DIGITAL EXPANSION IN $\mathbb{Q}(\sqrt{2})$

G. Farkas and A. Kovács (Budapest, Hungary)

Dedicated to Prof. K.-H. Indlekofer on his 60th birthday

Abstract. One objective of our research is to extend the concept of number system to various algebraic structures. A study of the quadratic fields automatically raises the question: for what algebraic integers α can we find such a digit set E_{α} where (α, E_{α}) is a number system.

1. Introduction

Let D be a square free (positive or negative) integer, or D=-1. The quadratic fields $\mathbb{Q}\left(\sqrt{D}\right)$ are classified: we say that it is an imaginary extension of \mathbb{Q} , if D<0, while in the case D>0 we say that it is a real extension field. For some fixed D, let I denote the set of algebraic integers in $\mathbb{Q}\left(\sqrt{D}\right)$.

Definition. Let $\alpha \in I$ and $E_{\alpha} \subseteq I$ be a complete residue system mod α containing 0.

We say that (α, E_{α}) is a *coefficient system* in I, the elements of E_{α} are digits and α is the base (number) of (α, E_{α}) .

Definition. (α, E_{α}) is a number system in I if each $\gamma \in I$ can be written in a finite sum

$$(1.1) \gamma = e_0 + e_1 \alpha + \ldots + e_k \alpha^k,$$

where $e_i \in E_{\alpha}, i = 0, 1, \dots, k$.

Then α is the base (number) of the number system (α, E_{α}) .

Since E_{α} is a complete residue system mod α , therefore the uniqueness of the representation (1.1) is clear. Furthermore, it is obvious that for every $\gamma \in I$ there exists a unique $f \in E_{\alpha}$ for which

$$(1.2) \gamma = \alpha \cdot \gamma_1 + f$$

holds with a suitable $\gamma_1 \in I$.

Let $J: I \to I$ be the function defined by $J(\gamma) = \gamma_1$, if γ, γ_1 are related by (1.2). Then we can define a directed graph over I, by drawing an edge from γ to γ_1 , labeling it with f:

$$(1.3) \gamma \xrightarrow{(f)} \gamma_1.$$

We say that $\pi \in I$ is a periodic element, if $J^k(\pi) = \pi$ holds for some positive integer k. Let \mathcal{P} be the set of periodic elements.

It is clear that (α, E_{α}) is a number system, if $\mathcal{P} = \{0\}$.

The question we are interested in is the following: what are those $\alpha \in I$ in some $\mathbb{Q}\left(\sqrt{D}\right)$ for which (α, E_{α}) is a number system with an appropriate digit set E_{α} .

The question was completely solved by G. Steidl for D=-1 [5], for arbitrary imaginary quadratic fields by I. Kátai. Namely they proved that α is a base of a number system, if and only if $\alpha \neq 0$ and α , $1-\alpha$ are not units. The explicit construction of E_{α} is given.

The case of real quadratic extension field seems to be harder due to the fact that the module of α and its conjugate $\overline{\alpha}$ are not the same in general.

Assume that D > 0. If α is a base of a number system then clearly

(1.4)
$$\begin{cases} \alpha \neq 0, \\ \alpha, 1 - \alpha \text{ are not units,} \\ |\alpha| > 1, |\overline{\alpha}| > 1 \end{cases}$$

should be satisfied.

It is true that α is a base of a number system if (1.4) holds?

The first named author proved it [4] if (1.4) holds in a stronger form:

$$|\alpha| \ge 2, \quad |\overline{\alpha}| \ge 2.$$

We shall improve this in the case D=2.

2. The formulation of our results

2.1. A previous achievement

The starting point of our investigation is a theorem published by I. Kátai in [1]. He proved for imaginary quadratic fields that $\alpha \in I$ is a base of a number system with an appropriate digit set E_{α} if and only if

$$\alpha \neq 0,$$

 $\alpha, \ 1-\alpha$ are not units and $|\alpha|, |\overline{\alpha}| > 1,$

where $\overline{\alpha}$ is the algebraic conjugate of α . In that paper the explicit construction of digit set E_{α} was given. The digit sets constructed in this way are called K-type digit sets.

Our prospective purpose is to prove the same result in real quadratic fields. In this paper we concentrate on the quadratic field $\mathbb{Q}(\sqrt{2})$.

2.2. The construction of the K-type digit sets

Let $\alpha=a+b\sqrt{2}$ be an arbitrary algebraic integer in $\mathbb{Q}\left(\sqrt{2}\right)$, that is $a,b\in\mathbb{Z}$, and $d=\alpha\cdot\overline{\alpha}$, where $\overline{\alpha}=a-b\sqrt{2}$ is the conjugate of α . Then $E_{\alpha}^{(\varepsilon,\delta)}$ are the sets of those $f=k+l\sqrt{2}$ $(k,l\in\mathbb{Z})$ for which

$$f \cdot \overline{\alpha} = \left(k + l\sqrt{2}\right) \left(a - b\sqrt{2}\right) = \left(ka - bl2\right) + \left(la - kb\right) = r + s\sqrt{2}$$

satisfy the following conditions:

$$\begin{split} &-\text{if }(\varepsilon,\delta)=(1,1), \text{ then } r,s\in\left(\frac{-|d|}{2},\frac{|d|}{2}\right],\\ &-\text{if }(\varepsilon,\delta)=(-1,-1), \text{ then } r,s\in\left[\frac{-|d|}{2},\frac{|d|}{2}\right),\\ &-\text{if }(\varepsilon,\delta)=(-1,1), \text{ then } r\in\left[\frac{-|d|}{2},\frac{|d|}{2}\right), \ s\in\left(\frac{-|d|}{2},\frac{|d|}{2}\right],\\ &-\text{if }(\varepsilon,\delta)=(1,-1), \text{ then } r\in\left(\frac{-|d|}{2},\frac{|d|}{2}\right], \ s\in\left[\frac{-|d|}{2},\frac{|d|}{2}\right). \end{split}$$

We call the above constructed digit sets K-type digit sets. If we do not specify the value of (ε, δ) , then we denote with E_{α} an arbitrary element of the set $\left\{E_{\alpha}^{(1,1)}, E_{\alpha}^{(1,-1)}, E_{\alpha}^{(-1,1)}, E_{\alpha}^{(-1,-1)}\right\}$.

2.3. The construction of the *F*-type digit sets

For an arbitrary $\alpha \in I\left(\subseteq \mathbb{Q}(\sqrt{2}) \text{ let } E_{\alpha} \text{ be a } K\text{-type digit set.}$ We proved in [2] that if $P\setminus\{0\}$ is not empty, then either $G\left(P\setminus\{0\}\right)$ is a disjoint union of loops, or a disjoint union of circles of length 2, which take the form: $\pi \xrightarrow{f} \left(-\pi\right) \xrightarrow{-f} \pi$.

We shall construct the appropriate F-type digit set A_{α} by modifying E_{α} as follows.

- 1) If (α, E_{α}) is a number system, then $A_{\alpha} = E_{\alpha}$.
- 2) If $f \in E_{\alpha}$ and either
 - a) $\pi \xrightarrow{f} \pi$ holds for some $\pi \in \mathcal{P}$

or

b)
$$\pi \xrightarrow{f} (\pi) \xrightarrow{-f} \pi$$
 holds for some $\pi \in \mathcal{P}$,

then let $f^* \in \mathcal{A}_{\alpha}$, where f^* is one of $f + \alpha$, $f - \alpha$, so that

$$|\overline{f^*}| = \left| |\overline{\alpha}| - |\overline{f}| \right|$$

holds.

Let the other elemenets of E_{α} belong to A_{α} .

2.4. The formulation of our Theorem

Theorem. Let $\alpha \in \mathbb{Q}(\sqrt{2})$ be an arbitrary algebraic integer and

$$\alpha \neq 0,$$
 $\alpha, 1 - \alpha \quad not \ units \ and$
 $|\alpha|, |\overline{\alpha}| > \sqrt{2}$

hold. Then α is a base of a number system.

3. The proof of our Theorem

Remark 1. We saw in [3] that we can assume, without injuring the generality that $|\alpha| > |\overline{\alpha}|$. In case $|\alpha| < |\overline{\alpha}|$ we can prove the same assertion in the same way.

Remark 2. In [4] we proved that if $|\alpha|, |\overline{\alpha}| \geq 2$ and the conditions of our Theorem hold then (α, E_{α}) is a number system, where E_{α} is the appropriate K-type digit set.

Remark 3. If $|\alpha|, |\overline{\alpha}| < 2$ then $1 - \alpha$ is a unit. Thus we have to prove our Theorem when the inequalities

$$\min(|\alpha|, |\overline{\alpha}|) < 2$$
 and $\max(|\alpha|, |\overline{\alpha}|) > 2$

are simultaneously valid.

Remark 4. Relying on the data included in the appendix of [3], the validity of our Theorem can be easily verified for case $\max(|\alpha|, |\overline{\alpha}|) \le 6 + 3\sqrt{2}$.

In line with the Remarks we have made so far, in the following we assume that

$$|\alpha| > 6 + 3\sqrt{2} \quad \text{and}$$

$$\sqrt{2} < |\overline{\alpha}| < 2$$

inequalities hold true.

In [3], [4] we proved some useful assertions assuming that $1 + \alpha$ is not a unit. In order to use these results in this paper we present the following lemma:

Lemma 1. If $1 + \alpha$ is a unit in I then

$$|\overline{\alpha}| < \sqrt{2}$$
.

Proof. It is a well-known fact in number theory that a number β is a unit in an arbitrary quadratic field if and only if either $\beta \cdot \overline{\beta} = 1$ or $\beta \cdot \overline{\beta} = -1$. Let us consider the following product. Assume that $1 + \alpha$ is a unit. Then $M = (1+\alpha)(1+\overline{\alpha}) = \pm 1$, that is M = 1+2a+d, where naturally $\alpha = a+b\sqrt{2}$ and $\alpha \cdot \overline{\alpha} = d$.

There are four cases:

- 1. If $\alpha, \overline{\alpha} > 0$ then M = 1.
- 2. If $\alpha < 0$, $\overline{\alpha} > 0$ then M = -1, that is 2a + d = -2.

It is clear that both cases yield a contradiction.

3. If
$$\alpha > 0$$
, $\overline{\alpha} < 0$ then $M = -1$, that is $a = -\frac{d}{2} - 1$.

Since $|\overline{\alpha}| = |b|\sqrt{2} - |a|$, therefore $|\alpha| = |a| + |b|\sqrt{2} = 2|a| + |\overline{\alpha}|$. Thus $|\alpha| = |\alpha| - 2 + |\overline{\alpha}|$. We get from $|d| = |\alpha||\overline{\alpha}|$ that

$$\begin{split} |\alpha|+2-|\overline{\alpha}| &= |\alpha||\overline{\alpha}|, \quad \text{that is} \\ |\overline{\alpha}| &= 1 + \frac{2-|\overline{\alpha}|}{|\alpha|} < \sqrt{2}. \end{split}$$

4. If $\alpha, \overline{\alpha} < 0$ then M = 1, that is $a = \frac{-d}{2}$. We get that $|\alpha| = |d| - |\overline{\alpha}|$ and from this

$$|\alpha| + |\overline{\alpha}| = |\alpha||\overline{\alpha}|.$$

Then

$$|\overline{\alpha}| = 1 + \frac{|\overline{\alpha}|}{|\alpha|} < \sqrt{2}$$

is true completing the proof of the Lemma 1. Thus, we can use the results of our previous papers, without losing the generality, because $1 + \alpha$ never is unit.

The following assertions are related to the estimation of the modulus of the digits and their conjugates.

Lemma 2. If $f^* \in A_{\alpha}$ and $f^* \notin E_{\alpha}$ then

$$|f^*| < \left(3 - \sqrt{2}\right)|\alpha| + 1$$

and

$$|\overline{f^*}| < |\overline{\alpha}| - 1.$$

Proof. If $f^* \notin E_{\alpha}$, then there exists a digit f in E_{α} for which either $f^* = f + \alpha$ or $f^* = f - \alpha$ holds, thus

$$(3.1) |f^*| \le |f| + |\alpha|..$$

 $f^* \notin E_{\alpha}$ implies further that there exists a $\pi = p + q\sqrt{2}$ in (α, E_{α}) , for which either

(3.2)
$$f = \pi(1 - \alpha)$$
 or $f = \pi(1 + \alpha)$

is true. From this follows that

(3.3)
$$|\pi| \le \frac{|f|}{|\alpha| - 1} \quad \text{and} \quad |\overline{\pi}| \le \frac{|\overline{f}|}{|\overline{\alpha}| - 1}.$$

Let

$$S:=\frac{|f|}{|\alpha|-1}+\frac{|\overline{f}|}{|\overline{\alpha}|-1}.$$

(3.3) implies that

$$|\pi - \overline{\pi}| = 2|q|\sqrt{2} \le |\pi| + |\overline{\pi}| \le S.$$

The construction of E_{α} leads to

$$|f \cdot \overline{\alpha}| = |r + s\sqrt{2}|, \quad |\overline{f} \cdot \alpha| = |r - s\sqrt{2}| \quad \text{and} \quad |r|, |s| \le \frac{|d|}{2}.$$

Now we can compute easily that

$$\begin{split} &\text{if } sgn(r) = sgn(s) \text{ then } S \leq \frac{1+\sqrt{2}}{2} \frac{|\alpha|}{|\alpha|-1} + \frac{\sqrt{2}}{2} \frac{|\overline{\alpha}|}{|\overline{\alpha}|-1} \quad \text{and,} \\ &\text{if } sgn(r) \neq sgn(s) \text{ then } S \leq \frac{\sqrt{2}}{2} \frac{|\alpha|}{|\alpha|-1} + \frac{\sqrt{2}+1}{2} \frac{|\overline{\alpha}|}{|\overline{\alpha}|-1}. \end{split}$$

Since $|q| \le \frac{S}{2\sqrt{2}}$ we get that

In [3] we saw that $|\pi| = |p + q\sqrt{2}| < 2$ and $\pm 1 \not\in \mathcal{P}$, thus either

$$|\pi| = \sqrt{2} - 1$$
 or $|\pi| = 2 - \sqrt{2}$

can be valid. Then, it follows from (3.1) and (3.2) that

$$|f^*| \le (2 - \sqrt{2})(|\alpha| + 1) + |\alpha| = (3 - \sqrt{2})|\alpha| + 2 - \sqrt{2},$$

that is

$$|f^*| < \left(3 - \sqrt{2}\right)|\alpha| + 1$$

holds.

What can we say about $|\overline{f^*}|$? We have to consider two cases. If $|\pi| = \sqrt{2} - 1$ then $|\overline{\pi}| = \sqrt{2} + 1$ and

$$|\overline{f}| = \left(1 + \sqrt{2}\right)(|\overline{\alpha}| - 1) > \left(1 + \sqrt{2}\right)\left(\sqrt{2} - 1\right) = 1.$$

If
$$|\pi| = 2 - \sqrt{2}$$
 then $|\overline{\pi}| = 2 + \sqrt{2}$ and

$$|\overline{f}| = \left(2 + \sqrt{2}\right)(|\overline{\alpha}| - 1) > \left(2 + \sqrt{2}\right)\left(\sqrt{2} - 1\right) = \sqrt{2}.$$

Thus we get that if $|\overline{f}| > |\overline{\alpha}|$ then

$$|\overline{f^*}| = |\overline{f}| - |\overline{\alpha}| \geq \frac{1 + \sqrt{2}}{2} |\overline{\alpha}| - |\overline{\alpha}|,$$

that is

$$|\overline{f^*}| < \sqrt{2} - 1,$$

and if $|\overline{f}| < |\overline{\alpha}|$ then

$$|\overline{f^*}| = |\overline{\alpha}| - |\overline{f}| < |\overline{\alpha}| - 1.$$

We can see that in both cases $|\overline{f^*}| < |\overline{\alpha}| - 1$, therefore we proved Lemma 2.

Lemma 3. In (α, A_{α}) for an aribtrary $\pi (= p + q\sqrt{2}) \in \mathcal{P}$

$$|p| \le 2$$
 and $|q| \le 1$

hold.

Proof. Let π_1 be a periodic element of maximal modulus. There exists a transition

$$\pi = \pi_1 \alpha + f^*$$

with suitable $\pi \in \mathcal{P}$ and $p^* \in A_{\alpha}$.

Consequently, we can carry out the following deduction:

$$\begin{aligned} & \pi_{1}\alpha = \pi - f^{*}, \\ & |\pi_{1}| \leq \frac{|\pi| + |f^{*}|}{|\alpha|} \leq \frac{|\pi_{1}| + |f^{*}|}{|\alpha|}, \\ & |\pi_{1}| \left(1 - \frac{1}{|\alpha|}\right) \leq \frac{|f^{*}|}{|\alpha|}, \\ & |\pi_{1}| \leq \frac{|f^{*}|}{|\alpha| - 1}. \end{aligned}$$

In the same way we get that

$$|\overline{\pi}_1| \le \frac{|\overline{f^*}|}{|\overline{\alpha}| - 1}.$$

In order to estimate the value of |p| and |q|, we use the method described in the proof of the Lemma 2. Thus let

$$S_{\max} = \max_{f^* \in A_{\alpha}} \left(\frac{|f^*|}{|\alpha| - 1} + \frac{|\overline{f^*}|}{|\overline{\alpha}| - 1} \right).$$

We know that

$$|\pi + \overline{\pi}| = 2|p| \le S_{\text{max}}$$

and

$$|\pi - \overline{\pi}| = 2|q\sqrt{2}| \le S_{\max}.$$

If $f^* \in E_{\alpha}$, then we have already proved that $|p| \leq 2$, $|q| \leq 1$, since $|\overline{\alpha}| > \sqrt{2}$ and $|\alpha| > 10$.

If $f^* \notin E_{\alpha}$, then we get from Lemma 2 that

$$S_{\max} < \frac{\left(3-\sqrt{2}\right)|\alpha|+1}{|\alpha|-1} + \frac{|\overline{\alpha}|-1}{|\overline{\alpha}|-1} < 3.$$

The proof is completed.

The next assertion helps to describe the structure of $G(\mathcal{P}\setminus\{0\})$.

Lemma 4. In (α, A_{α}) $G(\mathcal{P}\setminus\{0\})$ does not contain loops, and circles of the form $\pi \xrightarrow{f^*} (-\pi) \xrightarrow{-f^*} \pi$, or in case $\overline{\alpha} > 0$ a transition with form $-\pi \xrightarrow{f^*} \pi$.

Proof. Assume first that for same $\pi \in \mathcal{P}$ and $f^* \in A_{\alpha}$

$$\pi = \pi \cdot \alpha + f^*$$

holds, i.e. there exists a loop in $G(\mathcal{P}\setminus\{0\})$. Thus we get

$$f^* = \pi(1 - \alpha).$$

If $\overline{\alpha} > 0$ then $1 - \alpha \mid f^*$, which implies that either

$$1 - \alpha \mid f + \alpha$$
 or $1 - \alpha \mid f - \alpha$

for the appropriate $f \in E_{\alpha}$. Let us observe that this is a contradiction because in this case $1 - \alpha$ is a unit.

If $\overline{\alpha} < 0$, then the inequality

$$|\overline{f^*}| = |\overline{\alpha}| (|\overline{\alpha}| + 1) \ge \sqrt{2} (|\overline{\alpha}| + 1)$$

is true, which yields a contradiction, since $|\overline{f^*}| < |\overline{\alpha}| - 1$. Thus we have proved that there dose not exist a loop.

Now let us assume that the equation

$$-\pi = \pi \cdot \alpha + f^*$$

holds for some $f^* \in A_{\alpha}$, and also $-f^* \in A_{\alpha}$. It is obvious that

if
$$\overline{\alpha} > 0$$
, then $|f^*| = |\overline{\pi}| (|\overline{\alpha}| + 1)$, and

if $\overline{\alpha} < 0$, then $1 + \alpha$ is a unit, which can be proved in the above mentioned way.

Although we have proved Lemma 4, in case $\overline{\alpha} < 0$ there may exist transition with form $-\pi \xrightarrow{f^*} \pi$.

Summing up the results we have reached so far, and taking into account that $\pm 1 \notin \mathcal{P}$, we can include the possible elements of \mathcal{P} in this table:

(3.4)

p	q	$ \pi $	$ \overline{\pi} $
0	1	$\sqrt{2}$	$\sqrt{2}$
1	1	$\sqrt{2}-1$	$\sqrt{2}+1$
2	0	2	2
2	1	$2-\sqrt{2}$	$2+\sqrt{2}$

As a matter of fact our last assertion completes the proof of the Theorem, namely:

Lemma 5. $P = \{0\}.$

Proof. Let us observe that $\pm 2 \notin \mathcal{P}$, otherwise the equation

$$|\pi_1| = 2|\alpha| - |f^*|$$

would be valid, but this means that

$$|\pi_1| > 2|\alpha| - (3 - \sqrt{2})|\alpha| - 1,$$

and we would get that

$$|\pi_1| > (\sqrt{2} - 1) |\alpha| - 1 > 2,$$

which is a contradiction.

Now let us assume that $\pi_1 \in \mathcal{P}$ such that $|\pi_1| = \sqrt{2}$. According to Lemma 4 it must be a transition

$$\pi_1 = \pi \cdot \alpha + f^*,$$

where $|\pi| \neq \sqrt{2}$, that is $|\overline{\pi}| \geq \sqrt{2} + 1$. Then we get that the inequalities

$$\frac{\sqrt{2}+1}{2}|\overline{\alpha}| \ge |\overline{f^*}| \ge (\sqrt{2}+1)|\overline{\alpha}| - \sqrt{2}$$

hold and these imply that

$$\sqrt{2} \ge \frac{\sqrt{2}+1}{2}|\overline{\alpha}| > \frac{\sqrt{2}+1}{2}\sqrt{2},$$

which is impossible, thus $\pm \sqrt{2} \notin \mathcal{P}$.

Now, we only have to concentrate on the 2nd and 4th rows of the table (3.4). In accordance with Lemma 4 there must exist a transition

$$\pi_1 = \pi \cdot \alpha + f^*$$

where $|\overline{\pi}_1| = 1 + \sqrt{2}$ and $|\overline{\pi}| = 2 + \sqrt{2}$, but then

$$\frac{\sqrt{2}+1}{2}|\overline{\alpha}| \ge |\overline{f^*}| = \left(2+\sqrt{2}\right)|\overline{\alpha}| - \sqrt{2} - 1$$

is true and we get from this that

$$1+\sqrt{2}\geq \frac{3+\sqrt{2}}{2}|\overline{\alpha}|>\frac{3+\sqrt{2}}{2}\sqrt{2}.$$

Obviously, this is a contradiction, therefore $\mathcal{P} = \{0\}$.

This concludes the proof of Lemma 5 as well as that of our Theorem.

References

- [1] **Kátai I.,** Number systems in imaginary quadratic fields, *Annales Univ. Sci. Budapest. Sect. Comp.*, **14** (1994), 159-164.
- [2] Farkas G., Digital expansion in real algebraic quadratic fields, *Mathematica Pannonica*, **10** (2) (1999), 235-248.

- [3] Farkas G., Location and number of periodic elements in $\mathbb{Q}(\sqrt{2})$, Annales Univ. Sci. Budapest. Sect. Comp., 20 (2001), 133-146.
- [4] Farkas G., Number systems in real quadratic fields, Annales Univ. Sci. Budapest. Sect. Comp., 18 (1999), 47-60.
- [5] **Steidl G.**, On symmetric representation of Gaussian integers, *BIT*, **29** (1989), 563-571.

G. Farkas and A. Kovács

Department of Computer Algebra Eötvös Loránd University XI. Pázmány P. sét. 1/C. H-1117 Budapest, Hungary