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Abstract. The general Kloosterman sum

ma® + nak
K(m,n;k;q) = e<)
ki) = X (M

a mod (q)
(a,q)=1

was studied by the second and third authors in their research of a problem of
D.H. Lehmer. In this paper, we shall improve the estimate of K (m,n; k; q)
with respect to g. We also consider the sum twisted by a Dirichlet character.

1. Introduction

In their research on a problem of D.H. Lehmer, Yi and Zhang [6] introduced
the general Kloosterman sum defined for positive integers m,n and g by

4 k =k
* (ma” +na
(1) K(m,n;k;q)zz e(),
a=1 q
where k is a fixed positive integer, e(y) = exp(2miy), >, means the summation
over all 1 < a < ¢ such that the greatest common divisor of a and ¢ denoted
by (a,q) is 1 and @ is the reciprocal to a modulo g.
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When & = 1, K(m,n;1;q) is the classical Kloosterman sum usually
denoted by S(m,n;q) (cf. [3]):

ki ma + na
S(m,n;q) = Z e <) .
a=1

q

The estimate of these sums plays important role in the theory of numbers, e.g.
it is applied to the study of upper bounds of coefficients of modular forms [3].
The well-known estimate of K(m,n;1;q) is

(2) K(m,n;1;9) < (m,n,q)"*¢"?d(q), q>2.

We note that the above estimate for ¢ = p® with a prime p and a > 2 is proved
by elementary means [3]. But for the prime modulus case the estimate is very
difficult and was proved by Weil [5] through a deep consideration of algebraic
geometry.

For a general Kloostermann sum Yi and Zhang [6] proved that
(3) K(m,n; k;p®) < (m,n,p®)'/2p*/*\/d(pe),
where f(z) < g(x) means the same as f(x) = O(g(z)).
In this paper we shall improve the above estimate (3). In the sequel, we

assume that

(4) q is a positive odd integer, (k,q) =1 and 1 <m,n<gqg-—1.

Theorem 1. Let p be an odd prime and let k be a positive integer such
that (k,p) = 1. Then we have

(5) |K(m,n7k‘;p°‘)\ < Qk(m,n7pa)1/2pa/2’

where o is a positive integer.
For general modulus ¢, we have

Theorem 2. Let g be a positive odd integer and k be a positive integer
with (k,q) = 1. Then we have

(6) |K (m,n, k; q)| < d(q)'°8 /182 (m, n, q)1/2¢"/2.



On general Kloosterman sums 153

We shall also consider a Kloosterman sum twisted by a Dirichlet character
x mod ¢:

maF + TLELk)

) mon ki) = 3 x(a)e ( :

The estimate | K, (m,n, k; ¢)| < /g does not hold in general. In fact, Professor

Z.Y. Zheng established that | K, (m,n,1;p*)| > p%“ for some character x mod
p®, where p is a prime and a > 3 (see [9]). However in the case of prime
modulus we can show the following theorem.

Theorem 3. Let p be an odd prime and let x be a Dirichlet character
mod p. Then

(8) Ky (m,n, k;p) < /p,

where the implied constant depends only on k.
2. Proofs of Theorems 1 and 2

We assume that & > 2 is a positive integer. First we shall treat the prime
modulus case of Theorem 1.

A remarkable feature in this case is that by group-theoretic considerations,
we may reduce the proof to the Weil estimate of the Kloosterman sums and to
the Chowla-Salié estimate of the twisted Kloosteman sums.

The underlying group-theoretic structure is described as follows.

Let G be a finite abelian group, let N be its subgroup and let G/N be the
quotient group. Also let (G/N)* denote the character group of G/N.

We extend a character ¢ € (G/N)* to a homomorphism on G by defining
p(a) = p(aN).

For any complex-valued function f on G consider the sum

S= Y > ¢@fla)

pe(G/N)* a€G
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Inverting the order of summation and recalling the orthogonality of characters,
we find that
S=(G:N)Y_ flo,
aeEN

where (G : N) = §G/N signifies the group index.

Now specialize N to be G*, the subgroup of all k-th powers of elements
of G. Also let G denote the subgroup of k-th roots of the identity element
of G. As is apparent from the homomorphism theorem, we have G/G}, ~ G*,
whence

1Gr = tG/1G" = (G : G¥).

Now consider the sum

§'=) fla) =) flw D 1L

a€G acGk bk=a

Since b* = o = a” implies that b € aGy, it follows that the number of b’s such
that b* = « is #G},, which is, as shown above, (G : G¥). Hence

S'=(G:G" > fla)=S5.

aeGk
Hence
(9) Y@y =3 > ela)f(a).
acG pwe(G/GF)* a€G

We apply (9) with G = (Z/pZ)™ and f(a) = e (%ﬂ“—‘) to obtain

Kmnkp) = 3 e (m;) _

0e(G/Gr)* aeC

Z K, (m,n,1;p).

Pe(G/GF)

In order to estimate K (m, n, k; p) we apply the Weil estimate to K ,,, with
@o a trivial character and the Chowla-Salié estimate

|K@(m,n, 15p)| < 2\/]3

to K, with non-trivial ¢.
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Thus we have
[K(m,n, k;p)| < (G : G*)2y/p < 2k\/p,

where we need the fact that (G : G¥) = (k,p — 1) < k. This proves Theorem 1
in the prime modulus case.

Following the method of Estermann [2], we consider the case of a prime
power modulus p®, o > 2. We note that if (m,n,p®) = p¢, where 0 < ¢ < a—1
by the assumption (4), then

« m n o—
(10) K(m,n, k;p®) = p*K <p€,p57k;p 5>,

and so it is enough to consider the case (m,n,p) = 1.

Let 0 = [%] and v = a — (3, hence a = 8 + v < 2. The element a of the

reduced residue class mod p® can be written as
a=u+uvp?,
where 1 <u < p” —1, (u,p) =1 and 0 < v < p” — 1. We choose % so that
1<u<p*—1 and wu=1 (mod p%).
Then we can easily see that
a=u—uvp” (mod p%),
from which we have

(11)  ma® + na® = m(u+ vp?)* + n(a — w*vp”)*  (mod p*)

= (mu® 4 n@®) + kvp? (m — @**n)u*~1  (mod p®).

From (11) we have

(12) K(m,nk;p*) = > o

u=1
(u,p)=1

Y _ B

p ) <muk + mik) e
e I T

pﬁ

- . <kv(m - ﬂzkn)uk1>
0

v=

The sum over v vanishes unless

m = a**n  (mod p?),
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so that we have only to consider the case (mn,p) = 1. In this case the general
Kloosterman sum is expressed as

diny muk + na*
(13) K(m,n,k;p) =p’ Z e <p0‘> .

u=1
(u,p)=1
mu2k=n (mod pB)

(i) The case B =~
We consider the congruence equation
(14) mu** =n  (mod p?).

From the assumption (k,p) = 1 each solution of mu** =n (mod p) can

be extended uniquely to the solution of (14) and vice versa. Therefore there
are at most 2k solutions of (14). This gives us

|K (m,n, k;p)| < 2kp” = 2kp? .

(ii) The case B =~ —1

In (13) w runs from 1 to p” — 1 with the condition
(15) mu** =n  (mod p?).
Let uy, ug, ..., u, (r < 2k) be all the solutions of (15). If we write

u:uj+vp5 0<v<p-1),
then we find that
a=u; — u’jZUpﬂ + u’j3v2p26 (mod p©),
where u;u; =1 (mod p*). Therefore
muf + nak = (muéc + nai; ) + k;vpg(mu?k — n)u;" 4

1 1
+ kv?p?8 {2m(k - l)uf_2 + nag R 4 in(k - 1)ujk+2} (mod p®).
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The element in the braces on the right hand side is

1 _ 1 _
§m(k‘ - 1)u2C 24 §n(k‘ + D)2 =

1
=5 {k(mu?72 + nag;Ft2) — (muff2 — )} =

1 _ _
=3 {kujk'ﬂ(mu?k +n)— uﬁ”(mu?k —n)}
= ku_ij“Qn §_é

#0 (mod p).

So the summation over v is a Gauss sum, hence its absolute value is bounded
by /p. Hence we have

|K (m,n, k;p™)| < pP2k\/p = 2kp®.

Collecting these estimates and (10), we finally get

[NI)

| K (m,n, k;p*)| < 2k(m, n,pO‘)%p‘

for 1 <m,n <p®—1and (k,p) = 1, which proves Theorem 1.

For the proof of Theorem 2 we recall the multiplicative property of general
Kloosterman sum shown in [6]:

K(m,n, k;q) = K(mv,nv, k;u)K(mu, na, k;v),

where ¢ = uv, (u,v) = 1,90 =1 (mod u) and uz =1 (mod v). Thorem 1
and the above property imply that

K (m,n, k: q)| < (2k)"9 (m,n, ) 2q"?,

where v(g) denotes the number of different prime factors of g. The assertion of
Theorem 2 follows immediately from the fact 2*(9) < d(q).

3. Proof of Theorem 3

We shall prove Theorem 3 by induction on k.
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As noticed above, the assertion (8) in the case k = 1 is due to Chowla and
Salié [1, 4].

Now suppose k > 1 and that the assertion of Theorem 3 is valid for all
I <k

First we consider the case that & and p — 1 are coprimes. Then k is
invertible mod p — 1, hence there exists an integer k; such that kk; =1 (mod
p — 1). Since

_ ki k
x(a) = x" (a”),

we have

Thus

for (k,p—1) =1.
Next we consider the case kg := (k,p — 1) > 1. Put k = kol.
Let g be a primitive root mod p, i.e. G := (Z/pZ)* = {g) and let h be an

2wih

ingeter defined by x(g) = e»-!
If ko(= (G : G¥)) divides h, i.e. h = kof with an integer f, then we have

27if

x(a) = x'(a*°) for any a and Y’ is a character such that x'(g) = e»=1. Hence
we may write

m(a®)t + n(ako)!
K, (m,n,k;p) = Z X’(ak")e< (a0)” +n( ))

a€(Z/pZ)* p
Hence, by (9)

K(mnkp)= > > el (e (”M) —

p€(G/Gk0)* a€EG

= Z Ky (m,n,l;p).

we(G/GFo)*
Therefore we have, by the induction hypothesis,
K, (m,n,k;p) < \/p,

where the implied constant depends only on k.
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When kofh, we shall show that the Kloosterman sum in question is equal
to zero. For this purpose we consider the mean square of K, (m,n, k;p) with
respect to m. Expanding | K, (m,n, k;p)|?, we have

p—1lp—1 m(ak — bk n(ak — bk
K (mon,ksp)2 = 30 3 w(a)x <( %) &l b)>

a=1b=1 p
pzlpzlx (mbka — 1) + nb*(a* —1))
a=1b=1 p

where @ and b are integers such that a@ = 1 (mod p) and bb =1 (mod p),
respectively. Therefore

p—1 p—1 7k p—1 ki k
nb*(ak — 1)) (mb (a® — 1)>
K, (m,n,k; e el ——=|.
b PO =
Since the last summation is equal to p if a* = (mod p) and 0 otherwise, we
have
p—1 p—1
(16) S IK(monkp)P =pp-1) > x(a).
m=0 a=1

ak=1 (mod p)
When a = ¢/ (mod p) with some j, then
a*=1 (modp)ej=rm for m=0,1,... k —1,

therefore we have

p—l k?o*l omin kofl ik
) DRRTOED SISl s
X a=0 m=0 m=0
a®=1 (mod p)
(18) =0.

The equations (19) and (17) show that K, (m,n, k;p) = 0 when koJh.
This completes the proof of Theorem 3.

Remark. The above argument shows that

(19) S Ky, kip)? = p(p— Do

m=0
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when ko|h.
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