
Annales Univ. Sci. Budapest., Sect. Comp. 22 (2004) 127-150

SYNTHESIS OF A SYSTEM
COMPOSED BY MANY SIMILAR OBJECTS

Sz. Hajdara, L. Kozma and B. Ugron
(Budapest, Hungary)

Dedicated to Professor Karl-Heinz Indlekofer
on his 60th birthday

Abstract. There are different mathematical tools for synthetizing parallel

programs. For instance, first order logic, temporal logics and different

type algebras are such practical tools. Concurrent systems are special

parallel systems in which non-deterministic sequential programs, so called

processes are co-operating for the sake of the cause. There are known

methods for synthetizing synchronization code for many similar sequential

programs running in parallel environment. Some of these methods solve

the state explosion problem. We extended a method based on temporal

logic to systems consisting of objects. In the first step of the extending

the specification of the classes is given by describing the life-cycle of the

individual objects. We use temporal logic tools for the sake of the cause.

After this objects are made similar to each other in the point of view of

synchronization, then code generation possibilities are considered. This

method is less powerful than the method for processes, and the code

generation is less general, too.

1. Introduction

The increasing popularity of temporal logics over the past decades has
promoted the use of different kind of temporal logics for specifying concurrent
and distributed systems [2], [3], [6], [7], [8], [14], [16], [17], [22], [23], [24]
including object-oriented systems [18], [19], [20], [25], [26],[27], [28], [29], [30],

128 Sz. Hajdara, L. Kozma and B. Ugron

[31], [32]. During this time different mathematical frameworks for deriving
correct concurrent or parallel programs were created [1], [3], [4], [5], [6], [8], [9],
[11], [13], [16], [17], [21], [22] [23], [24] as well. Our aim is to present a method
for synthetize a system composed by many similar objects from temporal logic
specifications.

The synthesized system of K similar objects is a mechanically constructed
correct solution of a precise problem specification given by MPCTL* (Many-
Process CTL*) formulas. K is an arbitrary large natural number and an
MPCTL* formula consists of a spatial modality followed by a CTL* state
formula over uniformly indexed family of atomic propositions.

Our method applies the technique suggested by P.C. Attie and E.A.
Emerson in [23], and it inherits an important advantage of their method,
namely how to deal with an arbitrary number of similar objects without
incurring the exponential overhead due to the state explosion problem.

The computation model of Emerson and Clarke’s method is based on the
concept of concurrent programs of the form P = P1|| . . . ||Pn, that consists
of a multiple, but finite number of fixed sequential processes active at the
same time. Each process is the execution of a sequential program and any
two processes are similar if and only if one can be obtained from the other by
swapping their indexes. The processes contained within a concurrent program
generally have a common goal of meeting the program’s specifications. Such
processes, therefore, regularly communicate and synchronize activities in order
to perform some common operations. However, the code fragments responsible
for interprocess synchronization can be generally separated from the sequential
application-oriented portions of processes. In this way, the synchronization
skeletons can be focused and the details irrelevant to synchronization can be
suppressed. The synchronization skeleton of each process Pi is denoted by
si, the current values of the shared variables x1, . . . , xm are given by a list
v1, . . . , vm and the global state of a concurrent program is a tuple of the form
(s1, . . . , sk, v1, . . . , vm). A process is given by a finite state machine in the
form of a directed graph that consists of nodes labelled by a unique name (si),
which represents a local state of Pi, and of arcs labelled with synchronization
commands of the form B → A consisting of an enabling condition B and
corresponding action A to be executed.

The computational model based on the object-oriented programming
paradigm encourages system (program) builders to consider the artifact under
construction as a collection of cooperative objects without shared variables.

To use the method developed by P.C. Attie and E.A. Emerson in [23]
we had to solve the handling problem of shared variables by the similar
objects. The details can be found in Section 4.3. The rest of this paper

Synthesis of a system composed by many similar objects 129

is organized as follows. In Section 2 we look over the main steps of the
transformation technique. In Section 3 we shortly look over the tools of
temporal logic specification (see the detailed description in [23]). In Section 4
the transformation technique is considered in detail through an example. In
Section 5 implementation possibilities are condsidered.

2. Object-oriented synthesis method

Our purpose is to extend Attie and Emerson’s synthesis method of
process synchronization (the case of processes) [23] to a system of objects
(the case of objects). The method produces only the synchronization code,
that is sequential application oriented computations are not considered. The
synchronization code may be considered as when a process changes the nature
of its computations (namely the state of the process changes in terms of
synchronization), the process executes its synchronization code which decides
whether the process can continue its work.

The technique based on processes defines states, and a process could move
from a state to another state. In the case of objects it is more natural: the
current values of the properties of the object describe the current state of
the object and any change in these properties takes the object to another
state. These changes can take place by the methods of the entity, so the
synchronization code must be called in every set method concerned with the
properties. See the details in Section 5.

In the case of processes, where synchronization is applied to pairs of
processes and if a process is associated with more than one another process,
then the synchronization steps must be executed for every pair in atomic mode.
This approach is suitable for objects, too.

In the case of processes similar processes are considered. With every
process a unique index i is associated, and the process is referred as Pi.
Two processes are considered similar if and only if they differ only in their
indexes. It follows from the definition of similarity that the sets of states
are identical to two similar processes and there are transitions from and to
the same states and the conditions of these transitions are similar. In the
case of objects the definition of similarity would excessively restrict the set of
synthetizable systems. However, most often this issue can be overcome, so the
above definition of similarity can be considered in the case of objects, too. Let
us remark that in the case of objects it is considerable to let set I changeable

Synthesis of a system composed by many similar objects 131

• Let us handle issues derived from inheritance by state set and get methods
(see below).

After the above steps individual objects can correspond to processes and
the synthesis method of Attie and Emerson can be applied to them.

The steps related to the synthesis of synchronization of systems consisting
of objects can be seen in Figure 1.

3. The specification language MPCTL*

In this section we look over the parts in Attie and Emerson’s paper [23]
that are most important to understand this paper.

The specification language is an extension of the temporal logic CTL* [22],
which is a propositional branching-time temporal logic. The basic modalities of
CTL* consist of a path quantifier, either A (for all paths) or E (for some path)
followed by a linear-time formula, which is built up from atomic propositions,
the Boolean operators ∧, ∨, ¬, and the linear-time modalities G (always), F
(sometime), Xj (strong nexttime), Yj (weak nexttime) and U (until). CTL*
formulas are built up from atomic propositions, the Boolean operators ∧, ∨, ¬,
and the basic modalities.

3.1. CTL*

The syntax of CTL* is the following (the state formulas and path formulas
can be defined by the following rules):

1. Each atomic proposition p is a state formula;

2. if f , g are state formulas, then so are f ∧ g, ¬f ; and

3. if f is a path formula, then Ef and Af are state formulas.

4. Each state formula is also a path formula;

5. if f , g are path formulas, then so are f ∧ g, ¬f ; and

6. if f , g are path formulas, then so are Xjf , fUg.

Let us consider the intuitive meaning of the formulas mentioned above.
Formula Ef means that there is some maximal path for which f holds; formula
Af means that f holds of every maximal path; formula Xjf means that
the immediate successor state along the maximal path under consideration
is reached by executing one step of process Pj , and formula f holds in that

132 Sz. Hajdara, L. Kozma and B. Ugron

state; formula fUg means that there is some state along the maximal path
under consideration where g holds, and f holds at every state along this path
up to at least the previous state.

The semantics of CTL* formulas can be defined formally with respect to
a (K-process) structure M = (S, Ri1 , . . . , RiK

), where S is a countable set of
states, each state is a mapping from the set of atomic propositions into {true,
false}, and Ri ⊆ S × S is a binary relation on S giving the transitions of
sequential process i.

A path is a sequence of states (s1, s2, . . .) such that ∀i : (si, si+1) ∈ R,
and a fullpath is a maximal path. A fullpath may be finite or infinite. Let
π = (s1, s2, . . .) denote a fullpath, then πi the suffix (si, si+1, . . .) of π where i
is not greater than the length of π. M, s1 |= f means that f is true in structure
M at state s1, and respectively M, π |= f means that f is true in structure M
of the fullpath π. M, S |= f means ∀s ∈ S : M, s |= f , where S is a set of
states. The semantics of |= can be defined inductively:

1. M, s1 |= p iff s1(p) = true;

2. M, s1 |= f ∧ g iff M, s1 |= f and M, s1 |= g;
M, s1 |= ¬f iff not(M, s1 |= f);

3. M, s1 |= Ef iff there exists a fullpath π = (s1, s2, . . .) in M such that
M, π |= f ;
M, s1 |= Af iff for every fullpath π = (s1, s2, . . .) in M : M, π |= f ;

4. M, π |= f iff M, s1 |= f ;

5. M, π |= f ∧ g iff M, π |= f and M, π |= g;
M, π |= ¬f iff not(M,π |= f);

6. M, π |= Xjf iff π2 is defined and (s1, s2) ∈ Rj and M, π2 |= f ;
M, π |= fUg iff there exists i ∈ [1 : |π|] such that M, πi |= g and for all
j ∈ [1 : (i− 1)] : M,πj |= f .

The usual abbrevations for logical disjunction, implication and equivalence
can be introduced easily. Furthermore, some additional modalities as abbre-
vations can be introduced: Yjf for ¬Xj¬f , Ff for trueUf , Gf for ¬F¬f .
Yj is the “process indexed weak nexttime” modality, where the Yjf formula
intuitively means that if the immediate successor state along the maximal path
exists, and is reached by executing one step of process Pj , then f holds in
that state. F is the “eventually” modality, where the Ff formula intuitively
means that there is some state along the maximal path where f holds. G is
the “always” modality, where the Gf formula intuitively means that f holds
at every state along the maximal path.

Synthesis of a system composed by many similar objects 133

3.2. The interconnection relation

The interconnection scheme between processes is given by the intercon-
nection relation I. I ⊆ {i1, . . . , iK} × {i1, . . . , iK}, and iIj iff processes i and
j are interconnected. I is symmetric, irreflexive and total relation, thus every
process is interconnected to at least one other process. The term I-system
is introduced in place of K-process system, because there are many possible
interconnection schemes for a given number K of processes.

3.3. MPCTL*

An MPCTL* (Many-Process CTL*) formula consists of a spatial modality
followed by a CTL* state formula over a “uniformly” indexed family AP =
= {APi1 , . . . ,APiK

} of atomic propositions. The propositions in APi are
the same as those in APj except for their subscripts. A spatial modality is
of the form

∧
i or

∧
ij .

∧
i quantifies the process index i which ranges over

{i1, . . . , iK}.
∧

ij quantifies the process indexes i, j which range over the
elements of {i1, . . . , iK} which are related by I. If the spatial modality is∧

i then only atomic propositions in APi, and if the spatial modality is
∧

ij

then only atomic propositions in APi ∪APj are allowed in the CTL* formula.

The definition of truth in structure M at state s of formula q is given
by M, s |= q iff M, s |= q′, where q′ is the CTL* formula obtained from q by
considering q as an abbrevation and expanding it like

• M, s |= ∧
i fi iff ∀i ∈ {i1, . . . , iK} : M, s |= fi,

• M, s |= ∧
ij fij iff ∀i ∈ I : M, s |= fij .

4. A synthesis method for many similar objects

Analyzing the concurrent programs it can be observed that the parts re-
sponsible for interprocess synchronization can be separated from the sequential
applications-oriented computations performed by the process. This suggests
that we focus our attention on synchronization skeletons which are abstractions
of concurrent programs, where details that are irrelevant to synchronization are
suppressed. The synchronization skeleton of a process Pi may be viewed as a
state-machine, where each state represents a region of sequential computation
code and where each arc represents a conditional transition between different

134 Sz. Hajdara, L. Kozma and B. Ugron

regions. The conditional transitions are used to enforce synchronization
constraints.

The synchronization skeleton of each process Pi is formally a directed
graph. In the graph each node is labelled by a unique name (si) which
represents a local state of Pi and each arc between two states is labelled by
a synchronization command B → C consisting of an enabling condition B and
the corresponding action C to be performed (i.e. a guarded command [10]).

A unique index i is associated with every process Pi. Two processes are
similar iff one can be obtained from the other by swapping their indexes.
Intuitively, this corresponds to concurrent algorithms, where a generic indexed
part of code gives the code body for all processes.

A set of states is associated with every object. Objects can change their
state among the elements of the associated set during their life-cycle. The
specification of the synchronization code is given by temporal logic formulas
that make restrictions on the relations of the states. MPCTL* is going to
be used as tool for specification, thus all objects should have the same state-
set, so we can use spatial operators. Furthermore, we would like to use a
synchronization skeleton obtained by the synchronization restrictions of any
two objects to produce the synchronization code of the whole system. If the
object Pi is in state A, then atomic proposition Ai is true (the associated
individual object is indicated by the index of the state). We remark that the
I interconnection relation is used to define the pairs of objects that will be
synchronized. If the object Pi is associated with a number k of objects which
Pi will be synchronized with, then the set I contains exactly k objects in pair
with Pi. For example, if the object Pi has to be synchronized with objects
Pi1 . . . Pin then {(i, i1), . . . , (i, in)} ⊆ I.

4.1. One-class system

In the case the system consists of entities (instances) that are objects of the
same class, it is obvious that the state-sets of the entities are identical. However,
there are many possible interconnection schemes. For instance, suppose that
we have a class that has a size property, and we want only entities larger than
2m to be associated. It is clear that it matters which index-pairs get into
I. Furthermore, objects can be created dynamically, or the size property of
entities can be changed freely, so objects have to take care of getting in set I
(with their pairs), and getting out of it. So it is neccessary that objects can
access the states of each other in mutual exclusive mode, and only one entity
can access the set I simultaneously.

Unfortunately there are more difficulties, since before an object-pair gets
into set I its consistency must be checked, namely if either entity of the pair is

Synthesis of a system composed by many similar objects 135

in some state that is inconsistent with the state of some object associated with
it. In this case the elements of the pair have to wait and can not continue their
work. For this reason the possibility of deadlock is increasing; and checking
deadlock freedom becomes complicated which is unambigiously associated with
the dynamic nature of objects. In the first approach we are not considering
deadlocks.

We need a procedure that controls when an object can get into set I.
Typically, this procedure (makeI) is called with an object (as a parameter) once,
when the object is created, and in that moment the object is in some initial
state that is permitted in any case, so the object can get into I immediately.

We can describe the pairs in I the most simple way by keeping reference-
pairs which point to entity-pairs that will be synchronized.

In order that objects can find out whom they have to be synchronized
with, they have to know all participants of the system. So we have to keep a
record of references of all the created objects (see static Vector I in Figure 2).

It follows from the foregoing that we can introduce a new object that stores
the references to all objects, the relation I, and a procedure that controls when
an object can get into set I. To make this decision the procedure needs to
know the callable methods of the objects, so all the objects have to implement
some common interface (or inherit from a common ancestor).

4.2. Many-classes system – without inheritance

In the case of a system that contains many classes the only change,
compared to the one-class case, is that the state-set of the individual objects
may differ. We can solve this problem by simply taking the union of the state-
sets of all classes, and then consider the synchronization code above this set of
states. On this way the entities can refer to states of other entities which will
never be taken, but are important in terms of synchronization.

Considering that the state unioning significantly increases the number
of states we should try to simplify our model during the design phase. For
example, suppose that we are describing a system of passenger and vehicle
traffic. Suppose that no two passengers or vehicles can be in the same place.
In this case being in a given place is critical section for objects of both classes,
so it can be handled as “critical section” state in the instances of both classes.
Thus, in some cases there are states that can be merged.

Synthesis of a system composed by many similar objects 145

methods used for reading and writing I can be given, too; they are practically
static methods of class SharedObject.

Of course, the case is not enabled when I is being changed by an object
and I is being read by another object at the same time. This means that an
object can not evaluate transition conditions while another object is changing I.
Furthermore, writing I has to have priority against reading I. To implement
these restrictions let us introduce a counter named readCount to count the
objects reading I, and a counter named writeCount to count the objects writing
or going to write I as well as counter readWait to count the objects which
are waiting for to read I. Moreover, let us introduce two semaphores named
readSem and writeSem. Let us consider the possible cases:

• If an object wants to read I and writeCount is zero, then readCount should
be incremented by one and the object is allowed to read I.

• If an object has finished reading I, then readCount should be decremented
by one and if readCount is zero but writeCount is positive, then the first
object sleeping on writeSem should be awaken.

• If an object is going to read I, but writeCount is positive, then readWait
should be incremented by one and the object is put to sleep on semaphore
readSem.

• If an object is going to write I and readCount is zero and writeCount is
zero, then writeCount should be incremented by one and the object is
allowed to write I.

• If an object has finished writing I, then writeCount should be decremented
by one and the following cases are possible:

- If writeCount is positive then the first object that is sleeping on
semaphore writeSem should be awaken.

- If writeCount is zero, but readWait is positive, then the first object is
sleeping on semaphore readSem should be awaken.

• If an object is going to write I, but readCount is positive or writeCount is
positive, then writeCount should be incremented by one and the object is
put to sleep on semaphore writeSem.

The changes of the counters and condition evaluations must work in mutual
exclusive mode, so these operations must be protected by a semaphore named
mutex. Before every mentioned operation mutex should be let down and mutex
should be lifted up before an object is put to sleep. According to this we must
not lift up mutex when an object wakes up another object, but we must lift
up the semaphore if no another object will be awaken. Furthermore, readWait
should be decremented by one before a reader object is awaken.

Let us deal with the evaluation of conditions, namely the method setState
in the following. To produce method setState, the abstract program of the

146 Sz. Hajdara, L. Kozma and B. Ugron

synchronization, which is a finite deterministic automata, is given by the
algorithm. Then we make the condition checking part on the basis of the
conditions in the automata and if a given condition is fulfilled then we execute
the action part associated with the condition. The automata may be given by
a list of the transitions. Only one transition can be generated by the synthesis
between two states, so a transition may be built from the following elements:

• start state,
• end state,
• condition (in Polish form expression in order to simplify the evaluation),
• the list of the operations on the shared variables.

We have to solve the problem of synchronization of the condition evaluation
and the execution of the actions belonging to the conditions. The method
setState uses the values of the shared variables and may change the variables,
too, in case the transition is enabled. That is why the shared variables should
be changed by at most one object simultaneously. Let us notice that this
restrictioin is not enough because if an object A has evaluated the condition of
a transition and finds out that the transition is enabled, then object B changes
the values of the shared variables before A would do the transition and so the
system may be in inconsistent status. That is why we have to assure that an
object can not start evaluating a condition while another object is trying to
process a transition (namely, the object has started the evaluation and has not
done the action).

Some level of exclusion has to be provided in order to evaluate the
conditions, namely, no two objects can be in their condition evaluating phase
at the same time.

To solve this issue let us introduce a token for every connection of every
object. Then if an object is going to change its state – so it is going to evaluate
a condition – it must ask the tokens of all the objects connected to it. Hence,
every element in I has a token attribute and a captureToken and a releaseToken
method. The token is a reference to a SynthesisObject type object and its value
shows which object owns the token. Value null indicates that the token is not
owned by any object. The return value of captureToken may be true or false.
Value true indicates that the token is successfully got, and false indicates that
the token is reserved. Method captureToken works in mutual exclusive mode.

Possibility of deadlock arises in progress of obtaining tokens. Deadlock
can be avoided if an object drops all tokens that it owns if it tried to get
a token from an object that is already waiting for a token, and the object
restarts obtaining token some time later after dropping. It is clear that this
implementation may lead to livelock: let us suppose that the objects a, b and
c are going to obtain tokens from each other. Let a get the token from b, b

Synthesis of a system composed by many similar objects 147

from c and c from a. Then let a ask the token from c. It is not possible, so a
drops all the tokens it owns. Then let c try to get the token from b. It fails so
c drops its tokens, too. Then only b has any token. Then let a get token from
b and c from a, then start this process again with simple modification so that
c will be the only object that owns any tokens. And so on.

In order to avoid livelock we mention two methods. The first method is
the introduction of a binary semaphor that is let down by every object for the
time while it is trying to obtain tokens. If an object can not get a token then
it releases all tokens it got and lifts up the semaphor. The implementation
of this semaphor practically should be placed in SynthesisObject because the
obtaining of tokens is associated with I. In this case only one object is able to
obtain tokens at the same time, so livelock can not take place.

In the second method the objects keep a record of the number of tokens
got. In case an object obtains the token from another object, that is collecting
tokens, too, then the result of the transaction depends on the number of tokens
the objects already got. The object that owns the less number of tokens drops
them and after some time elapsed restarts collecting tokens. It is clear that
this method is appropriate for avoiding livelock, too.

6. Future work

It is found out that the synthesis method of Attie and Emerson [23] can
be extended to systems of objects, but the increasing number of states has to
be taken into account. This effect may complicate the system and it leads to
extra work because we have to try to contract different states.

Considering that the synchronization skeleton of individual objects may
contain states which can never be taken, the deadlock checker algorithm (the
algorithm is detailed in [23]) may result that deadlock is possible, nevertheless
deadlock freedom would be set out in the original system. Consequently,
deadlock checking possibilities and extra work needed to manage the above
issue should be considered.

As above mentioned, some parts of the resulted synchronization skele-
ton may be removed. This gives the idea to describe the system by local
specifications of the classes and synthetize the synchronization from the local
specifications instead of the global specification of the whole system. The
possibilities of this alternative specification may be considered.

148 Sz. Hajdara, L. Kozma and B. Ugron

The correctness and completeness of the method should be considered,
too. This research is based on methods of formal semantics. Semantics can be
associated with the individual methods, and correctness and completeness can
be proved based on these definitions.

The possibilities of embedding temporal logic specifications into different
object-oriented designer softwares may be considered, too.

References

[1] Andrews G.R., A method for solving synchronization problems, Science
of Computer Programming, 13 (1989/90), 1-21.

[2] Chaochen Z., Specifying communicating systems with temporal logic,
LNCS 389 (1987), 304-323.

[3] Horváth Z., The weakest precondition and the specification of parallel
programs, Proc. of the Third Symposium on Programming Languages and
Software Tools, Kaariku, Estonia, 1993, 24-34.

[4] van Lamsweerde A. and Sintzoff M., Formal derivation of strongly
correct concurrent programs, Acta Informatica, 12 (1) (1979), 1-31.

[5] Lisper B., Synthesizing synchronous system by static scheduling in space-
time, LNCS 362 (1987).

[6] Manna Z. and Wolper P., Synthesis of communicating processes from
temporal logic specifications, ACM TOPLAS, 6 (1984), 68-93.

[7] Rácz É,, Specifying a transaction manager using temporal logic, Proc.
of the Third Symposium on Programming Languages and Software Tools,
Kaariku, Estonia, 1993, 109-119.

[8] Wolper P., The tableau method for temporal logic: An overview, Logique
et Anal., 28 (1985), 119-136.

[9] Gopalakrishnan G. and Fujimoto R., Design and verification of the
rollback, Chip using HOP: A case study of formal methods applied to
hardware design, ACM Trans. on Comp. Syst., 11 (2) (1993), 109-145.

[10] Dijkstra E.W., A discipline of programming, Prentice-Hall, Englewood
Cliffs, 1976.

[11] Owicki S. and Gries D., An axiomatic proof technique for parallel
programs, Acta Informatica, 6 (1976), 319-340.

[12] Hoare C.A.R., Communicating sequential processes, Comm. ACM, 21
(1978), 666-677.

Synthesis of a system composed by many similar objects 149

[13] Kozma L., A transformation of strongly correct concurrent programs,
Proc. of the Third Hungarian Computer Science Conference 1981, 157-
170.

[14] Kröger F., Temporal logic of programs, Springer, 1987.
[15] Smullyan R.M., First order logic, Springer, 1971.
[16] Horváth Z., The formal specification of a problem solved by a parallel

program - A relational model, Annales Univ. Sci. Budapest., Sect. Comp.,
17 (1998), 173-191.

[17] Chandy K.M. and Misra J., Parallel program design: A foundation,
Addison-Wesley, 1989.

[18] Misra J., Specifying concurrent objects as communicating processes,
Science of Computer Programming, 14 (1990), 159-184.

[19] Kozma L., Shared data abstractions, Proc. of Fourth Hungarian Com-
puter Science Conference 1985, eds. M.Arató, I.Kátai and L.Varga, 201-
210.

[20] Kozma L., A temporal logic approach to shared data abstractions, Conf.
on Automata, Languages and Progr. Systems, Salgótarján, 1986, 160-172.

[21] Kozma L. és Varga L., Párhuzamos rendszerek elemzése, ELTE TTK
Informatikai Tanszékcsoport, 2002.

[22] Emerson E.A. and Clarke E.M., Using branching time temporal logic
to synthesize synchronization skeletons, Science of Computer Program-
ming, 2 (1982), 241-266.

[23] Attie P.C. and Emerson E.A., Synthesis of concurrent systems with
many similar processes, ACM TOPLAS, 20 (1) (1998), 51-115.

[24] Attie P.C. and Emerson E.A., Synthesis of concurrent programs for an
atomic read/write model of computation, ACM TOPLAS, 23 (2) (2001),
187-242.

[25] Wegner P., Classification in object-oriented systems, SIGPLAN Notices,
21 (10) (1986), 173-182.

[26] Meyer B., Object-oriented software construction, Prentice Hall Inc., 1988.
[27] Rumbaugh J., Blacha M., Premerlani W., Eddy F. and Lorensen

W., Object-oriented modelling and design, Prentice Hall Inc., 1991.
[28] Love T., Object lessons, SIGS BOOKS Inc., New York, 1993.
[29] Kurki-Suonio R., Fundamentals of object-oriented specification and

modeling of collective behaviors, Object-oriented behavioral specifications,
eds. H.Kilov and W.Harvey, Kluwer, 1996, 101-120.

[30] Booch G., Object-oriented analysis and design with applications, The
Benjamin/Cummings Publishing Company Inc., 1994.

150 Sz. Hajdara, L. Kozma and B. Ugron

[31] Holland I.M. and Lieberherr K.J., Object-oriented design, ACM
Computing Surveys, 28 (1) (1996), 273-275.

[32] Wieringa R., A survey of structured and object-oriented software speci-
fication methods and techniques, ACM Computing Surveys, 30 (4) (1998),
459-527.

Sz. Hajdara, L. Kozma and B. Ugron
Department of General Computer Science
Eötvös Loránd University
XI. Pázmány P. sét. 1/c.
H-1117 Budapest, Hungary

