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PERTURBED SCHUR DECOMPOSITION
APPLIED FOR

NORMAL HESSENBERG MATRICES

L. László (Budapest, Hungary)

Abstract. The scaled departure from normality, defined for triangular

matrices, is a useful quantity for giving an upper bound for the best normal

approximation. Here its definition will be extended to arbitrary matrices

with the help of a perturbation analysis. This enables us to investigate the

equality case in a recently verified upper bound.

1. Introduction

The Schur decomposition of a matrix is not unique, for instance the
following upper triangular matrices given in Horn-Johnson [4]




1 1 4
0 2 2
0 0 3


 ,




2 −1 3
√

2
0 1

√
2

0 0 3




are unitarily equivalent. Nevertheless, the departure from normality

dep(A) =
(
‖A‖2F −

n∑

i=1

|λi|2
)1/2

defined by Henrici for an arbitrary n-th order matrix A with eigenvalues (λi)n
1

is invariant under unitary similarity. (For our 3 × 3 matrices this quantity is√
21 – note that for upper triangular A, dep2(A) simplifies to

∑
i<j

|ai,j |2.)
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However, there is another quantity, the scaled departure from normality,
defined originally only for upper triangular matrices as

sdep(A) =


∑

i<j

j − i

j − i + 1
|ai,j |2




1/2

,

which is not unitarily invariant. It occurs in the recently proved bound

(1) νF (A) ≤ sdep(A),

where
νF (A) = inf{‖A− Z‖F : Z is normal}

is the distance of A from the normal matrices in Frobenius norm. (The squared
scaled departures of the example are 13 1

6 and 13 1
2 , resp.)

As regards the history of inequality (1), it was conjectured by the author
[7] and became true when Friedland [3] proved the normal completion theorem
guessed by Elsner [2]. The case n = 3 has been previously settled by Ikramov
[5].

Our aim is to discuss the case of equality in (1). To this we need to
define the matrix function sdep for a non-triangular matrix that is close to
a triangular one. We derive the necessary formulae in Section 2 and give an
illustrative example for the 2× 2 case. In Section 3 then we apply the results
for the problem of the best normal approximation.

2. Perturbation of the Schur decomposition

Let A be a complex upper triangular matrix and P be a matrix of the
same size. Let us find the Schur form of the perturbation A → A+εP, where ε
is small! Recall that the Schur decomposition theorem yields the factorisation
A = UTU∗ with U unitary and T upper triangular for any square matrix A.
Hence we take the formula A+εP = U(ε)T (ε)U(ε)∗, where U(ε) is unitary and
T (ε) is upper triangular for any ε, and write it into the form (A + εP )U(ε) =
= T (ε)U(ε) to get rid of the conjugate transpose. Our method is similar to that
used e.g. in Wilkinson [10] for the Jordan decomposition except that here the
unitarity can be utilized, as well. Expanding both U(ε) and T (ε) into Taylor
series gives

(A+ εP )(I + εU1 + ε2U2 + . . .) = (I + εU1 + ε2U2 + . . .)(A+ εA1 + ε2A2 + . . .),
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where {Ai, i = 1, 2, . . .} are upper triangular. Equating the coefficients of the
corresponding powers one obtains

A1 = AU1 − U1A + P, A2 = AU2 − U2A + PU1 − U1A1, . . .

Similarly, we can make use of the unitary property of U(ε), writing

(I + εU1 + ε2U2 + . . .)∗(I + εU1 + ε2U2 + . . .) = I

and also equating the corresponding coefficients. As a result we get the
following

Theorem 1. Let A and P be complex square matrices with A upper
triangular. Let the eigenvalues (the main diagonal elements) of A be distinct.
The locally unique Schur decomposition of A + εP is

A + εP = U(ε)T (ε)U(ε)∗

with convergent power series

T (ε) =
∞∑

i=0

εiAi and U(ε) =
∞∑

i=0

εiUi,

where U0 = I, A0 = A, all the {Ai} are upper triangular, and the matrices Ak

and Uk can be calculated from

Ak = AUk − UkA + Bk, Uk + U∗
k + Ck = 0

by help of matrices

Bk = PUk−1 −
k−1∑

j=1

UjAk−j and Ck =
k−1∑

j=1

U∗
j Uk−j , k = 1, 2, . . .

Proof. Calculating and equating the coefficients at equal powers of ε is
straightforward, for, the matrix Uk on the k-th step can be always determined
to give an upper triangular Ak, due to the assumption on the main diagonal
elements. As for convergence we refer to Chapter 2 of [10]. Matrices Bk and
Ck were introduced only for convenience.

Example 1. The case of 2× 2 matrices. Let

A =
(

1 0
0 0

)
, P =

(
0 1
−1 0

)
.
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For real ε the matrix A + εP is examined. (Note that this family is quite
general if we allow transformations like adding a scalar multiple of the identity
and multiplying by a scalar.) The matrix series converges for |ε| < 1

2 , and can
be summed up to give

(
1 ε
−ε 0

)
= A + εP −→ T (ε) =

(
1+s
2 2ε
0 1−s

2

)
,

where s =
√

1− 4ε2. To this, calculate the A′i-s and take into account the
expansion

√
1− 4ε2 = 1− 2ε2 − 2ε4 − 4ε6 − 10ε8 − 28ε10 − 84ε12 − . . .

that is convergent for |ε| < 1
2 . (For completeness notice that a Schur form for

|ε| ≥ 1
2 also exists, and differs from the above T (ε) only in the (1, 2) position:

2ε is to be replaced by 2ε/(1 + s). Of course, this can no more be obtained by
the perturbation method above; an independent consideration is needed.)

The situation is similar for P complex. In that case we need another
parameter, say h – a complex number with module one –, and define

P =
(

0 h
−h 0

)
.

For real ε with |ε| < 1
2 we have the correspondence

(
1 εh
−εh 0

)
= A + εP −→ T (ε) =

( 1+s
2 2εh

0 1−s
2

)
,

where s =
√

1− 4ε2. (The case of |ε| ≥ 1
2 is similar as before.)

3. Application to normal Hessenberg matrices

The following lemma will be useful for the subsequent considerations.

Lemma. Let Z be a normal upper Hessenberg matrix of order n, and
choose H = diag(1, . . . n). Then the matrix A = Z + ZH − HZ is upper
triangular and

‖A− Z‖F = sdep(A).
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Proof. The elements of A are calculated to be ai,j = (j−i+1)zi,j showing
that A is upper triangular. With these formulae both sides of the equality can
be rewritten in terms of the zi,j-s:

sdep2(A) =
∑

i<j

j − i

j − i + 1
|ai,j |2 =

∑

i<j

(j − i)(j − i + 1)|zi,j |2,

‖A− Z‖2F =
∑

i<j

(j − i)2|zi,j |2 +
n∑

i=1

|zi+1,i|2.

Hence the equality to be proved is equivalent to

n∑

i=1

|zi+1,i|2 =
∑

i<j

(j − i)|zi,j |2,

which is a consequence of László [6], Lemma 1 in case of Hessenberg matrices.

Example 2. The pair

Z =




1− i 1 + i −2 + 2i
1 + 3i 0 1 + 2i

0 −3 + 2i 2i


 , A =




1− i 2 + 2i −6 + 6i
0 0 2 + 4i
0 0 2i




where Z is normal upper Hessenberg, A is triangular, meets the requirements
of the Lemma. We have thus ‖A− Z‖2F = sdep2(A) = 62.

Example 3. The matrix

Z =




s s2 − 1 2s
s2 + 1 s3 s2 − 1

0 s2 + 1 s




is normal for any real s. Moreover, it is obviously upper Hessenberg, and for
the associated upper triangular matrix A = Z+ZH−HZ we have ‖A−Z‖2F =
= sdep2(A) = 4(s4 + 4s2 + 1).

Remark. Our aim is to find an upper triangular matrix A, for which
equality, i.e. νF (A) = sdep(A) holds in (1). To this we will use the Lemma,
another equality of form ‖A−Z‖F = sdep(A), hence what remains to prove is,
that Z is the closest normal matrix to A in the Frobenius norm, or equivalently,

‖A− Z‖F = νF (A)
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holds for the matrix pair at issue. Recall that the first order necessary condition
for Z to be the closest normal matrix to A is nothing else than the relation
A = Z +ZH−HZ in the Lemma. As regards the second order condition, that
is quite troublesome, cf. Ruhe [9]: ”We have found no way to express this in
terms of small n× n matrices.” Hence we are now interested in the first order
condition, used however for a neighbourhood of matrix A.

To do so, let A and Z be as in the Lemma, and define P = A − Z. Let
T (ε) be convergent for |ε| < ε0. Then by virtue of Theorem 1, for such ε the
quantity sdep(A + εP ), and at the same time, the function

ε → ϕ(ε) =
‖A + εP − Z‖2
sdep2(A + εP )

is well-defined. Let us make a geometric consideration.

Observation. Assume that ‖A + εP − Z‖F = νF (A + εP ), i.e. Z is a
closest normal matrix to A + εP for ε, |ε| ≤ ε1 < ε0. Then Theorem 1 implies
ϕ(ε) ≤ 1 for such ε, while ϕ(0) = 1 also holds by the Lemma. Hence ϕ has
a local maximum at ε = 0, i.e. ϕ is locally concave. It turns out that the
stationarity property is independent of our assumption!

Theorem 2. Let Z be normal upper Hessenberg with distinct diagonal
elements. By help of the upper triangular matrix A = Z + ZH − HZ with
H = diag(1, . . . n) define the function ϕ as above. Then ϕ′(0) = 0.

Proof. On the analogy of the definitions

< A,B >= Real
∑

i,j

ai,jbi,j =⇒ < A, A >= ‖A‖2F ,

where the usual scalar product < ·, · > induces the Frobenius norm, we
introduce a quasi-scalar product {·, ·} and induced quasi-norm sdep by

{A,B} = Real
∑

i<j

j − i

j − i + 1
ai,jbi,j =⇒ {A,A} = sdep2(A).

By expanding the numerator and denominator of our function up to second
order terms we obtain

‖A + εP − z‖2F = ‖A− Z‖2F + 2ε < P,A− Z > +O(ε2),

sdep2(A + εP ) = sdep2(A) + 2ε{A,A1}+ O(ε2),
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using the locally unique (truncated) Schur form

A + εP −→ T (ε) = A + εA1 + O(ε2)

given by Theorem 1. The statement ϕ′(0) = 0 is easily reformulated into

‖A− Z‖2F {A,A1} = < P, A− Z > {A,A}.

However, < P, A− Z >= ‖A− Z‖2F by the definition of P, hence it suffices to
show that

{A,A−A1} = 0.

For this we have an identity

{A, A−A1} =< [Z, Z∗], V >

holding for arbitrary upper Hessenberg Z with A = Z + ZH −HZ, where V is
the lower bidiagonal matrix with

Vi,i = n− i, Vi+1,i =
zi+1,i

zi,i − zi+1,i+1
.

The presence of the commutator of Z and Z∗ will imply that the left hand side
of the identity equals zero for normal Z indeed. To prove the identity we have
to follow the first step of calculating the Ai-s given in Theorem 1. We have
U1+U∗

1 = 0, i.e. a skew Hermitian U1 is determined so that AU1−U1A+P = A1

is upper triangular (P = A− Z) – a solvable linear problem. Observe that U1

is tridiagonal with zero main diagonal elements, and that the subdiagonal, i.e.
(i + 1, i) entries of U1 and V are the same.

Remark. Calculations with MATLAB and Maple show that more is true:
the assumption P = A− Z in the above theorem can be omitted! This means
that if we consider the function ϕ defined for P (not only for ε), then the
derivative of this function is zero, i.e. the equality

‖A− Z‖2F {A,A1}− < P,A− Z > {A,A} = 0

holds for any P. This is a homogeneous linear (in P ) form, for A1 also depends
linearly on P. This shows how crucial is the normality of Z.

Summary. Our aim was to show that inequality (1) is attainable, i.e.
there are triangular matrices A with equality in (1). For a special set of pairs
{A,Z} with A triangular, Z Hessenberg normal we could show (cf. the Lemma
and Theorem 2) that ϕ(0) = 1 and ϕ′(0) = 0 hold for an appropriately defined
function ϕ. One would guess that if ϕ is locally concave at zero then Z is
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the closest normal matrix to A. Unfortunately this is not the case, therefore
further investigation is necessary. Nevertheless we hope that present approach
is a step in the good direction: to prove equality in (1) and, in a general sense,
to discover more inner properties of normal matrices.

Finally we mention that there is another scaled departure,

( ∑

i<j

j − i

n + j − i− 1
|ai,j |2

)1/2

,

which gives an attainable lower bound [6] for νF (A). Using the estimations
k

k+1 ≤ n−1
n and k

n+k−1 ≥ 1
n for both scaled departures (with denoting k = j−i)

we find simple bounds expressed in terms of the departure by Henrici:

1
n

dep2(A) ≤ ν2
F (A) ≤

(
1− 1

n

)
dep2(A).

However, these bounds are no more attainable, cf. e.g. Barrlund [1] and László
[8] for the right hand side.
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