
Annales Univ. Sci. Budapest., Sect. Comp. 22 (2004) 23-33

ANALYZING
MARKOV–MODULATED FINITE SOURCE

QUEUEING SYSTEMS

B. Almási (Debrecen, Hungary)
G. Bolch (Erlangen, Germany)
J. Sztrik (Debrecen, Hungary)

Dedicated to Professor Karl-Heinz Indlekofer
on his 60th birthday

Abstract. This paper deals with a First-Come-First-Served (FCFS)

queueing model to analyze the steady-state behaviour of heterogeneous

finite-source queueing system with a single server. The request sources

and the server are supposed to operate in random environments, thus

allowing the arrival and sevice processes to be Markov-modulated ones.

Each request of the sources is characterized by its own exponentially

distributed source and service time with parameter depending on the state

of the corresponding environment, that is the request generation and service

rates are subject to random fluctuations. Our aim is to get the usual

stationary performance measures of the system, such as utilizations, mean

queue lengths, average response times.

In this paper we describe the mathematical model and introduce a

software tool to produce analytical computational results for the investi-

gated model. The MARKMOD software package was built on MOSEL and

SPNP (see [6], [9]) and gives an easy way to use Markov-modulated queue-

ing systems for modeling real life computer and communication systems.

Finally, we show some numerical examples to illustrate the efficiency of the

software tool.

Research is partially supported by German-Hungarian Bilateral Intergov-
ernmental Scientific Cooperation, OMFB-DLR No. 21-2000, György Békési
Scholarship BÖ 053/2001, and Hungarian Scientific Research Found OTKA
TO-34280/2000 and FKFP grant 0191/2001.



24 B. Almási, G. Bolch and J. Sztrik

1. Introduction

Performance modeling of recent computer and communication system
development has become more complicated as the size and complexity of the
system has increased, (see [5], [8]). Finite source queueing models are efficiently
used for performance evaluation of computer systems (see [1], [5] and [10]).
Realistic consideration of certain stochastic systems, however, often requires
the introduction of a random environment, sometimes referred as to Markov-
modulation, where system parameters are subjected to randomly occuring
fluctuations or bursts. This situation may be attributed to certain changes in
the physical environment such as personal changes and work load alterations.
Gaver et al. [7] proposed an efficient computational approach for the analysis
of a generalized structure involving finite state space birth-and-death processes
in a Markovian environment.

This paper deals with a First-Come-First-Served (FCFS) queueing model
to analyze the behaviour of heterogeneous finite-soruce system with a single
server. The request sources and the server are supposed to operate in inde-
pendent random environments, respectively, allowing the arrival and service
processes to be Markov-modulated ones. Each request of the sources is
characterized by its own exponentially distributed generation and service time
with parameter depending on the state of the corresponding environment, that
is the request generation and service rates are subject to random fluctuations.
Our aim is to get the usual stationary performance measures of the system,
such as utilizations, mean queue lengths, average repsonse times. The main
problem is that the state space of the underlying continuous-time Markov-
chain will be very large, so we have the state space explosion problem. In this
paper we describe the queueing model of finite source heterogeneous Markov-
modulated systems, and introduce a software tool which can be used efficiently
to produce analytical computational results for the investigated model. The
MARKMOD (MARKov-MODulated queueing models) software package was
built on MOSEL (MOdeling Specification and Evaluation Language) and SPNP
(Stochastic Petri Net Program), and it gives an appropriate tool for modeling
real life computer and communication systems with Markov-modulated queue-
ing systems.



Analyzing Markov-modulated finite source queueing systems 25

2. The queueing model

Consider a finite-source queueing system wtih N heterogeneous sources
(requests) and a single server. The sources and the server operation is
influenced by random environments. The server and the requests are collected
into M groups (1 ≤ M ≤ N + 1). The members of a group may operate in a
common random environment. The environmental changes are reflected in the
values of the access and service rates that prevail at any point of time. The
main objective is to adapt these parameters to respond to random changes
effectively and thus maintain derived level of system performance.

The members of group p are assumed to operate in a random environment
governed by an ergodic Markov chain (ξp(t), t ≥ 0) with state space (1, . . . , rp)
and with transition density matrix


a

(p)
ipjp

, ip, jp = 1, . . . , rp, a
(p)
ipip

=
∑

k 6=ip

a
(p)
ipk


 .

Whenever the environmental process ξp(t) is in state ip the probability that
source c (a member of group p) generates a request in the time interval (t, t+h)
is λc(ip)h + o(h), p = 1, . . . , M . Each request is transmitted to a server where
the service immediately starts if it is idle, otherwise a queueing line is formed.
The service discipline is First-Come-First-Served (FCFS). Assuming, that the
server belongs to group 1 and the environmental process ξ1(t) is in state i1 the
probability that the service of the request originating from source c is completed
in time interval (t, t + h) is µc(i1)h + o(h).

If a given source has sent a request it stays idle and it can not generate
another one. After having serviced each request immediately returns to its
source and the whole procedure starts again. All random variables involved
here and the random environments are supposed to be independent of each
other.

The system state at time t can be described by the process

X(t) = (ξ1(t), . . . , ξM (t); Z(t)),

where ξj(t) denotes the states of the background processes (j = 1, . . . , M), and
Z(t) contains the indices of the job sources staying at the server (in the order
of their generation), or Z(t) = 0, if the server is idle.



26 B. Almási, G. Bolch and J. Sztrik

The steady state probabilities can be denoted by

P (b1, . . . , bM ; j1, . . . jl) =

= lim
t→∞

P (ξ1(t) = b1, . . . , ξM (t) = bM ; Z(t) = (j1, . . . , jl)),

l = 0, . . . , N ; ji ∈ {1, . . . , N}, i = 1, . . . , l; bs = 1, . . . , rs, s = 1, . . . , M .

The next sections will discuss the MOSEL and the MARKMOD software
tools which can be used efficiently to formulate the problem and to calculate the
steady state probabilities. Once we have these probabilities the main system
performance measures can be derived as follows.

Let us define

P (j1, . . . , jl) =
r1∑

i1=1

. . .

rM∑

iM=1

P (bi1 , . . . , biM
; j1, . . . , jl),

that is P (j1, . . . , jl) denotes the probability, that the requests from sources
j1, . . . , jl are at the service station.

(i) Average length of the server’s queue

nj =
N∑

l=1

∑

j1,...,jl∈V l
N

lP (j1, . . . , ll),

where V l
N denotes the set of all (j1, . . . , jl) indices (as defined above).

(ii) Utilization of the server

Us =
N∑

l=1

∑

j1,...,jl∈V l
N

P (j1, . . . , jl).

(iii) Utilization of the source i

Ui =
N∑

l=1

∑

j1,...,jl∈V l
N

P (j1, . . . , jl)
l∏

k=1

(1− δ(i, jk)),

where δ(a, b) = 1, if a = b, and 0 otherwise.



Analyzing Markov-modulated finite source queueing systems 27

(iv) Probability of staying at the service facility (for the source i)

Qi =
N∑

l=1

∑

j1,...,jl∈V l
N

l∑

k=1

δ(i, jk)P (j1, . . . , jl).

(v) Throughput at the source i (assuming, that the parameters of the
source i are modulated by the background process b)

γi =
r1∑

i1=1

. . .

rb∑

ib=1

. . .

rM∑

iM=1

N∑

l=1

∑

j1,...,jl∈V l
N

λi(ib)P (bi1 , . . . , biM ; j1, . . . , jl)
l∏

k=1

(1− δ(i, jk)).

(vi) Average response time (for the source i)

Ti =
Qi

γi
.

Similar models were studied earlier by different authors (see [7], [11], [12]),
but usually simulation tools were used to calculate numerical results. In the
followings we shortly introduce a software tool for numerical investigations.

3. MOSEL – The language environment of the implementation

This section gives a short description of MOSEL - the most important
basics of our software tool. The language and compiler MOSEL (MOdeling
Specification and Evaluation Language) was developed at the University of
Erlangen. The MOSEL system uses a macro-like language (see [9] and [5])
tuned especially to describe stochastic Petri nets. The stochastic Petri nets
are widely used in the world of stochastic modeling, so MOSEL can become
a popular tool of this area. We give a short overview on the structure of a
MOSEL program, which is useful for studying the MOSEL implementation of
the different models discussed later in this paper.

The MOSEL programs consist of four parts: the declarations, the node
definitions, the transitions rules and the results. The MOSEL source code
begins with the declarations, where we can define the most important types



28 B. Almási, G. Bolch and J. Sztrik

and constants. In the following example we define the number of background
processes to 2, and then we define the number of states of the background
processes to 3:

/*======= Constants for the background processes =====*/
#define NBG 2

#define NBGST1 3

#define NBGST2 3

The second part of a MOSEL program is the node part. In this part we
define the nodes for the system (i.e. the place of tokens in the stochastic Petri
Net terminology). We can use the constants and enum types defined in the
declaration part. We can also give initial values for the nodes (i.e. the number
of tokens), as you can see in the following examples:

/*======= Node Definition - background processes =======*/
<1..NBG> NODE bgp<#1>[NBGST<#1>]=0;

In this example we used a shortcut, which forms a cycle form 1 to NBG.

The transitions of the Petri Net are defined in the transition rule part.
This is the most important part of the MOSEL program, which describes
the system’s behavior using FROM ... TO style rules. These rules give an
easy implementation of the state-space transitions. Detailed description can
be found in [4] for further details. Here is a small example of the rule part:

/*=========== The rule part begins ===========*/
/*Example - changing the state of the first background process.*/
<1..NBGST1> IF bgp1 !=0 FROM bgp1 (<#1>) TOE W bgmat1 <#1> 0;

At the end of the MOSEL program the result part can be found. This
section calculates the output results. The results are specified by equations,
giving the name of the ”output variable” on the left side, and the formula on
the right side. On the right side we can use the word PROB to refer to the
steady-state probability of the given state. The form RESULT>> will print out
the output variable (otherwise it will not appear in the output file).

/*=========== The results part begins ===========*/
RESULT if (bgp1 == 0) p up+=PROB;





30 B. Almási, G. Bolch and J. Sztrik

random variables with parameters α and β. We investigate here how the
server’s repair parameter (β) influences the utilizations and the response times.
The detailed model description can be found in [1] and [2].

To implement this system in MARKMOD we collect the clients and the
server into one group influenced by a background process. The background
process has two states: 0 means that the server is operational, 1 means that
the system is down. If the server is down (i.e. the background process is in state
1) then the request generation and service intensities are very small (0.001),
thus approximating the stop of the work at the server and at the clients.

Input parameters

n = 4 α = 0.25 β = 0.1− 0.5

i 1 2 3 4
λi(0) 0.500 0.400 0.300 0.200
µi(0) 0.900 0.800 0.600 0.500
λi(1) 0.001 0.001 0.001 0.001
µi(1) 0.001 0.001 0.001 0.001

We made experiment series in this case to illustrate how the server’s repair
parameter (i.e. the server repair efficiency) influences the utilizations and
response times (see Figure 2). It can be seen, that the utilizations are linearly
increasing (for the server and for the clienst, too), and the response times are
roughly exponentially decreasing with the server’s repair parameter. It can also
be seen, that the server’s utilization is the most sensible one to the parameter
variation.

Also the correct impelentation of the model can be verified by this example,
because the performance measures are the same as it was in case 3 of [1]. It
is also an interesting result, that the response time decreases exponentially
with the server’s repair parameter, but it increases linearly with the server’s
breakdown parameter (see [3]).

The running time of the experiment series (9 experiments!) was less than
1 minute, which confirms, that the software tool is really appropriate for such
problems.

6. Conclusion

In this paper a Markov-modulated finite source non-homogeneous queueing





32 B. Almási, G. Bolch and J. Sztrik

References

[1] Almási B., A queueing model for a non-homogeneous terminal system
subject to breakdowns, Computers and Mathematics with Applications,
25 (4) (1993), 105-111.

[2] Almási B., Response time for the finite heterogeneous nonreliable queue-
ing systems, Computers and Mathematics with Applications, 31 (11)
(1996), 55-59.

[3] Almási B., Bolch G. and Sztrik J., Performability modeling a client-
server communication system with randomly changing parameters using
MOSEL, Proceedings of PMCCS 5, University Erlangen-Nürnberg, Erlan-
gen, 2001, 37-41.

[4] Bolch G. and Herold H., MOSEL MOdeling Specification and Evalua-
tion Language, Technical Report, University Erlangen-Nürnberg, 1999.

[5] Begain K., Bolch G. and Herold H., Practical performance modeling,
Kluwer, 2001.

[6] Ciardo G. and Muppala J.K., Manual for the SPNP package, Version
3.1, Duke University, Durham, NC, USA, 1991.

[7] Gaver D.P., Jacobs P.A. and Latouche G., Finite birth-and-death
models in randomly changing environments, Advances in Applied Proba-
bility, 16 (1984), 715-731.

[8] Haverkort B., Performance of computer communication systems, John
Wiley & Sons, 1998.

[9] Herold H., MOSEL A universal language of modeling computer, commu-
nication and manufacturing systems, Phd dissertation, University Erlan-
gen, 2000.

[10] Kameda H., A finite-source queue with different customers, J. ACM, 29
(1982), 478-491.

[11] Sztrik J. and Kouvatsos D.D., Asymptotic analysis of a heterogeneous
multiprocessor system in a randomly changing environment, IEEE Trans-
actions on Software Engineering, 17 (1991), 1069-1075.

[12] Sztrik J. and Moeller O., A tool for simulation of Markov-modulated
finite-source queueing systems, Proc. of Messung Modellirung und Ber-
wertung (MMB99), Trier, Germany, 1999, 109-114.

[13] Trivedi K.S. and Ciardo G., A decomposition approach for stochastic
reward net models, Duke University, Durham, NC, USA, 1991.



Analyzing Markov-modulated finite source queueing systems 33

B. Almási
Institute of Informatics
University of Debrecen
H-4010 Debrecen, Pf. 12
Hungary
almasi@math.klte.hu

G. Bolch
Dept. of Computer Scince IV
University of Erlangen-Nürnberg
Martenstr. 1
D-91058 Erlangen, Germany
bolch@informatik.uni-erlangen.hu

J. Sztrik
Institute of Informatics
University of Debrecen
H-4010 Debrecen, Pf. 12
Hungary
jsztrik@math.klte.hu






