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Abstract. The aim of this paper is to solve the functional equation

λϕ−1 (λϕ(x) + (1− λ)ϕ(y)) + (1− λ)ψ−1 (λψ(x) + (1− λ)ψ(y)) =

= λx + (1− λ)y,

where ϕ,ψ are sctrictly monotone continuous real functions defined on an

open real interval I and λ ∈]0, 1[ is a fixed number. The case λ =
1
2

has recently been completely solved by the authors in [6]. The main result

of the paper offers a complete solution for the case λ 6= 1
2

and it states

that if λ 6= 1
2

then ϕ,ψ are solutions of the above equation if and only if

there exist constants a, b, c, d with ac 6= 0 such that ϕ(x) = ax + b and

ψ(x) = cx + d for all x ∈ I .

1. Introduction

Let I ⊂ R be a nonvoid open interval. A function M : I2 → I is called a
strict mean on I if it is continuous and min{x, y} < M(x, y) < max{x, y} for

This research has been supported by the Hungarian Scientific Research
Fund (OTKA) grant T043080 and by the Higher Education, Research and
Development Fund (FKFP) grant 0215/2001.
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all x, y ∈ I, x 6= y. Let Mi : I2 → I (i = 1, 2) be strict means. For any fixed
x, y ∈ I, we define the Gauss-iteration in the following way

x1 := x, y1 := y,

xn+1 := M1(xn, yn), yn+1 := M2(xn, yn) (n ∈ N).

It is known ([1],[6]) that, for any x, y ∈ I, the limit M3(x, y) = lim
n→∞

xn =

= lim
n→∞

yn exists, and M1⊗M2 := M3 : I2 → I is a strict mean on I called the

Gauss-composition of M1 and M2.
Denote by CM(I) the class of continuous and strictly monotone functions

defined on the interval I. A function M : I2 → I is called a weighted quasi-
arithmetic mean on I if there exist 0 < λ < 1 and ϕ ∈ CM(I) such that

(1.1) M(x, y) = ϕ−1 (λϕ(x) + (1− λ)ϕ(y)) =: Aϕ(x, y; λ)

for all x, y ∈ I (see [8], [15], [6]). The number λ in (1.1) is called the weight and
the function ϕ is said to be the generating function. Let 0 < λ < 1 be a fixed
number and Mi (i = 1, 2, 3) be weighted quasi-arithmetic means on I with the
same weight λ. Our main concern is to find conditions so that

(1.2) M3 = M1 ⊗M2

be an identity on I2. In the particular case λ =
1
2

we have recently determined

all the solutions in full generality in [6].
In order to solve the problem (1.2), we need to study the functional

equation

(1.3) λAϕ(x, y : λ) + (1− λ)Aψ(x, y;λ) = λx + (1− λ)y (x, y ∈ I),

where ϕ,ψ ∈ CM(I) are unknown functions. The case λ =
1
2

is called the

Matkowski-Sutô problem (cf. [16], [17], [11], [3], [4], [5]). When λ 6= 1
2
, the

continuously differentiable solutions of (1.3) were determined in [7].
Our approach is analogous to that of followed in [6]. First we prove certain

regularity properties of the functions satisfying (1.3). Based on this and also
applying the extension theorem known from [2], we then obtain the complete
solution of the problem described above.
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2. The locally Lipschitz property of solutions

Let 0 < λ < 1 and let ϕ, ψ ∈ CM(I) be solutions for (1.3). Our aim is to
prove that ϕ, ϕ−1, ψ, ψ−1 are locally Lipschitz functions on their domains.

Definition 2.1. Let J ⊂ R be a nonvoid open interval and f : J → R.
We say that the function f is locally Lipschitz in J if, for any u0 ∈ J , there
exist constants δ > 0 and L > 0 such that U :=]u0 − δ, u0 + δ[⊂ J and, for all
u, v ∈ U ,

|f(u)− f(v)| ≤ L|u− v|.
The following theorem plays an important role in our investigations.

Theorem 2.2. Let f : J → R (J ⊂ R is a nonvoid open interval) be a
strictly monotone increasing and continuous function such that, for all v ∈ J ,
the map

u 7−→ f(u)− f(λu + (1− λ)v) (u ∈ J)

is strictly monotone increasing. Then f and its inverse f−1 are Lipschitz
functions on their domains J and f(J), respectively.

Proof. For the case λ =
1
2
, the proof can be found in [6]. In the more

general case 0 < λ < 1 (including also the case λ =
1
2
) the result follows from

a more general result stated in [14, Theorem 3].

Theorem 2.3. Let 0 < λ < 1 and ϕ, ψ ∈ CM(I) be solutions for the
functional equation (1.3). Then ϕ,ϕ−1, ψ, ψ−1 are locally Lipschitz functions
on their domains.

Proof. It is sufficient to prove the statement for the functions ϕ,ϕ−1

because the role of functions ϕ and ψ can be interchanged. Applying (1.3)
with the substitutions u = ϕ(x), v = ϕ(y) (u, v ∈ J := ϕ(I)) we deduce the
equation

(2.1)
(1− λ)ψ−1(λψ ◦ ϕ−1(u) + (1− λ)ψ ◦ ϕ−1(v)) =

= λϕ−1(u) + (1− λ)ϕ−1(v)− λϕ−1(λu + (1− λ)v)

for all u, v ∈ J . Without loss of generality, we can assume that ϕ and ψ are
strictly increasing functions. Then, for each fixed v, the left hand side of (2.1)
is strictly increasing function of u, which results that the right hand side of
(2.1) should also be strictly increasing in u. Therefore, for each fixed v ∈ J ,

u 7−→ ϕ−1(u)− ϕ−1(λu + (1− λ)v) (u ∈ J)
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is a strictly increasing function. Hence, in virtue of Theorem 2.2, ϕ−1 and ϕ
are locally Lipschitz functions on J and on I = ϕ−1(J), respectively.

Corollary 2.4. If ϕ,ψ ∈ CM(I) are solutions of (1.3) and ϕ (or ψ) is
differentiable at a point x0 ∈ I, then ϕ′(x0) 6= 0 (or ψ′(x0) 6= 0).

Proof. See Corollary 4.4 of Theorem 4.3 in [6].

3. Differentiability of solutions

Suppose that ϕ,ψ ∈ CM(I) are increasing functions satisfying equation
(1.3). Let

x := ϕ−1(t + (1− λ)s), y := ϕ−1(t− λs),

where t ∈ J := ϕ(I) and

s ∈
(

J − t

1− λ

) ⋂ (
t− J

λ

)
:= Jt,λ

are arbitrary elements. Then equation (1.3) yields that, for any t ∈ J := ϕ(I)
and for any s ∈ Jt,λ,

(3.1)
λϕ−1(t) = λϕ−1(t + (1− λ)s) + (1− λ)ϕ−1(t− λs)−

− (1− λ)ψ−1 [λh(t + (1− λ)s) + (1− λ)h(t− λs)] ,

where h := ψ ◦ ϕ−1.

Definition 3.1. Let f : J → R be an arbitrary function and 0 < λ < 1 be
fixed. An element t ∈ J is said to be a point of λ-symmetry for f , in notation
t ∈ σλ(f), if the identity

(3.2) λf(t + (1− λ)s) + (1− λ)f(t− λs) = f(t)

holds true for all s ∈ Jt,λ.

Lemma 3.2. If F : J → R is a continuous function then σλ(F ) is closed
in J .

Proof. The proof of this obvious statement is analogous to that of [6,

Lemma 4.6] concerning the case λ =
1
2
.



A Matkowski-Sutô-type problem for weighted quasi-arithmetic means 73

Lemma 3.3. Let 0 < λ < 1 and ϕ,ψ ∈ CM(I) be solutions of (1.3).
Then σλ(h) = σλ(ϕ−1), where h := ψ ◦ ϕ−1.

Proof. We have that, for any t ∈ J := ϕ(I) and s ∈ Jt,λ, (3.1) holds.
If t ∈ σλ(h) then, by (3.1), we obtain

λϕ−1(t) = λϕ−1(t + (1− λ)s) + (1− λ)ϕ−1(t− λs)− (1− λ)ψ−1 ◦ h(t),

and since ψ−1 ◦ h(t) = ϕ−1(t) holds, it follows that t ∈ σλ(ϕ−1).
Conversely, if t ∈ σλ(ϕ−1), then, by (3.1),

ϕ−1(t) = ψ−1(λh(t + (1− λs)) + (1− λ)h(t− λs)),

whence we obtain that t ∈ σλ(h).

Theorem 3.4. If 0 < λ < 1 and ϕ,ψ ∈ CM(I) are solutions of (1.3) then
ϕ−1 is differentiable at any point t0 ∈ J\σλ(ϕ−1).

Proof. Without loss of generality we can assume that ϕ and ψ are
increasing functions. If J\σλ(ϕ−1) 6= ∅ then let t0 ∈ J\σλ(ϕ−1) be arbitrary.
For an arbitrary function g : Jt0,λ → R denote by Ng the set of points s ∈ Jt0,λ

at which g is not differentiable. Define the following functions

g1(s) := ϕ−1(t0 + (1− λ)s),

g2(s) := ϕ−1(t0 − λs),

g3(s) := h(t0 + (1− λ)s),

g4(s) := h(t0 − λs)

for all values s ∈ Jt0,λ. Since ϕ−1 and h are strictly monotone functions,
therefore, by Lebesgue’s theorem on the almost everywhere differentiability of
monotone functions, each Ngi (i = 1, 2, 3, 4) is a null set, that is, the set

N :=
4∪

i=1
Ngi ⊂ Jt0,λ

is of measure zero. Since t0 6∈ σλ(ϕ−1) thus, by Lemma 3.3, t0 6∈ σλ(h).
Therefore, the function

ht0(s) := λh(t0 + (1− λ)s) + (1− λ)h(t0 − λs) (s ∈ Jt0,λ)

is not constant, which yields that its image is a proper interval H0 := ht0(Jt0,λ).
Let the set C be defined in the following way:

C := {u ∈ H0 | ψ−1 is not differentiable at u}.
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Then, by Lebesgue’s theorem, C is a null set. Therefore H0\C is a set of
positive measure. Define D as follows:

D := h−1
t0 (H0\C) ⊆ Jt0,λ.

Then ht0(D) = H0\C. If D were a null set, then ht0(D) would also be a null
set since by Theorem 2.2, ht0 is a locally Lipschitz function. Therefore D is a
set of positive measure in Jt0,λ. This implies that D\N is also a set of positive
measure, hence D\N is not empty. Let s0 ∈ D\N be arbitrarily fixed. Then gi

is differentiable at s0 (i = 1, 2, 3, 4) and ψ−1 is differentiable at ht0(s0). Then,
by (3.1), the equation

(3.3)
λϕ−1(t) = λϕ−1(t + (1− λ)s0) + (1− λ)ϕ−1(t− λs0)−

− (1− λ)ψ−1(λh(t + (1− λ)s0) + (1− λ)h(t− λs0))

holds for all t ∈ J such that s0 ∈ Jt,λ is also valid. This latter set of values of t

is an open interval containing t0. Thus, ψ−1 is differentiable at (t0 +(1−λ)s0)
and at (t0 − λs0); h is differentiable at (t0 + (1− λ)s0) and at (t0 − λs0), and
ψ−1 is differentiable at ht0(s0), therefore, by the chain rule, the expression
on the right side of (3.2) is differentiable at t0. Thus, we obtain that ϕ−1 is
differentiable at t0.

Applying the previous result, we obtain the following important regularity
theorem for the solutions of (1.3).

Theorem 3.5. If 0 < λ < 1 and ϕ,ψ ∈ CM(I) are solutions of (1.3), then
there exists a nonvoid open interval K ⊂ I on which ϕ and ψ are differentiable
and ϕ′(x) 6= 0, ψ′(x) 6= 0 for all x ∈ K.

Proof. Consider the function ϕ−1 : J → I, where J := ϕ(I). Then there
are two possible cases:

(i) either σλ(ϕ−1) = J , that is, every t ∈ J is a point of λ-symmetry for
ϕ−1;

(ii) or σλ(ϕ−1) 6= J , that is, ϕ−1 has a point of non-λ-symmetry in J .

In case (i), for all t ∈ J and s ∈ Jt,λ,

ϕ−1(t) = λϕ−1(t + (1− λ)s) + (1− λ)ϕ−1(t− λs)

holds. Since ϕ−1 is continuous, we have ϕ−1(u) = Au + B (where A 6= 0 and
B are constants) for u ∈ J . This implies that Aϕ(x, y;λ) = λx + (1 − λ)y for
all x, y ∈ I, hence, by (1.3), Aψ(x, y; λ) = λx + (1− λ)y holds for all x, y ∈ I.
Thus, ψ is also an affine function, therefore ϕ and ψ are differentiable functions
with non-vanishing derivatives.
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In case (ii), there exists t0 6∈ σλ(ϕ−1). With the notation G := {t ∈ J | t 6∈
6∈ σλ(ϕ−1)}, due to Lemma 3.2, we have that G is a nonvoid open set. Thus,
by Theorem 3.4, there exists a nonvoid open interval ∆ ⊂ G ⊂ J such that
ϕ−1 is differentiable on ∆. Hence ϕ is differentiable on some nonvoid open
interval K0 ⊂ I and Corollary 2.4 implies that ϕ′(x) 6= 0 if x ∈ K0. Now let
us restrict equation (1.3) to the interval K0. Then the role of the functions ϕ
and ψ can be interchanged and, by a similar argument, we obtain that there
exists a nonvoid open interval K ⊂ K0 ⊂ I on which ψ is differentiable and
ψ′(x) 6= 0 if x ∈ K. This completes the proof of the existence of the desired
subinterval.

4. Continuous differentiability of solutions

If ϕ,ψ ∈ CM(I) are differentiable solutions of (1.3) with non-vanishing
derivatives then (since the functions ϕ−1 and ψ−1 have the Darboux’s property)
we can assume that ϕ′(x) > 0 and ψ′(x) > 0 for every x ∈ I without loss of
generality.

Lemma 4.1. If 0 < λ < 1 is a fixed number and ϕ,ψ ∈ CM(I) are
solutions of (1.3), moreover, ϕ and ψ are differentiable functions on I and
ϕ′(x) > 0, ψ′(x) > 0 if x ∈ I then, with the notation

(4.1) J := ϕ(I), f := ϕ′ ◦ ϕ−1, g := ψ′ ◦ ϕ−1,

the functions f, g : J → R+ satisfy the functional equation

(4.2) f(λu + (1− λ)v)(g(v)− g(u)) = λ(f(u)g(v)− f(v)g(u))

for all u, v ∈ J .

Proof. Let us differentiate the functional equation (1.3) first with respect
to x and then with respect to y. The conditions of the lemma ensure the
differentiability, and we get the equations

λ
λϕ′(x)

ϕ′(Aϕ(x, y;λ))
+ (1− λ)

λψ′(x)
ψ′(Aψ(x, y;λ))

= λ

and

λ
(1− λ)ϕ′(y)

ϕ′(Aϕ(x, y; λ))
+ (1− λ)

(1− λ)ψ′(y)
ψ′(Aψ(x, y; λ))

= 1− λ



76 Z. Daróczy and Zs. Páles

for all x, y ∈ I. Multiplying the first equation by (1 − λ)ψ′(y), the second by
λψ′(x), and subtracting the new equations from each other, we obtain

λ(ϕ′(x)ψ′(y)− ϕ′(y)ψ(x))
ϕ′[Aϕ(x, y; λ)]

= ψ′(y)− ψ′(x)

for all x, y ∈ I. Let u = ϕ(x), v = ϕ(y) (u, v ∈ J := ϕ(I)) be arbitrary then
with the notations of (4.1), we obtain equation (4.2).

Definition 4.2. We say that h : J → R+ is an element of the set D(J) if
h = d ◦ c, where c ∈ CM(J) and d : I := c(J) → R+ is a derivative function,
that is there exists a differentiable function D : I → R+, such that D′(x) = d(x)
for all x ∈ I.

According to the previous definition, the functions f and g involved in the
functional equation (4.2) are elements of the set D(J).

Theorem 4.3. If the functions f, g ∈ D(J) satisfy the functional equation
(4.2) for all u, v ∈ J (where 0 < λ < 1 is fixed), then there exists a nonvoid
open interval J0 ⊂ J on which f is continuous.

Proof. (i) If there exists a nonvoid open interval J0 ⊂ J on which f is
continuous then the statement is true. If there exists a nonvoid open interval
J0 ⊂ J on which g is constant then let g(t) =: k for t ∈ J0. Substituting
arbitrary values u, v ∈ J0(⊂ J) into (4.2), we get that f(u)k−f(v)k = 0 for all
u, v ∈ J0. Hence, f must be constant on J0 and consequently, f is continuous
on J0.

Therefore, we may assume that f, g ∈ D(J) and that f and g are not
constants on any nonvoid open subinterval J0 ⊂ J . Denote by D0(J) the set
of functions in D(J) which are not constant on any proper subinterval of J .

(ii) Suppose that f, g ∈ D0(J) satisfy (4.2) for all y, v ∈ J . Define the set
C(g) by

C(g) := {t | t ∈ J, g is continuous at t}.
Then g = d ◦ c, where c is continuous and strictly monotone, d is a derivative
function; therefore g is continuous at each point t ∈ J for which d is continuous
at the point c(t). Since the derivative function d is of Baire class 0 or 1, thus,
according to Baire’s theorem ([12], [13], [10]), the set of all points at which d
is continuous is a dense set of type Gδ in c(J), whence, because c is continuous
and strictly monotone, C(g) is also a dense Gδ set in J .

Now we will show that there exist points u0, v0 ∈ C(g) such that g(u0) 6=
6= g(v0). Contrary to our assumption, suppose that g(t) = k for every t ∈ C(g),
where k > 0 is a constant. Then substituting the values u, v ∈ C(g) into (4.2),
we obtain

f(u)k − f(v)k = 0,
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whence f(t) = l follows for every t ∈ C(g), where l > 0 is a constant.
Because of the property of the set C(g), for all u ∈ J , there exists v ∈ C(g)

such that λu + (1− λ)v ∈ C(g). Thus, by (4.2),

l[k − g(u)] = λ(f(u)k − lg(u))

for every u ∈ J . This implies

f(u) =
l(λ− 1)g(u) + lk

λk
if u ∈ J.

If we substitute this form of the function f back into equation (4.2), after
some calculations, we get

(4.3) (k − g(λu + (1− λ)v))(g(v)− g(u)) = 0

for all u, v ∈ J .
Now let v0 ∈ J be fixed such that c := g(v0) 6= k holds. (Such a v0 exists

since g is non-constant.)
On the other hand, for any t ∈ J and for any ε > 0 satisfying ]t−ε, t+ε[⊂ J ,

there exists u ∈]t− ε, t + ε[⊂ J such that

g(λu + (1− λ)v0) 6= k.

This last statement is valid because g is non-constant on any proper subinterval.
Thus, by (4.3) it is obvious that g(u) = g(v0) = c holds. So in any neighborhood
of any point t ∈ J there exists u such that g(u) = c and there exists s such
that g(s) = k 6= c which yields that g is not continuous anywhere and it is a
contradiction.

(iii) We have proved in the previous part (ii) that there exist points u0, v0 ∈
∈ C(g) such that

g(u0) 6= g(v0)

holds. Then there exist a neighborhood U ⊂ J of u0 and a neighborhood V ⊂ J
of v0 such that for any u ∈ U and v ∈ V we have g(u) 6= g(v). Hence, by (4.2),

f(λu + (1− λ)v) = λ
f(u)g(v)− f(v)g(u)

g(v)− g(u)

follows for all u ∈ U and v ∈ V . This implies

(4.4) f(t) = λ
f

(
t−(1−λ)v

λ

)
g(v)− f(v)g

(
t−(1−λ)v

λ

)

g(v)− g
(

t−(1−λ)v)
λ

)
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for every pair of values

(t, v) ∈ S := {(t, v) | v ∈ V, t ∈ λU + (1− λ)v},

where t0 := λu0 + (1 − λ)v0 ∈ J . By (4.4) and in view of Járai’s theorem ([9,
Theorem 3.3]), we obtain that f is continuous in a neighborhood of the point
t0 ∈ J , that is, there exists a nonvoid open interval t0 ∈ J0 ⊂ J on which f is
continuous.

Finally we can state the following regularity theorem.

Theorem 4.4. Let 0 < λ < 1 and ϕ, ψ ∈ CM(I) be solutions of the
functional equation (1.3). Then there exists a nonvoid open interval K ⊂ I
such that ϕ,ψ are continuously differentiable on K and ϕ′(x) 6= 0, ψ′(x) 6= 0
if x ∈ K.

Proof. In virtue of Theorem 3.5, there exists a nonvoid open interval
K1 ⊂ I on which ϕ and ψ are differentiable with non-vanishing derivatives.
We can assume that ϕ′(x) > 0 and ψ′(x) > 0 if x ∈ K1. Then by
Lemma 4.1, with the notation of (4.1), we obtain that (4.2) holds, where
f, g ∈ D(K1). Thus, by Theorem 4.3, we obtain that there exists a
nonvoid open interval J0 ⊂ J on which f is continuous. It means that
f := ϕ′ ◦ ψ−1 : J → R+ is continuous in J0. Consequently, K2 :=
:= ϕ−1(J0) ⊂ K1 ⊂ I is a nonvoid open interval and

ϕ′(x) = ϕ′ ◦ ϕ−1(s) = f(s) = f ◦ ϕ(x)

for all x ∈ K2. Hene ϕ′ is continuous on the nonvoid open interval K2 ⊂ I.
It is obvious that ϕ,ψ ∈ CM(K2) and ϕ,ψ satisfy the functional equation

(1.3) in K2, where ϕ is continuously differentiable on K2 and ϕ′(x) > 0 if
x ∈ K2. Now apply our previous results for ψ. Then there exists a nonvoid
open interval K ⊂ K2 such that ψ is continuously differentiable on K and
ψ′(x) > 0 if x ∈ K. Thus the statement of the theorem holds on the interval
K.

5. Solution for the problem

The case λ =
1
2

(which is the original Matkowski-Sutô problem) was

treated and completely solved in [6]. Therefore, it remains to consider the

case 0 < λ < 1 and λ 6= 1
2

only. Then the following statement holds.
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Theorem 5.1. Let 0 < λ < 1 and λ 6= 1
2
. If ϕ,ψ ∈ CM(I) are solutions

of the functional equation (1.3) then there exist constants a, b, c, d ∈ R, ac 6= 0
such that

(5.1) ϕ(x) = ax + b and ψ(x) = cx + d

for all x ∈ I. Then

(5.2) Aϕ(x, y;λ) = Aψ(x, y; λ) = λx + (1− λ)y

for all x, y ∈ I.

Proof. In virtue of the Theorem 4.4, there exists a nonvoid open interval
K ⊂ I such that ϕ and ψ are continuously differentiable on K and their
derivatives do not vanish. Then, according to [7], (5.1) holds in K. Due to the
extension theorem of the paper [2], (5.1) holds for all x ∈ I. This immediately
yields that (5.2) is also true.

Now we are going to examine the solution of the general Matkowski-Sutô
problem stated in the introduction for the class of weighted quasi-arithmetic
means.

Theorem 5.2. If Mi : I2 → I (i = 1, 2, 3) are weighted quasi-arithmetic

means with some weight λ

(
0 < λ < 1; λ 6= 1

2

)
on I, then the identity M3 =

= M1 ⊗ M2 holds on I2 if and only if there exists f ∈ CM(I) such that
Mi(x, y) = Af (x, y; λ) (i = 1, 2, 3) holds for all x, y ∈ I.

Proof. There exist generating functions f1, f2, f3 ∈ CM(I) such that the
invariance equation (c.f. [6], [1])

(5.3) Af3(x, y; λ) = Af3(Af1(x, y;λ), Af2(x, y;λ); λ)

holds for all x, y ∈ I. Thus with the notations u := f3(x), v = f3(y), (u, v ∈
∈ f3(I) =: J), ϕ := f1 ◦ f−1

3 , ψ := f2 ◦ f−1
3 , (5.3) holds if and only if ϕ, ψ ∈

∈ CM(J) satisfy the functional equation (1.3) for all u, v ∈ J . Then, by
Theorem 5.1, we get that

ϕ(u) = au + b, ψ(u) = cu + d (ac 6= 0)

for all u ∈ J . Whence, with the notation f := f3, f ∈ CM(I), and since ϕ =
= f1 ◦ f−1

3 = f1 ◦ f−1, ψ = f2 ◦ f−1
3 = f2 ◦ f−1, we have f1 = ϕ ◦ f, f2 = ψ ◦ f ,

where ϕ and ψ are given in (5.1). Thus, Mi(x, y; λ) = Af (x, y;λ) is valid for
all x, y ∈ I and i = 1, 2, 3.
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[5] Daróczy Z. and Páles Zs., On means that are both quasi-arithmetic
and conjugate arithmetic, Acta Math. Hungar., 90 (2001), 271-282.
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