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1. Introduction

1.1. Let P be the whole set of the primes. p,p;,p; always denote prime
numbers. For some integer n with prime decomposition n = p*...p%" the
divisor d = p[fl ...pP is said to be an exponential divisor of n, if B; divides «;
for every j =1,...,7. It is obvious, that the number of the exponential divisors
of n (it is denoted as 7(¢)(n)) is 7(a1) . . . 7(c,.), where 7(m) is the number of the
divisors of m. The notion of exponential divisors was introduced by Subbarao
[4]. In [13] Fabrykowski and Subbarao proved that

ZT(e)(n) =Aiz+0 ($1/2 logac) .

Recently Wu [2] observed that the generating Dirichlet series

7 (n
F(s):=> ( )

n

can be written as F(s) = ((s)((2s)U(s), where U(s) can be written as an
absolute convergent Dirichlet series in the halfplane o > 1/5, whence, by using

the estimate
T
Z ({ﬁ} - 1/2) < 2?/%logx
d2

ST

The research was supported by the NSERC grant of the second named
author It was done during the visit of the first named author to Edmonton.



162 I. Katai and M.V. Subbarao

(see [6]) he was able to deduce that

ZT(E)(TL) = A1z + As/z 4+ O (x2/9 log :z:) .

Smati and Wu [3] recently proved that

(1.1) ZT(e)(p—l) =cliz+04 ((logx:z:)A>

p<z

holds for every fixed A.

1.2. Let B be the set of square full numbers. For some integer n, let
E(n) be the square full, and F(n) be the square free part of n. Then n =
= E(n)F(n), (E(n),F(n)) = 1 and E(n) is the largest divisor of n which
belongs to B.

For some b € B let R}, be the set of those integers n for which E(n) = b.

Let

vp(b) : = 1#{n <z, n€Ry},
(1.2) z
v(b) : = lim v, (b).

r— 00

By elementary sieve one can deduce that

1 1
(1.3) v(b) = <(2)bg Ty

Let m € N, m = p{™* ...p%. Let

D(m):={p"...00" | 71,---,7 € No},

where Ny is the set of nonnegative integers.
Let

(1.4) M(z) = |u(n)l; M(zlp)= D |u(n)l.

n<x n<w
- (n,b)=1

It is known that

X

M) = 75)

<z exp (—c(log 2)3/5 (log log x)_l/s)
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(Walfisz [7]). We shall use the somewhat weaker inequality

(15) M(z) - — = O(v/%).

Theorem 1. We have, for b € B

1 1
(1.6) ve(b) = v(b) + O Wlp_,! (1+\/13>

Remark. A. Ivié [10] proved: if f is a multiplicative function such that
f(p*) =g(a) €N, g(1) =1, then

1 — 1 _ 3/5 -1/5
. Z dk+0(\/§exp< c(log z)?/”(log log x) ) .

n<x

F(n)=k
From our Theorem 1 one can deduce a similar theorem which is weaker
than his, if k is small, and stronger than his for large |k|.

Theorem 2. Let f be a multiplicative function for which f(p%*) =
=g(®), g(1) =1, g(2) > 0. Assume furthermore that

Igg)l n Igéfj)l L
is finite.
Then
(1.7) LS 5 = 3 1) + 0 (Vaoga) @)
n<z beB
v L - 9b)
(1.8) l;f(b) (b) O] pg} 1 +]§ 107

Corollary of Theorem 1. We have

(1.9) i > e(r9m)=a+0 (bgl\/cfx) :

n<z
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where
(1.10) A=Y@ (M(b)) v (b),
beB
and
(1.11) ;n<zw (T(e)(n)) =B+0 <logl\/<;gx) ,
where
(1.12) B=Yw (T<e>(b)) v (b).
beB

Here w(n) is the number of the prime divisors, and Q(n) is the number of
prime-power divisors of n.

Remark. (1.11) is somewhat stronger than Corollary 1 in [3].
We shall prove
Theorem 3. We have

#{ne[X,X+H|, neRy}=

= Hu(v) + 0 (X% 220) 0 [ H2XT] (1+1/y/p)

plb

uniformly as 0 < H < x. Here ©® = 0,2204 and € is an arbitrary positive
constant. The implied constants in the order terms may depend on €.

1.3 We have

Theorem 4. Let © = 7/12, A and B be arbitrary positive constants.
Assume that 29+ <y <. Let b€ B and b < (logz)4. Then

(1.13) #{p<x|p—1ERb}:p(b)lix+O((ng)Bb>
#{pelz,a+yl lp-1eR} =

1.14
(1.14) _p(b)(li(x+y)—lix)+0<(l%);z;)3b),
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where
m(mr—1) 1
1.15 : C = 1—— .
(1.15) bng—w—l };( p(p—l))
TEP

Corollary of Theorem 4. Let y € [ac@“,x] , ©=17/12, r € N. Then

(1.16) Y. -1 =D.(li (x+y)-liz)+ 0 (ys> )

1
pE[z,x+y] (log z)

where B; is an arbitrary constant.
Here

(1.17) D, =) 79

beB

1.4. Let ai,a9,...,a; be distinct positive integers, G := [](a; — a;),
i<j
G=q"...q",q1,...,q be primes.
Let T = GMAleglogs] and for 1 € 1,7 — 1], (I,T) =1, 1 <1< T —1let
t1(1),t2(l), ..., tr(l) be defined as

II »» «(=1...k.

pe|[i+a;

Let furthermore e( )= = E(t;(1)), the square full part of t;(I). Let ¢1,...,cx € B,
such that (c;,c;) =1 (i # j), and (¢;,G) = 1. Assume that maxc; < (logx)4.
Theorem 5. Let z°7¢ <y <z, © =7/12. Then
(1.18)
#{pe [T, 24yl |p=1(mod T), p+a; €Ree, (= 1,...,k)} =

ity -li@), y
- e+ 0 ()

where

(1.19) E(cl,...7ck)=%% 11 (1—7T(7Tk1)>.
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As a consequence, for h(p) := 791 (p+a1) ... 7™ (p + ai) we have

. : Yy
(1.20) E[Z+ ]h(p) = Kpy,n(ars - ap)(li (z+y) —liz) + 05 (@()gx)B> ’
pelz,zTY

B is an arbitrary positive constant.

1.5. We would be able to prove the following theorems.

Theorem A. Let fi, fa,..., fu € Z[z] be such that every f; is a product
of distinct irreducible polynomials of degree not higher than three. Then

S O (1) 7 (f2(n)) ... 7 (fu(n)) = Cx + o(x)

n<z

with some positive constant C.

Theorem B. If fi,..., fi € Z[z], and every f; is a product of distinct
irreducible polynomials of degree mot higher than two, then

YT (fap) -7 (fulp) = O L e+ ofli @)

p<z

with some positive constant C*.

Theorem A can be proved on a routine way by using the following theorem
of C. Hooley: if f € Z[z] is irreducible, deg f < 3, then the number of the
integers n < x for which there is a prime p > log z such that p?|f(n) is at most
O (z(logz)~1/3). See C. Hooley [5], Chapter 4, Theorem 3, or [12] for a better
estimate.

Let g € Z[z] be an irreducible polynomial of degree 2. Let £ > 0 and
y = x'/?*¢. One can prove that the number of the integers n € [x,2 4+ y] for
which there is a prime ¢ > (log z)? such that ¢*|g(n) is at most O (Y/(log z)?).

Hence we can deduce Theorem B, or even a short interval version of it.

Let p(m) be the number of solution of n? +1 = 0(mod m). We shall prove

Theorem 6. Let Y = 22/3t¢, ¢ > 0 be a small constant. Then, for every
fized A >0,

Z 2 +1)=CY + 04 (Y/(log I)A) )
ne[X,X+Y]
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where

C— ZT() (b)H<1_p(:22)>'

beB /b
TeEP

Theorem 7. Let Y = 22/3%¢ A be an arbitrary positive constant. Then

Yo P+ 1) =Ci(li (X +Y) —1i X)+ Oa (Y/(logz)?),
pE[X, X+Y]

where

2. Proof of Theorems 1, 2

Since

SN | (S I ol

(n,b)=1 plb

holds for Re s > 1, therefore
x
Malb) = D7 A@)M (3),

whence

M(x|b):% 3 WONPY PRV 3 vl% +ole X 1

(%
vED(b) veD(b) ’Ué%?b)

Since v > /7 - v1/2 in the last sum, therefore

T 1 1/2 1
M(xb):d%g1+1/p+0 z/ H(l"f’\/ﬁ)
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Observing that v, (b) = 271 M (% ‘ b>7 Theorem 1 immediately follows.

To prove Theorem 2, we start from the equation

SN ) =Y ) =Y+,

n<z b<z
- beB

where

Z ZbH 1-|-1/p

b<z plb
_ 0|12 0 RS
Y -0 b% / g<l+ ﬁ)

Let t(y) = (1+ ) (l9(2)] - v*> + |9(3)| - ¥* + ...). Then

Z|f H<1+ )gexp<zzt<1/p>>.

beB plb P

Since

1 1 1
ZESPZF, 823,4,...,

peEP

therefore

Suti/n < (L) (lar+ 22+ 100 )

p

and the right hand side is finite. Thus ) , = O (X_1/2).
We shall prove that

1 2)—1
2o 2 i < vatE

b>z  plb
and this completes the proof of Theorem 2.

We can write each b as v2u, where v is square free and u is three full, i.e.
plu implies that p3|u.
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Thus
AY) = 30 If@?) < Y 1f@l- Y [F@R).
wrsY uY v<4/Y/u
Since
ST IF )] < k(log )T D1,
v<K
therefore
A(Y) < (log V)! @~ VY 3 £ ( 1/2 |
u<Y u
Furthermore
7t 93] l9(4)]
(2.1) > u1/2 < ]I (1+ zi3/2 . gp2 +)

p<Y

Arguing as earlier, we can deduce that

> (9, ol )

pEP p

is convergent, thus the right hand side of (2.1) is bounded.
Thus A(Y) < (log )9 ~1V/Y, and so

(logX)g@)_1
- J e/
Z < Z QJXA (27 X) =

3. Proof of the Corollary of Theorem 1

We shall prove (1.9) only. The proof of (1.11) is almost the same.
From (1.6) we obtain that

729( ) A+O(Zl)+0<\/1522),

n<zx
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where
7—(6)

D B

b>x
beB

_ N 2090) 1
DD E(HW).

beB

Let h(n) := Q (7(9(n)). h is completely additive, therefore

>, <2 M [Tauyve)

ceB  plc

The inner sum is convergent,

_1;[(1+(1+\}ﬁ> (p12+pl3+...>>gcl;[<1+;>.

Furthermore

thus >, = O(1).

Since
E(Y):=> hb)= > h@p") Y 6 1<
b<Y pV<Y c<Y/p¥
beB v>2 ceEB
v Y My M V/z !
p<VY peEP
pEP v>3
thus
E(Y) < VY loglog,
and so

loglog x
§ E J+1,
< 2J (2 ) < N

The proof is completed.
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4. Proof of Theorem 3

We shall use the next Lemma 1 due to P. Varbanec [8].

Lemma 1. Let ¢(d) be a multiplicative function, such that ¢(d) = O (d®)
fore>0. Let

Then .
Z fln) = hz ¢((2i) +0 (hl/er) +0 (errE) ,
z<n<z-+h d=1

uniformly in h, h < x, where € is an arbitrary positive constant and © =
=0,2204.

The exponent © < 2/9, thus Lemma 1 is somewhat stronger than that of
Graham and Kolesnik in [9].

Let b € B. Then

#{ne[X, X+H| |neRy}=
#{me | 3550 | o =1, luml =1}

:Zu(é)#{ue HEX;H} ‘ P2 ifpj/b}.

HE

b

X H
Let ly L lwithez=—, h=—
et us apply Lemma 1 with z = -, %

0 if plb,
o(p) =
1 if (p,b)=1.
We have

#{ne[X,X+H], neRy}=

:Hy(b)+0(X@+s_2w(b)) L0 Hl/QXEH <1+\;]5> ’
plb

which proves the theorem.
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5. Proof of Theorem 4 and that of the Corollary

Let [[(z|b) =#{p <z | p—1€ Ry}. We shall start from the identity

(5.1) [T@b) = > w@nx)m(z,65%,1),

5|b
(r,b)=1

which can be proved similarly as we argued at the proof of Theorem 1.
Let A and B be arbitrary constants. Assume that b < (log ). Let

(5:2) [Talb) =TT, elb) + T (o).

where in []; we sum over x < (logz)? (=: L), and in [], over x > L.

By the Siegel-Walfisz theorem we obtain that

. u(6) (1) . - X
Hl(aj|b)—(hl') 62“; W+O (ha:)logx) B 5Z‘b m

(k,b)=1 (k,b)=1
K<L K> L

Since
1 < l
S es?) L
we have
. T
Hl(x|b) =v)liz+0 <(logaz)3b> ,
where
_c m(mr—1)
(53) p()_bﬂb 7T2—7T—17
TEP
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cliz

@(D)

To estimate [[,(z|b), we observe that 7(z, D,1) < if D <23/ and

w(z,D,1) < % if D> z'/2. Thus

. 1 1

5|b
L<r<Vz K>\T

and the right hand side is less than

i z 1 1 =
< g i 110419 < g
Thus
o Tt =00 1550 (255

if b < (logx)4.

We can prove (1.14) similarly. We have to use the short interval version
of the Siegel-Walfisz theorem (i.e. the theorem of Hoheisel and Tatuzawa, see
K. Prachar [11], Theorem 3.2 in Chapter IX) and that

m(x +y,D,1) —7(z,D,1) < J for D < y17¢,
¥

(D)logx

and 7(z +y,D,1) — n(z,D,1) < (y/D + 1) if y < D. We omit the details.

Now we prove the Corollary.
From sieve theorems we know that

Y .
H($ + y|b) - H(-ﬂb) < m if b< \/E,
< % if z <b.
Thus
D= D (T<e>(p - 1))r = 3 Orw) (H(a: +ylb) — H(x|b)) =
pE(z,z+y] beaty

=2, "2
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where in Y, we sum over b < (logz)? and in ), over the others.

One can prove simply that

> ) < 2,

beB
b<z

whence one gets that

(e)r (e)r
y T 7" (b) 3 Q)
Zz < log z b + (logz) b <

b>(io€g;)’4 b>\/x
v
< (log z)A/2+1"
Furthermore,
_ . R (E)T
S =liry) —liz) > rO@)pb)+0 (23),

b<(log z)#

(e)r
y T (b) y
ZS < (log z)B bezz:a’ S (logz)B"

Finally, we observe that

> W) < o

b> (log x)A
beB

whence
— ] j— 1 L
E 0—(11(x+y) hx)Dr—i—O((log )B1>’

D, is defined in (1.17).
Since A = 2B; can be chosen, the Corollary is true.

6. Proof of Theorem 5

Let p =1 (mod T'). Then p+a; € Re,¢, holds, if (ZHC_aj,cj> =1, and
J

KQ}/@ if (k,Gcj) = 1.
J
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Thus p + a; € Re,e;, if

> wdur) =1

5le;
w2 |pta;
(r,Gej)=1

and the above sum is zero if p +a; € Re,c;-
Thus the left hand side of (1.18) is

6.1) D> p(61) . p(Ge)p(rr) o p(sR) (7 (2 + ), A7) — 7z, A, 7)),

where A is the least common multiple of T" and (5jcj/<;§ (j=1,...,k), ie.
A= [T, 5101,%%7 .. ,5kck/{i] ,

and r mod A is such a residue, for which » = [ (mod T) and r + a; =
=0 (mod &;¢;x3) (j =1,...,k) hold true simultaneously.
The sum is extended over all d1,...,dk, K1,..., K, such that

(Sj‘Cj, (Hj,ch) =1.
Since (04, ¢i, k7, 0iyCinkZ,) | @i, — aiy if 41 # iy, and r satisfies the above
equations, therefore (8;,¢;, k7, 8i,¢i,k7,) = 1 for every couple 41 # is. Thus
P(A) = (T) - p(d1c1K7) - . p(Bkerniy) =
o(T)o1 ... 0pp(c1) ... o(er)p((K1 ... Iik)2).

Furthermore,

ZM(51) o (O p(kr) - p(RE) 1

o(A) " oMl ple)
D) ) T ()
- so(T)llG,(H) (1 - w(wk— 1)) - so<1T>E(C“ ook

By the prime number theorem for short intervals we obtain that

= 7(x r)—m(x, A7 :(li(a:er)*hl”) Ao
e(A) = m(w+y, Ar) —7(z, A, r) o(A) +O<(1ogw>“‘>
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whenever x; < (log x)41 . A; is large. For larger values of k; we can use the
upper bounds

Yy 1—¢
A _ A
e( )<<<)0(A)1ng7 <y ¢ and
Y 1—¢
e(A) « —— for A > y'=c.
(&) P(A)

Substituting this estimates into (6.1), we obtain (1.19) easily. The relation
(1.20) is a simple consequence of (1.18).

7. Proof of Theorems 6, 7

We shall use the following

Lemma 2. For every fized A > 0 the number of solutions of n> — Am? =
= -1, 0 <n<xis at most O(logx), where the implied constant is absolute.

Proof. If (n,m) is a solution, then ‘ﬁ —VA| < —,
m 2m?2

approximant of the continous fraction of v/A, therefore the assertion is true.

thus * is an
m
Lemma 3. Let y = 2%/3%¢, and E(x,y) be the number of those integers

n € [z, x+y| for which there is a prime q such that ¢> >y and ¢*|n®+1. Then

1
E(z,z +y) < z**(logz) =y dex'

Proof. If ny, ny are such integers for which n?+1 = 0 (mod ¢*), (j = 1,2),
then n2 —n? = 0 (mod ¢?). Since n; — ny =0 (mod q), ny +ne =0 (mod q)
cannot hold, therefore either n; +ny = 0 (mod ¢?), or n; —ny = 0 (mod ¢2).
It implies that for every ¢, ¢*> > y no more than two n exist in [z,z + y] for
which ¢?|n? + 1.

If >n?+1, n € [X, X +7Y], and ¢ > X*, then n2 +1 = A¢® and
A < 2X?72) From Lemma 1 we obtain that for fixed A no more than log z such
n exists. Thus the whole contribution of these ¢ is less than O (X =2 og X )

Thus no more than O (X*/logz)+0 (X?~?* log z) integers n € [X, X+Y]

2
exists for which ¢?|n? + 1 for some ¢ > VY. By A = 3 the inequality follows.
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Let p(m) be the number of solutions of the congruence n?41 = 0 (mod m).
As it is known, p(m) is multiplicative, p(2) = 1, p(2%) =0 (a > 2), p(p%) =
= p(p) =2 or 0 according to p =1 or p = —1 (mod 4).

Lemma 4. Let A be an arbitrary constant, B = 2A. Then

e y
> Yo w1 < oz )7

b>(log z)B "€ z,2+y]
n2+1€R,,

Proof. Let ¢; > 0 be a small constant. Let us consider first those integers

n € [z, x +y] for which ¢?|n® +1, ¢ > 2°*. The sum of 7(¢)(n? + 1) for those

(log z)
x2e/2

n for which ¢?|n* +1, ¢ > /y is less than y - . (See Lemma 3, and that

7 (n? +1) < 2°/2),
It is obvious that

e
(7.1) > Yo @<y Y M.

(log z) B<b<y "gljlz;y] (log z) B <b<y
b

Since ©
7)) p(b) 2.2 2.2
IR = 1+ 24224
Z bs H ) + p2s + pSS + ?
we can get that

(7.2) Z T e) ) L V2 (z — 0),

beB
b<z

and so the right hand side of (5.1) is less than y/(logz)?/2.

Finally we consider those b € B for which b > y and for each prime divisor
qof b, g <. If n? +1 € Ry, then there exists some b;|b, such that by € B,
and y - x7%1 < by < z. For such an n, 7(°)(n? 4 1) < 2°, and the remaining
part of the left hand side of (7.1) is less than

Y Yoo w1 <yt p(bbl1) < ¥4,

Y.z 3€1 <b; <y n2+1=0(mod by)
b1eB nelz,r+y]

say. The proof is completed.
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Let H = (logz)®, B = 2A. For some b € B let S(b) be the number of
2

those n € [z,z + y] for which r is squarefree, and S*(b) the number of

2

b
From Lemma 4 we obtain that

SO (b) (S7(b) - S(b)) < y/(log ).

beB

does not have prime square divisor &2, if k < H.

those n, for which

‘We have

S*(b) =D p(®)u(r)# {n € [z,x+y] [ n® +1=0 (b65%)},
4,k

where §]b, (k,b) = 1, and the largest prime factor of « is less than H. Let
b < H. Thus

p(bdK?)

YZM b5/<;2
+0< S plbon? ) y 3 pbw

bék2<4z? bdK2>y

The error terms are clearly less than x¢. Thus the first sum

(-1 )-

plb

T<H

SR -0E) (o (5))

w[b

We can continue on a routine way, and deduce Theorem 6.

The proof of Theorem 7 is similar. Doing the same as earlier, we reduce the
proof to estimate # {p Elmz+yl|p*P+1=0 (65/12)} for b < H, 6|b, x% <
< H, for which we can use the short interval version of Siegel-Walfisz theorem,
according to it equals

plbor?) |
o(boK2) (i (z+y) —liaz)+ O (y/(log x)A) )
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(*

Hence one can deduce that the number of primes p € [z, x + y], for which
1 241
+ 7b)l, andwz}/p +

5 for the primes m < H, equals

(li (x+y)—hx)z((2n<1—;> 1] (1-%)+

p|b 7[b

(o)

whence one can deduce Theorem 7 on a routine way. We have

1]

@) p(b T
R SR, [ (RIU |

beB fb

References

Subbarao M.V., On some arithmetic convolutions in the theory of
arithmetic functions, LNM 251, Springer, 1972, 247-271.

Wu J., Probleme de diviseurs exponentiels et entiers exponentiellement
sans facteur carré, J. Théorie de Nombres de Bordeauz, 7 (1995), 133-142.

Smati A. and Wu J., On the exponential divisor function, Publ. Inst.
Math. Norv., 61 (1997), 21-32.

Subbarao M.V., On some arithmetic convolutions, The theory of arith-
metic functions, Lecture Notes in Math. 251, Springer, 1972, 247-271.

Hooley C., Applications of sieve methods to the theory of numbers,
Cambridge Univ. Press, 1976.

Graham S.W. and Kolesnik G., Van der Corput’s method of exponen-
tial sums, London Math. Soc. Lecture Note Series 126, Cambridge Univ.
Press, 1991.

Walfisz A., Weylsche Exponentialsummen in der neueren Zahlentheorie,
Berlin, 1963.

Varbanec P., Multiplicative functions of special type in short intervals,
New Trends in Probability and Statistics Vol. 2, Analytic and Probabilistic
Methods in Number Theory, TEV, Vilnius, 1992, 181-188.

Graham S. and Kolesnik G., On the difference between consecutive
squarefree integers, Acta Arithm., 49, (1987), 234-447.



180 I. Katai and M.V. Subbarao

[10] Ivié A., On the number of abelian groups of a given order and on certain
related multiplicative functions, J. of Number Theory, 16 (1983), 119-137.

[11] Prachar K., Primzahlverteilung, Springer, 1957.

[12] Hooley C., On the power free values of polynomials, Mathematika, 14
(1967), 21-26.

[13] Fabrykowski J. and Subbarao M.V., The maximal order and the

average of multiplicative function o(®)(n), Théories des nombres, (Quebec,
PQ, 1978), de Gruyter, 1989, 201-206.

I. Katai M.V. Subbarao
Department of Computer Algebra University of Alberta
Eo6tvos Lorand University Edmonton, Alberta
Pazmény Péter sét. 1/C Canada T6G 2G1

H-1117 Budapest, Hungary m.v.subbarao@ualberta.ca

katai@compalg.inf.elte.hu





