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I. Introduction

An arithmetical function f(n) # 0 is said to be multiplicative if (n,m) =1
implies

f(nm) = f(n)f(m)

and it is called completely multiplicative if this equation holds for all pairs
of positive integers n and m. In the following we denote by M and M™* the
set of all integer-valued multiplicative and completely multiplicative functions,
respectively. For each positive integer D let M7, be the set of all arithmetical
functions f for which f(nm) = f(n)f(m) is satisfied for all n, m coprime to D.
Let IN be the set of all positive integers and P be the set of all primes. In the
following, (m,n) denotes the greatest common divisor of the integers m, n and
m || n denotes that m is a unitary divisor of n, i.e. that m|n and (7, m) = 1.

In 1966 M.V. Subbarao [12] proved the following assertion: If f € M
satisfies

(1) fin4+m)=f(m) (modn) forall n,me IN,
then there is a non-negative integer o such that

(2) f(n)=n* forall nelIN.
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A. Tvényi [3] extended this result proving that if f € M* and (1) holds for a
fixed m € IN and for all n € IN, then f(n) has also the same form (2). In [9]
we improved the results of Subbarao and Ivanyi mentioned above by proving
that if M € IN, f € M satisfy the conditions f(M) # 0 and

fin+M)=f(M) (modn) forall nelN,

then (2) holds. Later, in the papers [5], [7] and [11] we obtained some
generalizations of this result, namely we have shown the following theorems:

Theorem A. ([7]) If the integers A >0, B>0, C #0, N >0 with
(A,B) =1 and f € M satisfy the relation

f(An+B)=C (modn) forall n>N,

then f(B) = C and there are a non-negative integer o, a real-valued Dirichlet
character x  (mod A) such that

fn)=x(m)n® forall nelIN, (n,A)=1.

Theorem B. ([11]) Let A, B, D be positive integers with conditions
(A,B)=1 and (A,D,2)=1.
If a function f € M and an integer C' # 0 satisfy the congruence
f(An+B)=C (modn) forall ne€lN, (n, D)=1,

then f(B) = C and there are a non-negative integer o, a real-valued Dirichlet
character x (mod A) such that

holds for alln € IN, (n,A) =1.

Another characterization of n® by using congruence property was found
by A. Ivdnyi [3], namely he proved that if f € M satisfies the relation

(3) f(n+m)=f(n)+ f(m) (modn) forall n,m e IN,

then f(n) is a power of n with positive integer exponent. It is proved in [6]
that this result continues to hold even if the relation (3) is valid for all m € P
instead of for all m € IN. Recently in a joint paper with J. Fehér [10] we gave
all solutions f of the congruence (3) under the conditions that f € M™* and
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the relation (3) holds for a fixed m € IN and for all n € IN. For further results
and generalizations of this topics we refer to the works [2], [4], [8] and [11].

Our purpose in this paper is to prove the following
Theorem. Let A, B be positive integers with conditions
(A,B)=1 and (A,2)=1.
Assume that a function f € M and an integer C # 0 satisfy the congruence
(4) f(An+ B) = f(An) +C (mod n) forall n € IN.
We have
(I) If there is a prime power w¢ > 1 such that (w, A) =1 and f(7°) =0, then
(a) m=2 and f(An) = —1 for alln € IN, (n,2) =1,
(b) C=1and f(27) =0 for all v € IN in the case (B,2) =1,
(¢)

1 if v < a,
f27) = and f(2%) :{
2-f(2%) ify>a
in the case 2 || B with o € IN, furthermore e > «, f(A) = -1, C =2,
(II) If f(n)f(Am) #0 for alln,m € IN, (n,A) =1 and

2 ife>a,

0 ife=a

[f(n)|=1 forall neIN, mn=1 (mod D)

holds for some fixed D € IN, then

(i) f(A)+C =1 and f(An) = f(A) for all n € IN in the case when
f(A™) # —1 for some m € IN,

(#) f(n) =1 for alln € IN, (n,24) =1 and
f (2“*”’) =C—f(2% forall v€IN,

where 2% || B, a > 0. Furthermore, if @ > 0, then C = 2 and f(2°) = 1 for
<.

(I1I) If f(n)f(Am) # O for alln,m € IN, (n,A) =1 and |[f(N)| > 1
for some N € IN,(N,A) = 1, then there are a non-negative integer « and a
real-valued Dirichlet character x (mod A) such that

holds for alln € IN, (n,A) =1.
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II. The proof of (I)

Lemma 1. Assume that the conditions of the theorem are satisfied. If
there is a prime power ©¢ > 1 such that (7, A) =1 and f(n¢) =0, then

(a) =2 and f(An)=-1 forall nelIN, (n,2)=1.

(b) If (B,2) =1, then C =1 and f(27) =0 for all v € IN.

(¢) If2* || B with o € IN, then e > «, f(A) = -1, C =2,

1 if v < a, 2 ife>aq,
) = and f(2“):{
2—f(2%) ifv>q, 0 ife=a.

Proof. Assume that a prime power 7¢ > 1 satisfies the conditions (7, A) =
=1 and f(7°) = 0. First we prove that

(5) f(A) £ 0.
and
(6) F(n):= f(An) =xx(n) foral nelN, (n,m)=1.

f(A)
It is easy to check that for each prime P > max(A, B, 7%, |C|) one can find

positive integers x,y such that 7z = APy + B and (z,7) = (y, AP) = 1. By
(4), we have

0= f(x)f(x) = f(x°a) = f(APy+ B) = f(A)f(P)f(y) + C (mod P),

which shows (5).

Let ng be a positive integer for which Ang + B = 7¢ (mod 7¢*1). We
get from (4) that

(7) 0= f[A(m“T n 4 ng) + B] = f[A@Tn +ng)] + C  (mod 7 n 4 ng)

holds for all n € IN. Let M be any positive integer with M =1 (mod 7¢*1!).
By (7), for each n € IN, (7**'n + ng, AM) = 1 we have

~Cf(AM) = f(AM) f[A(“"n +no)] = F(A)f(AM) f(7* i +no)] =
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= f(A)F[AM ("0 4+ ng)] = —Cf(A) (mod 7" n + ng)

is satisfied . Thus we have shown that
(8) f(AM) = f(A) forall M =1 (mod7¢"!).

Repeating the argument used in the proof of Lemma 19.3 of [1], in order to
prove (6), we shall deduce from the (5) and (8) that

Fn)=F(m) if n=m (modw), (nm,m)=1
and
F(nm) = F(n)F(m) forall n,meIN, (nm,m)=1,
and so (6) is true.

Indeed, if (n,7) =1 and n =m (mod ), then there is a positive integer
x for which nz =maz =1 (mod 7°*!) and (z, Anm) = 1. From (8) we have

f(An)f(x) = f(Anz) = f(A) = f(Amz) = f(Am)f(z) # 0,

therefore f(An) = f(Am).

Now let n, m € IN with (nm,7) = 1. Then there are positive integers
u, vsuch that nu=1 (mod 7**)and mv =1 (mod 7°*1) and (u, Anm) =
= (v, Anmu) = 1. Therefore, by (8) we get

f(A) = f(Anu) = f(An) f(u),  f(A) = f(Amv) = f(Am)[(v)
and
f(A) = f(Anmuv) = f(Anm)f(u)f(v),
which imply f(A)f(Anm) = f(An)f(Am). Thus, the proof of (6) is completed.

Assume now that (7, B) = 1. Then for each v € IN, by (4) and (6) we
have

f(Aﬂ-’yn—"_ B) = ﬁf{A(Aﬂﬁn“r B)] = XTr(Aﬂ"Yn‘i'B) = XTI'(B) = f(B),

and so
f(Ar"n) = f(B) = C (mod n) forall n € IN.

This with n =1 (mod A7), n — oo implies

f(AmTn) = f(=7) f(An) = f(x7) f(A)x=(n) = f(Ax7)
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and
f(ArY) = f(B) = C forall ~ € IN.

This relation with v = e shows that

f(B)-C

=0 forall ~elIN

and so
F(n) =xx(n) and F(An+B)= f(A)F(n)+C (modn) forall n e IN.

Hence, Lemma 1 of [10] gives

and
F(n) = x2(n) for all n e IN.

The part (b) of Lemma 1 is proved.

Next assume that 7@ || B with a € IN. First we note that e > «. Indeed,
if e < a, then for all n € IN, (n,w) =1, we have

0= f(we)f<An + WE) — f(An°n+ B) =

= f(A7°n) + C = f(7°)f(An) + C = C (mod n)
which contradicts to C' # 0.
By (4) and (6), we have

f(An+ B) = fTA(An + B)] = xx(An + B) =

R

f(A)
= XW(A)Xﬂ'(n) = f(A)XTF(n) +C (mOd n)

for all n € IN, (n,7) =1, which implies, similarly as above, that

(9) X=(n)=1 and f(An)= f(A) forall ne N, (n,m)=1,

furthermore

(10) f(A)+C =1
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We note from (9) that

(11) f(n)=1 forall nelN, (n, Ar)=1.

Let v > a be an integer. Then by (4) and (11) we get

B
J(m) = f@)f (AT "0+ =) = f(ATn + B) =
= f(An"n)+C (modn) forall n e IN.
This and (11) with n — oo, (n, Aw) =1 implies

fx®) - C
f(4)

Let § < a be a positive integer. Then by (4) and (11), we infer that

(12) f@) = forall v€ IN, v> a.

F(n) = 5(w)7 (An+ ) = f(An*n + B) =

= f(Ar’°n)+C (modn) forall nelIN, (n,m)=1.

This and (11) with n — oo, (n, Aw) =1 give f(An?) = f(7%) — C, from which
and (10) we get f(7°) =1 for all § < o

Next we shall prove that f(A) = —1 and C' = 2. As we have shown above,
there is a positive constant K such that |f(An+ B)| < K, |f(An)| < K for all
n € IN. Thus

|f(An+ B) — f(An) — C| < 2K 4+ |C|:=G forall n € IN,
consequently

f(An+ B) = f(A)f(n)+C forall neIN, n>G, (n,A) =1

By using induction on k, the last relation shows that
f(A’“nJrB (AF1y A+ 1)) = FAFF()+C [FAF + .+ f(A) +1]

is valid for all integers k € IN, n > G, (n,A) = 1. Therefore this with
n=mn> G, (t,An) =1 implies that

(c[f(A)k—1+...+f(A)+1] ‘gK for all k € IN.
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Since f(A) is an integer and f(A) # 0, f(A) # 1, the last relation implies
f(A) = —1.Therefore it follows from (10) that C' = 2.

Finally, we prove that m = 2.

Assume that 7 > 3. Let B = 7*B’. Then for each integer v > « there is
a positive integer Ny such that (A7~ *Ny + B’, w) = (Ng, ) = 1. Then

(An7=%(rm + No) + B', Ar) =1,
therefore (11) implies
FIATY (mm + No) + B] = f (7*[An"™*(mm + No) + B']) =
= f (%) f (An7=%(mm + No) + B') = f (7).
By (4) and (9), we have
f (%) = f[Ax" (xm + No)l + C = f(a) f[A(wm + No)| + C =
= f(@")f(A)+C (mod mm + No),

which gives
f(@) = f(x")f(A)+C forall v>a.
This relation with v = e shows that f (7*) = C, therefore f(77) = 0 for all

v > a. But f(7%*) = C = 2, which is a contradiction. Thus we have proved
that m = 2.

By applying (12) for the case v = e > «, we have

f=) - C

g =2 ),

0=f(x%) =

which gives (c).
Lemma 1 is proved.

III. The proof of (III) in the particular case

Lemma 2. Assume that the conditions of the theorem are satisfied and
fn) #0 for alln € IN, (n,A) = 1. If there are a prime p|A and a non-
negative integer a such that f(Ap®) = 0, then there are a non-negative integer
a and a real-valued Dirichlet character x4 (mod A) such that

fn) =xa(n)n® forall nelIN, (n,A)=1.



On arithmetical functions satisfying congruence properties 57

Proof. Assume that there are a prime p|A and a non-negative integer a
such that f(Ap®) = 0. Let p® || A.

By (4), we have
f(Ap*n + B) = f(Ap®n)+C =C (mod n) forall ne€IN, (n,p)=1.
Since (A, B) = (p,2) = 1, this relation with Theorem B implies that there are a
non-negative integer o and a real-valued Dirichlet character x 4p (mod Ap®)
such that

(13) f(n) = xape(m)n® forall neIN, (n,A)=1 and f(B)=C#0.

First we consider the case when a = 0. We shall prove that in this case

(14) f(Am+1) = f(Am) +1
and
(15) f(Ap*m) =0

hold for all m € IN.
Let m is a positive integer. Then by (13) we get that

f(Amn+B) = f(Am+B) and f(Amn)+C = f(Am)f(n)+C = f(Am)+C

hold for all n € IN, n=1 (mod Ap®), which with (4) proves that f(Am +
+B) = f(Am) + C for all m € IN. It clear that (14) follows directly from this
relation and (13). Since f(B) = f(Ap®m + B) = f(Ap®m) + C = f(Ap®m) +
+f(B), we have f(Ap®m) =0 and so (15) is proved.

Next we show

(16) f(An) =0 forall n € IN.

To see (16), first we consider the case when b > a. By using (13) and (14)
we have

[£(An) + 1][f(Akn) + 1] = f(An +1)f(Akn + 1) = f[An (Akn + k + 1)} +1,
and so

(17) f [An (Akn +k+1)| = f(An) f(Akn) + f(Akn) + f(An)
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are satisfied for all k£, n € IN. By taking k = —1 (mod p®) in (17), one can
deduce from (15) that

F(AR) f(Akn) + f(Akn) + f(An) = f [An (Akn+k+1)| =0
for all n € IN. Therefore

FIAN) f(AEN) f(n)* + [f(AN) + f(ARN)]f(n) = 0

and so
f(AN)f(AEN)f(n) + f(AN) + f(AkN) =0

holds for all N,n € IN, (n,A) = 1. Hence we have used the fact f(n) # 0
for all n € IN, (n, A) = 1. If f(AN) + f(AkN) # 0, then f(AN)f(AEN) % 0,
consequently f(n) = 1 for all n € IN, (n,A) = 1. Thus (16) follows from
(14). If f(AN)+ f(AEN) =0, then f(AN)f(AkN) = f(AN) + f(AkN) =0,
therefore

f(AN)=0 forall N €IN.

Thus (16) is proved for b > a.

Let now b < a. In order to see (16) it is enough to prove that
f(Ap®=%) = 0. By taking n = p>~ %, (t,A) = 1and k = —1 (mod p®),
we have Ap®|An (Akn + k + 1), therefore by (15) and (17) we get

FAP ) F(Akp®®) f(t) + F(Ap™~°) + f(Akp*~")] =0,

which, as above, implies that either (16) or f(Ap®~?) = 0. The proof of (16) is
finished. Therefore Lemma 2 follows from (4), (16) and Theorem A.

Now we consider the case when o > 0. Let f(n) := F(n)n® for alln € IN.
It is clear that F € M% and F(n) = xap=(n) for all n € IN, (n,A) = 1. We
infer from (4) that F(An + B)B* =C (mod n), therefore

F(Am + B)B® = F(Amn + B)B® =C (mod n)

holds for all n € INyn =1  (mod Ap®). This shows that F(Am + B)B® =
= C = f(B) = F(B)B%, consequently F(Am + B) = F(B) for all m €
IN. Hence we have F(n) = xa(n) for some real-valued Dirichlet character
(mod A).

Lemma 2 is proved.
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IV. The proof of (II)

Lemma 3. Assume that the conditions of the theorem are satisfied,
furthermore

(18) f(n)#0 forall nelIN, (n,A)=1.
and
(19) f(An) #0 for all n € IN.

If there is a positive integer D such that
[f(n)]=1 forall neIN, n=1 (mod D),

then the following assertions hold:
(2) If f(A™) # —1 for a some m € IN, then f(A)+C =1,

f(An) = f(A) for all ne IN

and
f(n)=1 forall neIN, (n,A)=1.

(@) If f(A™) = —1 for allm € IN, then

f(n)=1 forall ne€IN, (n,24)=1,
and

f (20‘+7) =C—f(2% forall v€IN,

where 2¢ || B, a > 0. Furthermore, if a > 0, then C = 2 and f(2°) = 1 for
0 < a.

Proof. First we note that if |f(n)] =1foralln € IN, n=1 (mod D),
then
(20) |f(n)]=1 forall nelIN, (n, D)=1,

Since (A, B) = 1, there is Ny € IN satisfying the following relations
(2ANy+ B, D) =1and (Ng,D) =1. Thenfor allm € IN, m=1 (mod D),
we have (2ANym + B, D) = (2ANy + B, D) = 1, therefore from (4) and (20),
one can infer that

1 = f(2ANym + B)? = | f (2ANym) + C ’ =
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= f(2ANym)* 4+ 2Cf (2ANym) + C? =
= f(2AN,)* +2Cf (2ANym) + C?  (mod m),
consequently
f(2ANgm) =1—C? — f(2ANy)*>  (mod m)

holds for all m € IN, m =1 (mod D). Since C and f (2ANy) are non-zero
integers, we have 1 — C2 — f (2AN;)? # 0. As we have seen in the proof of (8)

in Lemma 1, the above congruence implies that f(2ANym) = f(2ANy) for all
m € IN, m =1 (mod D). On the other hand, this relation also holds for
all Ny satisfying (2ANy + B, D) = (Ny,D) =1 and for allm € IN, m =1
(mod D). Hence we have

f(2Am) = f(2A) forall me IN, m=1 (mod D),
consequently

(21) f(n) = x24p(n) forall (n,2AD)=1

where x24p is a suitable real-valued character (mod AD).
By taking n = 2DLt in (4), where L,t € IN, t=1 (mod 2AD), we get
from (21) that

f(B) = f(B)f(2ADLt + 1) = f(2ABDLt + B) =

= f(2ABDLt)+ C = f(2ABDL)f(t)+ C = f(2ABD) + C (mod ¢t),

consequently
f(2ABDL) = f(B) — C = f(2ABD) for all L € IN.
This with (21) shows that
|f(n)| < K forall nelN,
where K is some constant. Thus from (4) we infer that
(22) f(An+B) = f(An)+C forall nelIN, n>G:=2K+|C|.
First we get easily from (22) that

(23) f(A™n+B)= f(A™n)+C forall nelIN, n>G,
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(24) f((Am)’“n+B((Am)k*1 +...+Am+1)) -

= (F(A™)F 7 F(A™0) + O [(FA™) T+ (A 41

are valid for all integers k,m,n € IN, n > G.
If f(A™) # —1 for some positive integer m. Since |f(n)] < K for all
n € IN, therefore (24) implies

< K

f(A'rn)k—l[(f(Am) — 1)f(Amn) + Cf(Am)] — C’
f(A™) =1

for all k,n € IN, n > G, and so

Cf(A™)
1= f(A™)

holds for all n € IN,n > G. One can easily check from this relation that
f(A™n) = f(A™) also satisfied for all n € IN. Hence f(n) = 1 for all n €
€ IN, (n, A) = 1, which with (22) shows that f(An) =C — f(An+B)=C -1
for all n € IN, n > G, consequently f(An) = f(A) for all n € IN. Thus the
part (i) of Lemma 3 is proved.

f(A™n) =

To complete the proof of Lemma 4, it remains to consider the case when
(25) f(A™)=—1 for all m € IN.

In this case, applying (24) with k£ = 2, we have
(26) f(A2mn L B(A™ + 1)) = —f(A™n)
for all integers m,n € IN, n > G. Let

1 if 2| B am
,u.—{2 it2 | B and R,,:=A"+1 (me€lIN).

Since (A,2) = 1, for each positive integer m there is a positive integer t,, such

that (R, A2t +B) = (R, tm+B) =1, (AR, t) = pand (AR, %) =1.

By considering n = R, (ARt + t,,) and taking into account (26), it follows
from (25) that

f (IURm)

2m _
f(Rm)f[A (ARmt—l—tm)—i—B}— o

f(ARpt + 1)
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for all m,t € IN, t > G. This combined with (22) and (25) implies

f(uRn) B
[f(Rm)f(u) + 1} f(ARt+ty,) =C

for all m,t € IN, t > G. Hence we get from Lemma 19.3 of [1] that

f €M qg, and f(n)=xar, (n) foral n,me IN,(n,AR,) = 1.
Since (Ry, Re) = (A+1,A? + 1) = 2, the above relation gives
(27) feM s and f(n) =x24(n) for all n € IN,(n,24) =1.

Let 2% || B. Applying (22) and (27) with n = 2°T7m, v > 1, we have

f(2°T"Am) = f {20‘ <27Am + i)} —C = f2f (fi) - C

for all m € IN. This shows that
f(n)=1 forall nelIN, (n,24)=1

and
f (2a+7) =C—f(2%) forall v € IN.

Finally, we consider the case when « > 0. In this case we have (A+ B, 2) =
=1l,andso 1= f(A+B) = f(A)+C = -1+ C, which gives C =2. If § < «,
then f(2°) = f(A2° + B) = f(A2°) + C = —f(2°) + 2, consequently f(2°) = 1.
Thus the part (ii) of Lemma 3 is proved.

The proof of Lemma 3 is completed.

V. The proof of (IIT). Lemmas

Lemma 4. Assume that the conditions of the theorem are satisfied and
there are a prime m, infinitely many positive integers oy < ag < ... and (1 <
B2 < ... such that

| f(m) (i=1,2,...).

Then
f(B)=C and fe M*ar.
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Proof. We assume that a prime = and the sequences {o}7 1, {Be}72,
of positive integers satisfy 7% || f(7®) (i=1,2,...).

Let 7@ || A, 7% || Band A = n®A’, B = nB’. Since oy < ay < ..., we
can assume that a; — 3; > o+ 0 for all i > ig.

Let n, m € IN, (nm, Aw) = 1. It is easy to check from the Chinese
Remainder Theorem that for all positive integers ¢ > j with a; > a4 3, there
are x, y, u and v such that

ne=Ar*"* Py 41, (z, nmB) =1, (y, ) =1,

and
mu = Avr "+ B, (u, nmz)=1, (v, 7)=1.

Therefore, by (4), we get
fnB)f(x) = f(nzB) = f(ABr*~*"Py) + C =

= f(A'B'y) f(7%) + C = C mod 7%,
f(m)f(u) = f(mu) = f(Avr® =) + C = f(A0)f(r%)+C=C (mod %),

and

flnm) f(z)f(u) = f(nmau) =
=f [Awaj—a (Aﬂai—a—ﬂyv + Bﬂ_m—aj—ﬂy + 11)} +C=C (mod wﬂj)’

consequently

f(nB)f(m) = Cf(nm) (mod 7).

This shows that
f(nB)f(m) = Cf(nm)

holds for all n, m € IN, (nm, Ar) = 1. Thus f(B) = C and
f(nm) = f(n)f(m) forall n, me€IN, (nm,Ar)=1.

Lemma 4 is proved.

Lemma 5. Assume that a multiplicative function f satisfies the condition
f(n) #0 for alln € IN and H is a positive integer. If the relations

(28) FOH(k+ 1) f(Hk(k +1)) = f(H(k +1)*) f(HF)
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and
(29) F(H(k+1)) + f(HE(k+1)) = f(H(k+1)%),
hold for all k € IN, then

(30) f(Hn) =nf(H) holds for all n € IN.

Proof. Tt is obvious that (30) holds for n = 1. From (28) and (29) we
have

Bl fHE+D))fF(HE(E+1) = [f(H(E+1) + f(HE(E+1)] f(HE),

which with k£ = 1 proves (30) for n = 2.
Assume that (30) is true for all n < N, where N > 3. Since f € M and
(N —1,N) =1, one can check from our assumption that

f(H(N = 1))f(HN)
f(H)

f(H(N -1)N) = = (H = 1)f(HN).

Applying (31) with k = N — 1, we infer from the last relation that
JHN)(N —1)f(HN) = [f(HN) + (N = 1) f(HN)| (N — 1) f(H).

Hence f(HN) = Nf(H) and so Lemma 5 is proved.

VI. The proof of the Theorem.

Assume that f(n) # 0 and f(Am) # 0 for all n,m € IN, (n,A) =1 and
|f(N)| > 1 for asome N € IN,(N,A) = 1.

For each k € IN, k > 1 let P = P(k) be a positive integer for which
2|ABkP(k) and let H := H(k,P) denote the set of those n € IN which
subjected to the following properties:

(ABEPn+1,k+1) =1,
(32) (2ABkPn+1,k—1) =1,

(n, ABk(K? — 1)P) = 1.
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An application of the Chinese Remainder Theorem and the definition of
P(k) shows that H # 0.
For each n € H, by (4) we have

f(B)f(AB(k +1)Pn+1)f(AB%*k(k + 1)Pn + B) =
= f(AB*(k +1)Pn + B)f(AB?k(k + 1)Pn + B) =
= [f(AB*(k+ 1)P)f(n) + C] [f(AB’k(k + 1)P) f(n) + C] =
= f(AB*(k +1)P)f(AB?k(k +1)P) f(n)*+
+Cf(AB?*k(k +1)P)f(n) + Cf(AB*(k + 1)P)f(n) + C*> (mod n),

and
f(B)f(AB(k +1)Pn+1)f(AB?k(k +1)Pn + B) =

= 1(B)f (AB2(k + 1)* Pr(ABKPn + 1) + B) =

= f(AB*(k+1)2P)f(AB?kP) f(n)*+C f(AB*(k+1)?P) f(n)+Cf(B) (mod n).
These imply

(33) Xf(n)?>+Yf(n)=C?*—-Cf(B) (modn) forall necH,
where
X = X(k, P) = f(AB*(k+1)P) f(AB?k(k+1)P)— f(AB*(k+1)*P) f (AB*kP)
and
Y =Y (k,P) = Cf(AB%k(k + 1)P) + Cf(AB*(k +1)P) — Cf(AB*(k+1)?P).
Let D = D(k, P) = AB*k(k* — 1)P. 1t is clear that

nmeH forall neH forall m=1 (mod D).
Thus, by the above relation we get

X f(n)*f(m)* +Y f(n)f(m) = C* = Cf(B) (mod n),
consequently
(34)  [f(m)* = f(m)]Y f(n) = (C* = Cf(B))[f(m)* = 1] (mod n)

foralln € H and for allm=1 (mod D), (n, m) = 1.
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If f(m)>~1=0forallm=1 (mod D), then we get a contradiction by
using Lemma 3 and the fact |f(N)| > 1. Therefore there is an m € IN such
that m =1 (mod D), and [f(m)? —1][f(m)? — f(m)] # 0. If C # f(B), then
Y # 0 and there are infinitely many n € H such that (n,m) = 1. It follows
from (34) that

(C? = C(B))f(m)* = 1]f(m) = [f(m)* = fFm)]Y f(n)f(m) =

= (€~ CH(B))[f(m)* ~ 1] (mod n),

which shows that f(m) = 1, which is impossible.
Assume now that C = f(B). Then we get from (34) that

(35) [f(m)? — f(m)]Y f(n) =0 (mod n) forall n€H.

If Y # 0, then we infer from (35) that there are primes m1,m € H, m # ma
and

[f(m)? = Fm)Y f(xf Py =0 (mod 77 for all ¢ € IN

(2

hold for ¢ = 1,2. Hence, Lemma 4 implies that f € M?.

Repeating the argument used above, using the fact f € MY, one can
deduce that

[f(m)® = f(m)]Y f(n) =0 (mod n) forall necIN, (n,A)=1.

Since [f(m)? — f(m)]Y # 0, this congruence shows that f(n) = 0 (mod n)
for all n € IN, (n, A) = 1. The proof of (IIT) follows from (4) and Theorem B.
Finally, assume that C = f(B) and Y = 0. Then we get from (33) that
Xf(n)>2=0 (mod n) for all n € H. Similarly as above, the proof of Theorem
is finished for the case when X # 0. Now let X =Y = 0. Then Lemma 5
shows that
f(2AB?*n) = nf(2AB?) for all n € IN.

This combined with Lemma 4 implies f € M, consequently f(An) =
=nf(A) for all n € IN and f(n) =n for n € IN, (n,A) = 1.
Theorem is proved.
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