p≤
√

Y
p∈P

h(p2)
p

+
√

Y
∑
p∈P
ν≥3

h(pν)
pν/2

,

thus
E(Y ) ¿

√
Y log log Y,

and so
∑

1
¿

∞∑

j=0

1
2jx

E
(
2j+1x

) ¿ log log x√
x

.

The proof is completed.
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4. Proof of Theorem 3

We shall use the next Lemma 1 due to P. Varbanec [8].

Lemma 1. Let φ(d) be a multiplicative function, such that φ(d) = O (dε)
for ε > 0. Let

f(n) =
∑

d2|n
φ(d).

Then
∑

x≤n≤x+h

f(n) = h

∞∑

d=1

φ(d)
d2

+ O
(
h1/2xε

)
+ O

(
xΘ+ε

)
,

uniformly in h, h < x, where ε is an arbitrary positive constant and Θ =
= 0, 2204.

The exponent Θ < 2/9, thus Lemma 1 is somewhat stronger than that of
Graham and Kolesnik in [9].

Let b ∈ B. Then

# {n ∈ [X, X + H] | n ∈ Rb } =

= #
{

m ∈
[

X

b
,
X + H

b

] ∣∣∣∣ (m, b) = 1, |µ(m)| = 1
}

=

=
∑

δ|b
µ(δ)#

{
ν ∈

[
X

bδ
,
X + H

bδ

] ∣∣∣∣ p2 |/ ν if p |/ b

}
.

Let us apply Lemma 1 with x =
X

bδ
, h =

H

bδ
,

φ(p) =





0 if p|b,

1 if (p, b) = 1.

We have

# {n ∈ [X, X + H], n ∈ Rb} =

= Hν(b) + O
(
XΘ+ε · 2ω(b)

)
+ O


H1/2Xε

∏

p|b

(
1 +

1√
p

)
 ,

which proves the theorem.
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5. Proof of Theorem 4 and that of the Corollary

Let
∏

(x|b) = # {p < x | p− 1 ∈ Rb}. We shall start from the identity

(5.1)
∏

(x|b) =
∑
δ|b

(κ,b)=1

µ(δ)µ(κ)π(x, δκ2b, 1),

which can be proved similarly as we argued at the proof of Theorem 1.
Let A and B be arbitrary constants. Assume that b ≤ (log x)A. Let

(5.2)
∏

(x|b) =
∏

1
(x|b) +

∏
2
(x|b),

where in
∏

1 we sum over κ ≤ (log x)B (=: L), and in
∏

2 over κ > L.

By the Siegel-Walfisz theorem we obtain that

∏
1
(x|b) = (li x)

∑
δ|b

(κ,b)=1
κ<L

µ(δ)µ(κ)
ϕ(bδ)ϕ(κ2)

+ O


(li x) log x)−B

∑
δ|b

(κ,b)=1
κ≥L

1
ϕ(bδκ2)


 .

Since ∑

κ≥L

1
ϕ(κ2)

¿ 1
L

,

we have ∏
1
(x|b) = ν(b) li x + O

(
x

(log x)Bb

)
,

where

(5.3) ρ(b) =
c

b

∏
π|b

π∈P

π(π − 1)
π2 − π − 1

,

(5.4) C =
∏

p∈P

(
1− 1

p(p− 1)

)
.
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To estimate
∏

2(x|b), we observe that π(x,D, 1) ≤ c li x

ϕ(D)
if D ≤ x3/4, and

π(x,D, 1) ≤ x

D
if D ≥ x1/2. Thus

∏
2
(x|b) ¿ (li x)

∑
δ|b

L<κ≤√x

1
ϕ(bδκ2)

+ x
∑
δ|b

κ>
√

x

1
ϕ(bδκ2)

,

and the right hand side is less than

¿ li x

(log x)B

1
ϕ(b)

∏

p|b
(1 + 1/p) ¿ 1

b

x

(log x)B
.

Thus

(5.5)
∏

(x|b) = ρ(b) li x + O

(
x

b(log x)B

)

if b ≤ (log x)A.

We can prove (1.14) similarly. We have to use the short interval version
of the Siegel-Walfisz theorem (i.e. the theorem of Hoheisel and Tatuzawa, see
K. Prachar [11], Theorem 3.2 in Chapter IX) and that

π(x + y, D, 1)− π(x,D, 1) ¿ y

ϕ(D) log x
for D < y1−ε,

and π(x + y, D, 1)− π(x,D, 1) ¿ (y/D + 1) if y < D. We omit the details.

Now we prove the Corollary.
From sieve theorems we know that

∏
(x + y|b)−

∏
(x|b) ¿ y

ϕ(b) log x
if b ≤ √

x,

¿ y

b
if
√

x < b.

Thus

∑
0

: =
∑

p∈[x,x+y]

(
τ (e)(p− 1)

)r

=
∑

b<x+y
b∈B

τ (e)r(b)
(∏

(x + y|b)−
∏

(x|b)
)

=

=
∑

1
+

∑
2
,
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where in
∑

1 we sum over b < (log x)A and in
∑

2 over the others.
One can prove simply that

∑
b∈B
b<z

τ (e)r(b) ¿ z,

whence one gets that

∑
2
¿ y

log x




∑

b>(log x)A

b∈B

τ (e)r(b)
b

+ (log x)
∑

b>
√

x

τ (e)r(b)
b


 ¿

¿ y

(log x)A/2+1
.

Furthermore,
∑

1
= (li (x + y)− li x)

∑

b≤(log x)A

τ (e)r(b)ρ(b) + O
(∑

3

)
,

∑
3
¿ y

(log x)B

∑

b∈B

τ (e)r(b)
b

¿ y

(log x)B
.

Finally, we observe that

∑

b>(log x)A

b∈B

τ (e)r(b)ρ(b) ¿ 1
(log x)A/2

,

whence ∑
0

= (li (x + y)− li x)Dr + O

(
y

(log x)B1

)
,

Dr is defined in (1.17).
Since A = 2B1 can be chosen, the Corollary is true.

6. Proof of Theorem 5

Let p ≡ l (mod T ). Then p + aj ∈ Rejcj holds, if
(

p + aj

cj
, cj

)
= 1, and

κ2|/p + aj

cj
if (κ,Gcj) = 1.
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Thus p + aj ∈ Rejcj , if

∑
δ|cj

κ2|p+aj
(κ,Gcj)=1

µ(δ)µ(κ) = 1

and the above sum is zero if p + aj 6∈ Rejcj
.

Thus the left hand side of (1.18) is

(6.1)
∑

µ(δ1) . . . µ(δk)µ(κ1) . . . µ(κk)(π((x + y), ∆, r)− π(x, ∆, r)),

where ∆ is the least common multiple of T and δjcjκ
2
j (j = 1, . . . , k), i.e.

∆ =
[
T, δ1c1κ

2
1, . . . , δkckκ2

k

]
,

and r mod ∆ is such a residue, for which r ≡ l (mod T ) and r + aj ≡
≡ 0 (mod δjcjκ

2
j ) (j = 1, . . . , k) hold true simultaneously.

The sum is extended over all δ1, . . . , δk, κ1, . . . , κk such that

δj |cj , (κj , Gcj) = 1.

Since (δi1ci1κ
2
i1

, δi2ci2κ
2
i2

) | ai2 − ai1 if i1 6= i2, and r satisfies the above
equations, therefore (δi1ci1κ

2
i1

, δi2ci2κ
2
i2

) = 1 for every couple i1 6= i2. Thus

ϕ(∆) = ϕ(T ) · ϕ(δ1c1κ
2
1) . . . ϕ(δkckκ2

k) =

= ϕ(T )δ1 . . . δkϕ(c1) . . . ϕ(ck)ϕ((κ1 . . . κk)2).

Furthermore,

∑µ(δ1) . . . µ(δk)µ(κ1) . . . µ(κk)
ϕ(∆)

=
1

ϕ(T )ϕ(c1) . . . ϕ(ck)
×

×
∏

p|c1

(
1− 1

p

)
· . . . ·

∏

p|ck

(
1− 1

p

) ∏

π|/Gc1...ck

(
1− k

π(π − 1)

)
=

=
1

ϕ(T )c1 . . . ck

∏

π|G(c1...ck)

(
1− k

π(π − 1)

)
=

1
ϕ(T )

E(c1, . . . , ck).

By the prime number theorem for short intervals we obtain that

ε(∆) := π(x + y, ∆, r)− π(x,∆, r) =
(li (x + y)− li x)

ϕ(∆)
+ O

(
y

(log x)A

)
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whenever κj ¿ (log x)A1 , A1 is large. For larger values of κj we can use the
upper bounds

ε(∆) ¿ y

ϕ(∆) log x
, ∆ < y1−ε, and

ε(∆) ¿ y

ϕ(∆)
for ∆ > y1−ε.

Substituting this estimates into (6.1), we obtain (1.19) easily. The relation
(1.20) is a simple consequence of (1.18).

7. Proof of Theorems 6, 7

We shall use the following

Lemma 2. For every fixed A > 0 the number of solutions of n2 −Am2 =
= −1, 0 < n < x is at most O(log x), where the implied constant is absolute.

Proof. If (n,m) is a solution, then
∣∣∣ n

m
−√A

∣∣∣ ≤ 1
2m2

, thus
n

m
is an

approximant of the continous fraction of
√

A, therefore the assertion is true.

Lemma 3. Let y = x2/3+ε, and E(x, y) be the number of those integers
n ∈ [x, x+y] for which there is a prime q such that q2 ≥ y and q2|n2 +1. Then

E(x, x + y) ¿ x2/3(log x) = y
log x

xε
.

Proof. If n1, n2 are such integers for which n2
j +1 ≡ 0 (mod q2), (j = 1, 2),

then n2
2 − n2

1 ≡ 0 (mod q2). Since n1 − n2 ≡ 0 (mod q), n1 + n2 ≡ 0 (mod q)
cannot hold, therefore either n1 + n2 ≡ 0 (mod q2), or n1 − n2 ≡ 0 (mod q2).
It implies that for every q, q2 ≥ y no more than two n exist in [x, x + y] for
which q2|n2 + 1.

If q2|n2 + 1, n ∈ [X, X + Y ], and q > Xλ, then n2 + 1 = Aq2 and
A < 2X2−2λ. From Lemma 1 we obtain that for fixed A no more than log x such
n exists. Thus the whole contribution of these q is less than O

(
X2−2λ log X

)
.

Thus no more than O
(
Xλ/ log x

)
+O

(
X2−2λ log x

)
integers n ∈ [X, X+Y ]

exists for which q2|n2 + 1 for some q ≥ √
Y . By λ =

2
3

the inequality follows.
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Let ρ(m) be the number of solutions of the congruence n2+1 ≡ 0 (mod m).
As it is known, ρ(m) is multiplicative, ρ(2) = 1, ρ(2α) = 0 (α ≥ 2), ρ(pα) =
= ρ(p) = 2 or 0 according to p ≡ 1 or p ≡ −1 (mod 4).

Lemma 4. Let A be an arbitrary constant, B = 2A. Then

∑

b>(log x)B

∑
n∈[x,x+y]
n2+1∈Rb

τ (e)(n2 + 1) ¿ y

(log x)A
.

Proof. Let ε1 > 0 be a small constant. Let us consider first those integers
n ∈ [x, x + y] for which q2|n2 + 1, q > xε1 . The sum of τ (e)(n2 + 1) for those

n for which q2|n2 + 1, q >
√

y is less than y · (log x)
xε/2

. (See Lemma 3, and that

τ (e)(n2 + 1) ¿ xε/2).
It is obvious that

(7.1)
∑

(log x)B≤b<y

∑
n∈[x,x+y]
n2+1∈Rb

τ (e)(n2 + 1) ¿ y
∑

(log x)B≤b<y

τ (e)(b)ρ(b)
b

.

Since ∑ τ (e)(b)ρ(b)
bs

=
∏

p≡1(mod 4)

(
1 +

2 · 2
p2s

+
2 · 2
p3s

+ . . .

)
,

we can get that

(7.2)
∑
b∈B
b<z

τ (e)(b)ρ(b) ¿ √
z (z →∞),

and so the right hand side of (5.1) is less than y/(log x)B/2.

Finally we consider those b ∈ B for which b > y and for each prime divisor
q of b, q < xε1 . If n2 + 1 ∈ Rb, then there exists some b1|b, such that b1 ∈ B,
and y · x−3ε1 < b1 < x. For such an n, τ (e)(n2 + 1) ¿ xε, and the remaining
part of the left hand side of (7.1) is less than

xε
∑

Y ·x−3ε1<b1<y
b1∈B

∑

n2+1≡0(mod b1)
n∈[x,x+y]

τ (e)(n2 + 1) ¿ yxε
∑ ρ(b1)

b1
¿ y3/4,

say. The proof is completed.
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Let H = (log x)B , B = 2A. For some b ∈ B let S(b) be the number of

those n ∈ [x, x + y] for which
n2 + 1

b
is squarefree, and S∗(b) the number of

those n, for which
n2 + 1

b
does not have prime square divisor κ2, if κ < H.

From Lemma 4 we obtain that
∑

b∈B
τ (e)(b) (S∗(b)− S(b)) ¿ y/(log x)A.

We have

S∗(b) =
∑

δ,κ

µ(δ)µ(κ)#
{
n ∈ [x, x + y] | n2 + 1 ≡ 0 (bδκ2)

}
,

where δ|b, (κ, b) = 1, and the largest prime factor of κ is less than H. Let
b < H. Thus

S∗(b) = Y
∑

δ,κ

µ(δ)µ(κ)ρ(bδκ2)
bδκ2

+

+ O

( ∑

bδκ2<4x2

ρ(bδκ2)

)
+ O


Y

∑

bδκ2>y

ρ(bδκ2)
bδκ2


 .

The error terms are clearly less than xε. Thus the first sum

=
ρ(b)
b

∏

p|b

(
1− 1

p

) ∏
π|/b

π<H

(
1− ρ(π2)

π2

)
=

=
ρ(b)ϕ(b)

b2

∏

π|/b

(
1− ρ(π2)

π2

)(
1 + O

(
1
H

))
.

We can continue on a routine way, and deduce Theorem 6.

The proof of Theorem 7 is similar. Doing the same as earlier, we reduce the
proof to estimate #

{
p ∈ [x, x + y] | p2 + 1 ≡ 0 (bδκ2)

}
for b < H, δ|b, κ2 <

< H, for which we can use the short interval version of Siegel-Walfisz theorem,
according to it equals

ρ(bδκ2)
ϕ(bδκ2)

(li (x + y)− li x) + O
(
y/(log x)A

)
.
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Hence one can deduce that the number of primes p ∈ [x, x + y], for which(
p2 + 1

b
, b

)
= 1, and π2|/p2 + 1

b
for the primes π < H, equals

(li (x + y)− li x)
ρ(b)
ϕ(b)

∏

p|b

(
1− 1

p

)
·

∏
π|/b

π<H

(
1− ρ(π)

π(π − 1)

)
+

+ O

(
y

(log x)A

1
ϕ(b)

)
,

whence one can deduce Theorem 7 on a routine way. We have

C1 =
∑

b∈B

τ (e)(b)ρ(b)
b

∏

π|/b

(
1− ρ(π)

π(π − 1)

)
.
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Pázmány Péter sét. 1/C
H-1117 Budapest, Hungary
katai@compalg.inf.elte.hu

M.V. Subbarao
University of Alberta
Edmonton, Alberta
Canada T6G 2G1
m.v.subbarao@ualberta.ca




