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BETA DISTRIBUTION
IN THE POLYNOMIAL SEMIGROUP

G. Bareikis (Vilnius, Lithuania)

This paper is dedicated to Professor K.-H. Indlekofer

Abstract. We consider the asymptotical behaviour of arithmetic processes
defined in the polynomial semigroup.

Introduction

The sets of natural, integer, real and complex numbers we denote by
N, Z,R,C, respectively. The cardinality of a finite set A is denoted by |A|.

Functional limit distributions related to arithmetical functions, which are
defined in terms of the natural divisor functions were considered in [3] and [6].

The following sequence of the arithmetical processes was investigated in
[3]. Let 7(m,v) be the number of natural divisors of m € N which do not

exceed v, v > 1, and 7(m) = 7(m, m). In the mentioned paper was obtained
that

1« 2
= Z r(m,n') = Zarcsinv/t + o(1)
n T

uniformly in ¢ € [0,1], as n — oco. This result can be found in [7, p. 207], too.
Let f(d) be a nonnegative multiplicative function satisfying the conditions:
f(p) =€ >0and f(p¥) > 0, here p being the prime number. Put

F(m’v) = Z f(d), F(m?m) = F(m),

d|m,d<v
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here m,d € N. Furthermore, for ¢t € [0,1], m,n € N define

F(m,nt)

X, = X,(m,t) = Fm)

€ DJ0, 1],

here D[0,1] is the space of real-valued functions on [0,1] which are right-
continuos and have left-hand limits. In this space the Skorokhod topology
is introduced, D is the Borel g-algebra.

In [6] the following assertion was proved.

The sequence {X,} converges weakly to a limit process defined on D, as
n — 0o.

Functional limit distributions related to multiplicative functions, which
are defined in the polynomial semigroup and more general semigroups, were
studied in [1] and [2]. In the present paper we consider special form of the
arithmetical processes to obtain the Beta distribution as a limit.

Let GF[q,x] be the ring of polynomials over a finite field with ¢ elements,
q being a prime power. Let M be the multiplicative semigroup consisting of
primary polynomials m € GF[g,x] and let P C M be the set of all primary
irreducible polynomials. Each polynomial d, k,l,m,... € M uniquely factors
in P. It is well known that

[{m € M,0(m) = n}| = q".

In what follows ¢;,7 € N being absolute constants. By D we denote some
expressions, which depend upon various parameters. The absolute value of D
is bounded by an absolute constant.

Suppose that f : M — R be some multiplicative function satysfying the
condition
fp)=k>0, f(p*) =0, a=2,peP.

Write
T(m,tn)= > f(d), t€[0,1], neN, meM

d|m,8(m)=n,
a(d)<tn

and

T(m)=>_ f(d), meM.
d|m

Introduce the sequence of the functions

T(m,nt)

Sp(m,t) = m7

tel0,1], neN, me M.



Beta distribution in the polynomial semigroup 37

Let us consider the asymptotical behaviour of the sequence

-1
Gn(t) = an 37 Sallt), telo1], neN.
T e
a(l)<n

Auxilliary lemmas

Lemma 1 Let g : M — C be some multiplicative function satisfying the
condition: there exists constant £ € C such that

Y& D> (9p) =€) = p(n),

k<n o=k,
pEP

where p(u) = c1¢*r(u) and r(u) is decreasing function for which

o0

/ Lu)du < 0.
u
Then
= Z m) =nt" 1H( >—|—Dm1n{1nn {1 —|Reg|™ 1}}R
meM, q
a(m)=n
where

and D depends upon g and q.
Proof of this lemma can be found in [5].

Lemma 2. Suppose that o € R. Then

qu 1naqn+Dndln

m<n
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where D < 2.
Proof of this lemma can be found in [4, p. 86].

Lemma 3. Suppose that the function u(n), n € N is increasing. Then

Y

Z u(n) = /u(x)dx + Bu(x).

n<y 0
Let the function v(n), n € N' be monotonically decreasing. Then
y
Z v(n) = /v(x)dx + A+ Bou(z),
n<y 1

where A is some absolute constant.
Proof of this lemma can be found in [7, p.4].

Results

Set
1 k

E+1’ a:k+1'

Theorem. Uniformly for t € [0,1] and > 2, x € N we have

o qg-1 Inx 1
G (t) = Py > Su(m,t) = B(a Bt)—i—D{x +xﬁ},
80m) <
where
B(a, 8,1) /u w)’rdu, te[0,1].
0

Here D depends upon function f.

Corollary. Suppose, that the multiplicative function f : M — R is
defined by f(m) =1, m € M. Then uniformly for z > 2, x € N, t € [0,1] we
have

q—1 D lnx
Sz (m,t) farcsm\[—i—

a(my<n
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Set

and

M) | k()

hk(d,fb) = T l‘ﬁ

,:L‘EN7

where w(d) equals the total number of different irreducible polynomials dividing

de M.
Lemma 4. Uniformly inn € N, d(d) > 0 we have

1 _ Hi(k)
- Z Tom —(9(d) + D hi(d,n)),
meM,
a(m)=n
where
) B
1 1 1
k) = 5 1| 2 7050 (1_a> :
F(ﬂ) »ep \ =0 T(p])q] (p) q (p)

Moreover, the multiplicative function g(d), d € M,n € N satisfies the equality

LS gm)= A9 D
v n=el(8) n
a(m)=n

Proof of Lemma 4. Introduce the generating series of the function
1/T(md) by

oo

Z 5[‘)(m)

Applying the multiplicity of the function T'(m), m € M we derive

I 1 11 T(pre (™) I 1
T(md) [ T(p) Lrpwemtw@)y LLpgmym)
p||md pld plm
where
v, pm,
Yp(m) =

0, p” fm.
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The last equality enables us to express the function ¢4(s) in the form of a
product of Eulerian type:

-1
’l)[}d(S) - H < T(p’Y'i”Yp(d))qsa(p’y)) <’72_0 W)

M A
: H (Z T Sa(p"f)> = d(3)¢1(3)~
peEP \v=0
Set s = o + it and
1-p5%2, k> 1,
o9 —
1-a2, k<1

Then uniformly for p € P we have

= 1

v=0

Further, the function g4(s), for each fixed d € M is a finite product of
ratios of series, each of which absolutely converges for ¢ > 0. Thus the function
ga(s) is analytic for o > 0. In what follows we assume that o > oy.

Set
p’ ZT oz s@(p)

We have that for o > oy

(2) ga(o) < hp(d),  ga(1) < hy(d).

Thus we can define the multiplicative function g(d) := gq(1).
Introduce the Dirichlet series of the functions defined in (1). We write

Ik TR O D
n=0 q n=0 q n=0 q

It therefore follows from the last equalities that

n—1
(3) ai(n) = 202(”—j)03(j)+a3(n)~
=0
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Lemma 1 implies that

(4) az(n)= 7T (8) 1;[ z(p, 1) <1 - qa(P)> + =: —H (k) + paA

‘We have

. — D.
(1—3) —1+—L D<1, 0<j<n-—1.
n n—7j

Using Lemma 1 and combining the above equality with the equalities (4) and
(3), we then obtain

" Hi(k) = as(h) NS
1()_ ne jzz:oqj(l_%)a_‘_ TLZ:: 1_,

— 7‘1“5(11(]“) { g(d)+D ( Z ai](jtj) + a3(:2na+
BN ASEONER () a5

Using the inequality (2) we arrive at the relation

anl (k)

ai(n) = o

(g(d) + D - hy(d, n))

This implies the stated formula. Lemma 4 is proved.
Proof of Theorem. Initialy let us prove the following

Lemma 5. For each 0 <t < 0.5 and z € N we have

t
1 1 Inx

G.(t) = W/ua(l —u)Pdu+D (ﬂ? + xa) .
0

Proof of Lemma 5. We have

-1
_qw+1z Z T(m,n) Z fd) =

n=0 meM, d|m,8(m)=n,
a(m)=n a(d)<nt
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(5) _q;fz > ””"t R(t,z) = S(t,7) — R(t,).
n=0 6721"61?/1

First let us consider the remainder term of the last equality. Therefore

T(m,nt
R(x,1) <fz v L m’ng ) _

n=0 mEM
d(m)=

X
q n=0 mem,
a(m)=n -

1 1
SIpIIC Z Tlhd,n)’

a(d)<uxt 3(k)§3(d)(1;t)

It follows from Lemmas 4 and 2 that

c1Hi (k) o
qx

e gD pat1 PO
a(d) 0 1

o(d)<zxt

(6) R(t,xz) <

Set
> f(d)g(d)
o(d)<u
> @), Wi(w) = Y f(d)hi(d).
a(d)<u o(d)<u

We deduce from Lemma 1 that
®(u) = Dg"/(1+u)’, ®1(u) = Dg"/(1+u)’, ®o(u) = Dg"/(1+u)*"".

By means of Lemmas 1, 2 and equalities above we deduce that

.'L'(l—t)H (k‘) xt 1

C2 (q 1\rF)q

< 2|\ """ HI| -

Rt =) < q° ( z®(1 + xt)? (fffg)) "

e 2 S )+ g 2 J@R@) < 2

d)<zt a(d)<zxt
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Hence we get from (5) that

) G = S(ta)+ 2

x®’

Consider now the main term of the equality (7). We have

q 1 T(m
Sta) =2 ) Z D Ty 2 14
q 1 q meM T = meM d|m,
a(m)= a(m) a(d)<tx
_i Z z—9(d) Z
@ a(d)<tz =0 a(k)=j kd T(kd,n)’
Taking account of Lemmas 4 and 2 we obtain
z—9(d)
q 1 ¢’ Hi (k)
—S(t,x) = — d : + Dhy(d
4 S() qwa(@;xﬂ) )3 T (9 + Dhid )
z—d(d) z—0(d)
Hy(k Hy(k J
R S ) Y e p™E S famia) Y L
q a(d)<tx = 7 T @ j=1
z—09(d) qj
Z f ho Z 14 =
a(d)<wxt = 7
q Hi(k) 3 f(d)g(d)
= — —— 4 Ry(t,x) =
— _ o(d ’
—1T(0) 2= (o 0(d)e®
H
() _ g Hi(k)

= ﬁ F(ﬂ) Sl(t,.’L‘)+R1<t,CL‘).

Estimate the remainder term of (8). We therefore obtain that

Ri(t,x) < cs / Uy (w)d((z—u)"'q7") + Uy (u)(z —u) g )+
0
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ter [ Wo(wd((@ - u) 100 + Wo(w)e - u) o) < 2
0

Thus the inequality (9) and relation (8) yield

(10) S(tz) = ?l((ﬁk)) Sy (t,2) + x%.

Now let us consider the main term of (10). We have

xt

d)) _ —«
d)<t 7" 7
T 0
By partial integration, it follows that
SI (ta Z‘) =
o xt o1 xt o
— @3_73)@(”) at _ a/@(u)m_uigdu + /@(u)% In gdu =:
q q q

0 0

=: Ro1 + Ros + S5.

Noting that ®(u) = Dg"/(1 + u)? we obtain that R + Rag < co/2%.
This implies that

D
(11) Si(t,w) =Sy + —.

Putting the equality (11) in to (10), we deduce

Hy(k) D
t = —.
S = ) 2 s
Furthermore
xt —a
5’2:/ ()( ) lnqdu—lnq/z %du:
4 0 1<ua(d)=l q

xt

( vfg) ql _
=Ing—21-"— —(z—u) ¢ “du+ Dlng Z )" %q "du
o 0/ /

ZL'*’LL
[+1
I<u 0 I<u
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(12) - ;?OZI)H C} fg) So + Ry.

Estimate the remainder term of the equality (12). It is clear that

xa

xt
l
q clllnx
13 Rs < 1 E du < .
(13) = nq/K I+ 1)(z — u)g® “=

Considering the relation S, we make use of the formula of partial
integration. Thus

xt

1 —1)¢! o gyt du
S22lnqz(lﬁ)q (x —u)"%q ’l a/< =

xr — u)(x-‘rlqu
l

It is clear, that

1<zt

xt
1
o q du C13
Ry =ciz Z 175/ (z — u)otlqu = '
l

Substituting the last estimate into (14) we obtain

1 D
(15) Sog = — 83 + —.
Ingq e

The main term of (15) can be written as
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It is not difficult to see that the function

u P (z — )Pt

is monotone in the intervals [ 0, T ) and L, 1]).
k+1 k+1

In view of the Lemma 3 we can thus write

xt

g _/ du D / D
8 uP(z — u) uﬁlfu e

0

Substituting the last equality into (15) and combining (15), (13), (12), (11)
and (10) we deduce from (7) that

7H1(t)H(%,fg) / du 1 Inx
0= ) / a2 ()

The last equality and the relation

1
H, (k) H (q,fg) _
— f(p™)g(p®) 1
:H<Z @@J(”? 20 ><1‘q@<p>):

H( +Z a(p )1))(1(1;@)1

peEP a=1 q
complete the proof of Lemma 5. Lemma 5 is proved.

In order to complete the proof of Theorem, it remains to show that the
equality of Lemma 5 is valid for ¢ € [0.5,1]. We have

Go(1) = qz_+11 Z T(ni,n) Z fld)=1- ia:

q meM, ,
a(m)<n a(m)<n

Thus for each 0.5 < t < 1 we can write
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1 1 du 1 du
- T(e)0(B) 0/ uP=1(1 = u)*=1 "~ T(a)T(B) O/ w1 (1 =)ot

The desired assertion then follows from the last equality and Lemma 5.
Theorem is proved.

The Corollary is a direct conclusion of Theorem. It is sufficient to choose

fd)=1,de M.
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