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Abstract. Let g(m) be a multiplicative arithmetical function taking the

values +1 or -1 only. We give a purely probabilistic proof for Wirsing’s the-

orem stating that the asymptotic mean of g(m) always exists and it is zero

if, and only if, either g(2k) = −1 for all k ≥ 1, or
∑

g(p)=−1

1/p = +∞. Since

for g(m) above the existence of the asymptotic mean value is equivalent

to the existence of the asymptotic distribution of g(m), we compare the

distribution of g(m) with the distribution of products of random variables,

and then apply a recent result of Simonelli (2001) from probability theory.

1. Introduction

An arithmetical function g(m) is called multiplicative if for coprime m and
n

g(mn) = g(m)g(n).

A remarkable theorem of Wirsing (1967) states that if g(m) is a multiplicative
function with values in [−1, 1], the mean value

M(g) = lim
N→+∞

1
N

∑

m≤N

g(m)
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always exists and equals zero if, and only if, either g(2k) = −1 for k ≥ 1, or

∑
p

1− g(p)
p

= +∞.

The importance and difficulty of this problem was shown by a theorem
of Landau (1909), that says that the prime number theorem is equivalent to
M(g) = 0 for the special case g(m) is the Möbius function. In this paper
we limit our investigation to multiplicative functions with values in {−1, +1}.
However our method of proof can be modified to multiplicative functions which
are zero at all prime powers larger than one (thus covering the Möbius function).

Consider the probability space (ΩN ,AN , P N), where ΩN denotes the first N
positive integers, AN the collection of all subsets of ΩN , and P N the probability
measure that assign mass 1/N to each element in ΩN . Then every multiplicative
function g(m) can be viewed as a random variable in (ΩN ,AN , P N). Moreover
g(m) can be expressed as

g(m) =
∏

p≤N

g
(
psp(m)

)
,

where the product is over all primes less than or equal to N , sp(m) is the
integer in the prime factorization of m, and for arbitrary primes p1, · · · , pt,

PN [spi(m) ≥ ki, i = 1, · · · , t] =
1
N

[
N

pk1
1 · · · pkt

t

]
,

where [x] denotes the integer part of x.
The multiplicative function g(m) is said to have a limit distribution if there

is a distribution function F (x) such that

lim
N→+∞

PN


 ∏

p≤N

g(psp(m)) ≤ x


 = F (x)

for all continuity points of F (x). Hence in the case g(m) ∈ {−1,+1}, M(g) is
zero if, and only if, g(m) has a symmetric limit distribution F (x).

In this paper we give a simple probabilistic proof of Wirsing’s theorem
for the case g(m) = −1, 1. For the general case, besides the original proof by
Wirsing, simple proofs were also given by Hildebrand (1985), Daboussi and
Indlekofer (1992), and Indlekofer (1993).
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2. Tools from probability theory

In this section we collect the main probability tools used in our proof.

We start with a result of Simonelli (2001).

Theorem 1. Let X1, X2, · · · be a sequence of independent random vari-
ables, Xi = −1, 1, i = 1, 2, · · ·. Then

lim
n→+∞

P

(
n∏

i=1

Xi = −1

)
= P

exists if, and only if, either lim
n→+∞

P (Xn = −1) = 0, or P (Xi = 1) = 1/2 for

some i, or

(1)
+∞∑

i=1

min{P (Xi = −1), P (Xi = 1)} = +∞.

Moreover P = 1/2 if, and only if, either P (Xi = −1) = 1/2 for some i, or (1)
holds.

Let A1, A2, · · · be arbitrary events in some given probability space, and for
k ≥ 1 put

Sk = Sk,n = E

[(
mn

k

)]
=

∑
P (Ai1 ∩Ai2 ∩ · · · ∩Aik

),

where mn is the number of those Aj which occur and
∑

is summation over all
integers 1 ≤ i1 < i2 < · · · < ik ≤ n. Galambos and Simonelli (2003) developed
Bonferroni-type identities and inequalities for an odd number of occurrences
in a sequence of events, which can be applied to products of random variables
with values -1, 1.

Theorem 2. Let X1, X2, · · · be a sequence of random variables, each with
values -1, 1. Let Ai = {Xi = −1}, i = 1, 2, · · ·. Then for arbitrary integers
r, d, 2 ≤ 2r, 1 ≤ 2d + 1,

2r∑

k=1

(−2)k−1Sk ≤ P

(
n∏

i=1

Xi = −1

)
≤

2d+1∑

k=1

(−2)k−1Sk.

When 2r ≥ n and 2d + 1 ≥ n, the above inequalities become identities.
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In the case the Xi are independent, Theorem 2 gives

(2) P

(
n∏

i=1

Xi = −1

)
=

1
2
− 1

2

n∏

i=1

(1− 2P (Ai)),

from which one can easily obtain necessary and sufficient conditions for

P

(
n∏

i=1

Xi = −1
)

to increase (decrease) either as a function of n or as a function

of P (Ai), for any given i. For example, given P (Ai) < 1/2 for i = 1, 2, · · · , n,

from (2) it is easy to see that P

(
n∏

i=1

Xi = −1
)

increases if any P (Aj) is

replaced by P (B) > P (Aj). This fact will be used in the next section.
From elementary probability theory we will use several times the total

probability rule with the simple form of

P (A) = P (A|B)P (B) + P (A|Bc)P (Bc), 0 < P (B) < 1,

and the simple formula

(3) P (A ∩Bc) = P (A)− P (A ∩B).

2. Probabilistic proof of Wirsing’s theorem

The aim of this section is to give a simple probabilistic proof of the
following theorem of Wirsing.

Theorem 3. Let g(m) be a multiplicative function with values in {−1, 1}.
Then g(m) has always a limit distribution F (x). Moreover F (x) is symmetric
if, and only if, either g(2k) = −1 for k ≥ 1, or

(4)
∑

p:g(p)<0

1
p

= +∞.

Proof. In some abstract probability space let epi be independent random
variables such that epi = 0, 1, · · ·, and

P [epi ≥ ki, i = 1, · · · , t] =
1

pk1
1 · · · pkt

t

.
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Then, for any T ,

lim
N→+∞

PN

[∏
p≤T

g(psp(m)) < 0

]
= P

[∏
p≤T

g(pep) < 0

]
.

Moreover, by using (3), one obtains

PN

[∏
p≤N

g(psp(m)) < 0

]
=

=PN

[∏
p≤T

g(psp(m)) < 0

]
+ PN

[∏
p≤T

g(psp(m)) > 0,
∏

T <p≤N

g(psp(m)) < 0

]
−

− PN

[∏
p≤T

g(psp(m)) < 0,
∏

T <p≤N

g(psp(m)) < 0

]
,

which implies that, for any T ,

∣∣∣∣∣PN

[∏
p≤N

g(psp(m)) < 0

]
− PN

[∏
p≤T

g(psp(m)) < 0

]∣∣∣∣∣ ≤ 2
∑
p≥T

g(p)=−1

1
p
.

Hence if ∑
p:g(p)<0

1
p

< +∞,

the above calculation, Theorem 2 and (2) imply

lim
N→+∞

PN,α

[∏
p≤N

g(psp(m)) < 0

]
= lim

T→+∞
P

[∏
p≤T

g(pep) < 0

]
= b,

with b = 1/2 if, and only if, g(2k) = −1 for k ≥ 1, and b < 1/2 otherwise.
Next let us assume the validity of (4), and let us assume that the conclusion

of the theorem does not hold. Then there exist an ε > 0, a sequence of positive
integers Nk, Nk → +∞ with k, and a positive integer M , M = M(ε), such
that either

PNk


 ∏

p≤Nk

g(psp(m)) > 0


− PNk


 ∏

p≤Nk

g(psp(m)) < 0


 > 2ε for all Nk ≥ M
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or

PNk


 ∏

p≤Nk

g(psp(m)) > 0


− PNk


 ∏

p≤Nk

g(psp(m)) < 0


 < −2ε for all Nk ≥ M.

Let us assume the first inequality holds, and let qo be such that

1
qo

<
ε

2
.

For 1 ≤ α < 2, define

(5) PN,α[spi
(m) ≥ ki, i = 1, · · · , t] =

1
N

[
N

pδ1k1
1 · · · pδtkt

t

]
,

where δiki = α if ki = 1, pi ≥ qo, and g(pi) = −1, and δiki = ki otherwise.
Then PN,α defines a probability measure on ΩN = {1, 2, · · · , N}. Similarly we
define

Pα[epi ≥ ki, i = 1, · · · , t] =
1

pδ1k1
1 · · · pδtkt

t

,

where δiki is as in (5). Then for arbitrary T ,

lim
N→+∞

PN,α

[∏
p≤T

g(psp(m)) < 0

]
= Pα

[∏
p≤T

g(pep) < 0

]
,

and from Theorem 2,

lim
T→+∞

Pα

[∏
p≤T

g(pep) < 0

]
= bα.

By proceeding as in the previous case we immediately have that for any T

∣∣∣∣∣PN,α

[∏
p≤N

g(psp(m)) < 0

]
− PN,α

[∏
p≤T

g(psp(m)) < 0

]∣∣∣∣∣ ≤ 2
∑
p≥T

g(p)=−1

1
pα

,

which implies that for α > 1,

lim
N→+∞

PN,α

[∏
p≤N

g(psp(m)) < 0

]
= lim

T→+∞
Pα

[∏
p≤T

g(pep) < 0

]
= bα.
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By (2) one further obtains that either bα = 1/2 for 1 ≤ α < 2 (in the case
g(2k) = −1, for k ≥ 1) or bα < 1/2, if α > 1, and bα ↗ 1/2 as α ↘ 1. In either
case, there exist α1 and a positive integer L, L = L(ε), such that for N ≥ L,

(6) PN,α1

[∏
p≤N

g(psp(m)) > 0

]
− PN,α1

[∏
p≤N

g(psp(m)) < 0

]
< ε.

Choose N in the sequence Nk such that N ≥ max{M, L}. Since PN

only depends on a finite number of primes, our initial assumption implies the
existence of αo such that whenever 1 ≤ α ≤ αo,

(7) PN,α

[∏
p≤N

g(psp(m)) > 0

]
− PN,α

[∏
p≤N

g(psp(m)) < 0

]
> ε.

If α1 ≤ αo, we immediately get a contradiction ((6) and (7) cannot hold at
the same time). So let us assume that αo < α1. Let qo ≤ q ≤ N , g(q) < 0,
and denote by D(q, αo) the left hand side of (7), with α = αo. We claim that
if we change the distribution of PN,αo by changing qαo to qα1 in the marginal
distributions of PN,αo (given by (5)), then the left hand side of (7) computed
with respect to this new distribution function, which we denote by D(q, α1),
satisfies

(8) D(q, α1)−D(q, αo) ≥ 0.

In fact our computation will show that if we view D(q, α) as a function of qα

(q fixed, but α is allowed to take values on [αo, α1]), then D(q, α) is a non-
decreasing function of qα. We start by rewriting D(q, αo) as

PN,αo [sq(m) = 1]PN,αo

[∏
p≤N

g(psp(m)) < 0
∣∣∣ sq(m) = 1

]
+

+ (1− PN,αo [sq(m) = 1]) PN,αo

[∏
p≤N

g(psp(m)) > 0
∣∣∣ sq(m) 6= 1

]
−

− PN,αo [sq(m) = 1] PN,αo

[∏
p≤N

g(psp(m)) > 0
∣∣∣ sq(m) = 1

]
−

− (1− PN,αo [sq(m) = 1]) PN,αo

[∏
p≤N

g(psp(m)) < 0
∣∣∣ sq(m) 6= 1

]
=
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=PN,αo
[sq(m) = 1]

(
PN,αo

[∏
p≤N

g(psp(m)) < 0
∣∣∣ sq(m) = 1

]
−(9)

−PN,αo

[∏
p≤N

g(psp(m)) > 0
∣∣∣ sq(m) = 1

])
+

+ (1− PN,αo [sq(m) = 1])

(
PN,αo

[∏
p≤N

g(psp(m)) > 0
∣∣∣ sq(m) 6= 1

]
−

− PN,αo

[∏
p≤N

g(psp(m)) < 0
∣∣∣ sq(m) 6= 1

])
=

=PN,αo
[
∏
p≤N
p 6=q

g(psp(m)) < 0]− PN,αo
[
∏
p≤N
p6=q

g(psp(m)) > 0]+(10)

+ 2 (1− PN,αo
[sq(m) = 1])

(
PN,αo

[∏
p≤N

g(psp(m)) > 0
∣∣∣ sq(m) 6= 1

]
−

− PN,αo

[∏
p≤N

g(psp(m)) < 0
∣∣∣ sq(m) 6= 1

])
.

The last two representations of D(q, αo) contain the proof of our claim. Since
D(q, αo) > 0 and

PN,αo [sq(m) = 1] =
1
N

[
N

qαo

]
− 1

N

[
N

q2

]
≤ 1

q
<

ε

2

then the last difference in (9), and consequently the last difference in (10), must
be nonnegative. Moreover the only term in (10) which depends on qα is

(1− PN,αo [sq(m) = 1]) = 1− 1
N

[
N

qαo

]
+

1
N

[
N

q2

]
,

which clearly non-decreases as α increases from αo to α1. Hence (8) holds.
So let us change the distribution PN,αo by changing qαo to qα1 in its marginal
distributions. This procedure can now be repeated for every prime p 6= q,
qo ≤ p ≤ N , g(p) < 0, and at the end of this process the left hand side of (7)
will be changed into the left hand side of (6). Since at each iteration we are
non-decreasing the difference between the probabilities of the events

{∏
p≤N

g(psp(m)) > 0

}
and

{∏
p≤N

g(psp(m)) < 0

}
,
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we immediately get a contradiction (if (7) holds, (6) cannot hold).
If the second inequality at the beginning of our proof holds, instead of the

first one, then α1, αo, and N can be chosen such that

(11) PN,α1

[∏
p≤N

g(psp(m)) > 0

]
− PN,α1

[∏
p≤N

g(psp(m)) < 0

]
> −ε,

and

(12) PN,α

[∏
p≤N

g(psp(m)) > 0

]
− PN,α

[∏
p≤N

g(psp(m)) < 0

]
< −ε,

for 1 ≤ α ≤ αo. We can again assume αo < α1. Let qo ≤ q ≤ N , g(q) < 0,
D(q, αo) and D(q, α1) be as before. In this case we claim

(13) D(q, α1)−D(q, αo) ≤ 0.

Since D(q, αo) < 0, then the last difference in (9), and consequently the last
difference in (10), is less than or equal to zero, and considerations similar to the
ones made in the previous case immediately imply the validity of (13). So let us
consider D(q, α1). As before by repeating the above procedure for every p 6= q,
qo ≤ p ≤ N , g(p) < 0, we will eventually change the left hand side of (12) into
the left hand side of (11). Since at each iteration we are non-increasing the
difference between the probabilities of the events

{∏
p≤N

g(psp(m)) > 0

}
and

{∏
p≤N

g(psp(m)) < 0

}
,

we immediately get a contradiction (if (12) holds, (11) cannot hold).
The proof of the theorem is now complete.
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