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ON LINEAR COMBINATIONS
OF q—-ADDITIVE FUNCTIONS

K.-H. Indlekofer (Paderborn, Germany)
I. Kéatai (Budapest, Hungary)

1. Let ¢ > 2, A ={0,1,...,9 — 1}, e(n)(€ A) be the sequence of the
digits in the g-ary expansion of n,

(1.1) nngj(n)qj.

Let A, be the set of real valued ¢-additive functions. We say that f : No(=
= N U{0}) — R belongs to A, if f(0) =0 and

(1.2) fn) =" fle5(n)d)
=0
holds for every n.

Let 1 <ai; <az <...<ag (<q), (a;,¢) =1, (a;,a;) =1 for every 7 and
Jj # 4. Let furthermore fi,..., fr € Ag,

(13) l(n) = fl(aln) + fQ(CLQTl) + ...+ fk(akn).

We say that a function g : N — R is "tough” if there is a sequence Ey
such that

-, im sup qiN# {n <@ 1f(n) — Ex| > K} i= o(K),

¢(K)—0 (K — o).

We say that ¢ is ”bounded in mean” if (1.4) holds with Ex = 0.
Let a > 0. We say that g belongs to the class L%, if

1
1.5 I - @ < oo,
(1.5) im sup > lg(n)|* < oo

n<x
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The following assertions are quite obvious.

Theorem 1. The function f € Ay is tough if and only if

oo

(1.6) SN (b < oo

j=0bcA

Theorem 2. Let f € A,. f is bounded in mean if and only if (1.6) holds
and

(17) Byi=_> > fbd)

is bounded.

Theorem 3. Let f € A,. If f is bounded in mean, then f € L for each
a> 0.

Remark. The opposite assertion is clear. Theorems 1,2 are well-known
in probability theory.

Let
1 q—1 . N-1
my = fd), Ey=) my
1,5 §=0
Xo, X1,... be a sequence of independent random variables,
P(X;=f(bg’) —m;)=1/qg (b€A) b=0,...,q—1
and let

YN’ZZX%-+...%—)(N,1.

Let us prove Theorem 3. Assume that f is bounded in mean, that is (1.6)
holds and (1.7) is bounded.

It is clear that £X, the mean value of X}, is zero, furthermore that X; —
— 0 (j — o0) in measure.

Let kK > 1. Then

Y= 3 clan.a) Y XTLLX

aj+...+ap=2k
ay>1
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where the coefficient c¢(aq,. .., a,) depends only on k. From the independency
of Xo,...,Xxn_1 we obtain that F (Xﬁ1 Xf:’“) = 0if o, = 1 for some v.
Furthermore

|E (X2 X0

2 2
<C-E(X2).. . E(x?)
with some constant C' which may depend on k.

Consequently from (1.6) we have that

N-1
EWF) <> | Y X)) | <G

r<k \ j=0

The proof is completed.
2. In our paper [2] we proved the following theorem which we state here
as

Lemma 1. Assume that l(n) is defined by (1.3), and the conditions, stated
there, are satisfied. Thenl(n) is "tough” if and only if there exist y1,...,v, € R
such that a1y, + ... + aryr = 0, and for ¥ (n) = fi(n) —yn

(2.1) >N wibd’) < o0 (I=1,...,k).
7 b

Let
1 N-1
l ,
By =30 > b)),
9520 bea
(2.2) Ey=E( +...+EJ.

Furthermore, l(n) is bounded in mean, if (2.1) is satisfied and (2.2) is bounded.

By using the argument which was applied by the proof of Theorem 3, we
obtain

Theorem 4. Let [(n) as is (1.3). If I(n) is bounded in mean, then so are
filn) (G=1,...,k), and l € L for every o > 0.

3. The logn is a very special function among the additive arithmetical
functions. Somehow its role is played by c¢n among the g-additive functions.

The function f(n) = n has a simple distribution, if we normalize appro-
priately:

(3.1) lim 1# {n<x ‘ g <y} = G(y),
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y ifyel0,1],
Gly)=q1 ify>1,
0 ify<o.

Theorem 5. Assume that f € Ag, and

(3.3) lim {n <N ‘ @ < y} =G(y).

N—oo T

Then f(n) =n+ h(n), and hn) -0 (n— o0).

n
Proof. Assume that (3.3) holds. Let

F.(y) := %# {n <z

o),

Since G is continuous, therefore the convergence of Fy~(y) — G(y) is uniform
in y.

First we prove that

: f(bg™)
1 PO )y p—1,..q-1
Ty <1 Ll
bN
l}glinfféqlv)Z—l/b, b=1,....q—1.
— 00 q

Let § > 0 be an arbitrary small constant, and N — oco.
From (3.3) we obtain that for all but o(z) of the integers v < z,

fv) € [=bz, (1+6)a].

Let us consider the integers n € [bg", (b+1)¢™]. A typical integer m
can be written as m = bg" + v, v < ¢". Since

—0g™ < f(m) < (b+1+38)¢"
for all but o(¢V) integers, and for € > 0 the number of the integers v satisfying

fw)

qN

€ (1 —e, 1+ ¢) has a positive proportion, therefore

f(bg™)

py +le[-d—¢ b+14+0d+¢],
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and so N
f(bg™) d+e¢
<1
by T T
if N is large enough. Thus
b N
i S <1

Similarly, we can prove that

lim inf

b N
fg)q’iv) > —1/b.

Let ¢ € {1,...,q}. Count the integers n < cq¢’¥ for which LZ) <y. We
cq

subdivide the set of those n according to the leading digit.
If n = bg"™ + v, then

f(n) : . fv) f(bg™)
oy <y if and only if o <y it
ie. if v
fw) f(bg™)
N ST T

Hence we obtain that

c—1
qu
cqV Fogn (y) =Y gV Fyn (cy — f(qN )> :
b=0

and from (3.3) we obtain that

c—1 N
(3.4) cG(y) = ZG <cy - f(;)?\] )> + O(en),
b=0

where ey — 0 as N — oo. The relation (3.4) is valid uniformly in y. Thus

Sa (L) Lo o

b=0
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which proves that
f(bg™)

bgV

lim inf > 0.

f(bg™)

Assume that lim inf b < 1 holds for some b. Let b be the smallest

N —o00

digit with this property. Let

f(bg"s :
18 (- o)
Nj
f(scgv) 1 as s=1,...,b—1, j—
sqNi
Choose ¢ = b+ 1. Then
c—2
cG(y) =Glcy — (c—1)(1 —A)) + Z G(ey — s).
s=0

-1
Put now y = £ Then
c

c—1:cG<C;1) :G(A(c—l))+§G(0_1_s).

s=0

The sum on the right is ¢ — 1, G(c—1—3s) =1 for s = 0,...,¢c — 2,
consequently G(A(c— 1)) =0, and so A(c — 1) < 0, which by A > 0 implies
that A = 0. The proof is ready.

4. Let aq1,...,ar, g be as earlier, fi,..., fr be integer valued g-additive
functions. For some integers myq, ..., my let
(41) 5m1p..,mk(u17"'7uk) =

1
= lim —#{n <z | fj(ajn) =u; (mod m;), j=1,...,k},

r—00 I
assuming that the limit exists.
Let P be the set of ”generating elements”,

P={by |beAd, j=01,2,...}.
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Theorem 6. Assume that (m;, m;) =1, (a;,m;) =1 fori=1,... .k, j #
# 1. Let Aj be the largest divisor of m; for which A; | f;(m) holds for all but
finitely many ™ € P.

The relation

(42) 6m1,,..,mk <u1>--- auk:) =

holds for every u; = 0,...,m; —1 (j=1,...,k) if and only if Ay = Ay =

=...=Ar=1.
Proof. I. Assume that the limit in (4.1) exists for every wuy,...,u;. Let
mj | ma,...,m} | mg. Then 5m;,...,m; (v1,...,v;) exists for every vy, ..., vg.

If the distribution is uniform for {my,...,mg}, (i.e. if (4.2) holds), then it is
uniform for {mj,...,m}} as well.

II. If the distribution of {fi(ain) (mod mq),..., fr(axn) (mod my)} is
uniform, and {i1,...,4,} is a subset of {1,...,k}, then the distribution of

{fi,(a;;n) mod my, | l=1,...,h}

is uniform. Especially
{fi(ain) mod m;}
is distributed uniformly.

III. Let m > 1, a € N, (a,m) = (m,q) = (a,q) =1, f € Ay, f(n) €
€Z (n€N). Assume that for some ly € Ny, f(ng'°) =0 (mod m). Then the
limit distribution of f(an) (mod m) exists and it is non-uniform.

Indeed, let us write n as n = ng + qlonl, s(n) =ny, T(n) =ny = [Z}
q
Then an = s(an) + ¢'°T(an), ang = s(ang) + ¢"°T(ang), consequently s(an) =
= s(ang) mod ¢, and

(4.3) flan) = f(s(ang)) (mod m).

The density of the integers n = u (mod ¢') is 1/¢'°, for every u (mod ¢'°).

Therefore
q'o—1

Om (V) := liml Z 1= Z Th(v),

flan)=v (mod m) h=0

n<x

where

n=h (n:od PLOD)
f(an)=v (mod m)
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Since the fulfilment of f(an) = v (mod m) does depend only on
int
n (mod ¢'0), therefore 73,(v) equals 0 or 1/¢'. Consequently &,,(v) = m;%’

$0 0 (v) = 1/m cannot hold.

IV. If (4.2) holds, then Ay = ... = Ay, = 1. This is a direct consequence
of III. Assume that Ay > 1. If (4.2) holds, then by IL., {fi(a1n) mod m;}
is distributed uniformly, and from I., {fi(ain) (mod A;)} is distributed
uniformly. But this is impossible due to III.

V. From now we assume that Ay = ... = Ay = 1. The fulfilment of (4.2)
is equivalent to

hi
44 — R 0
(4.4) nz;x < filan) +... + — fk(akn)) —
for each choice of h; (mod m;) (j = 1,...,k) except the case when h; =

= 0 (mod m;) for every j. Assume that (4.2) does not hold. Then there exists
hi,....,hi, hj€{0,...,m; —1}, (hq,...,hx) # (0,...,0) such that

(4.5) limsuP% ‘Ze(w+...+w>’>o.

mi mg

From our theorem [2] we have: there exist v1,...,7x € R such that
E
a1y1 +..oFapYe = -,
q 0

lo >0, E€Z,and

hif; ?
(4.6) Z hyfi(m) o7 < 00.
TeP mJ
It implies that
(4.7) > Imym? < oo
neP

Hence we obtain that m;~; is rational. Indeed, assume that A = m;~y; is
irrational. We shall show that for every c there is an | > ¢ for which || A\¢!| >
> 1/¢%, and this is enough.

Assume that ¢=7 < |[A\"| < ¢ T+ (for j = 0,...,T — 2), and so

U
AT T2 > 1/¢%. Let A = vj_, (U;,V;) = 1. From (4.7) we obtain that
j
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V; | g for some suitable integer ly. If V; = P;Q;, (Qj,q9) =1, P; | ¢, Q; > 1,

1
then || A\¢'|| > 0 which contradicts to (4.7).
J

Thus we can write

Vild® (G=1,....k)

and from (4.6), that

m; m;

hifi(r-q) Ui (QVLO)”
23 d =0 (mod 1),

whence

h; f; (wao) =D, (mod m;)

lo
q
b, (),
J

U U, E
011+ +akk_

mi-Vi T mg Ve gt
We may assume that I; > lp. Then

a U arU,
1 1W1+...+ kUk
my my

W, = E,

(4.8)

Let us multiply (4.8) with mq,...,m;. Then m; is a divisor of

k
ajUjo H my.

v=1

v#j

Since (mj,m,) = 1, (mj,q) = 1 and W;|¢", therefore (m;, W;) =
=1, (mj,a;) =1 holds by the assumptions, therefore m; |U; (j=1,...,k).
(U; | m;)

v 7 = integer if ¢’ | 7, i.e. for all but finitely
J

Consequently v;m =

many 7w € P. Therefore

(4.9) >

TeP

h; f;(m)

m;

2
‘ <oo (j=1,...,k).
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Let j be such an index for which h; # 0 (mod m;). From (4.9) we obtain
that

(4.10) hifi(m) =0 (mod m;)

for all but finitely many = € P. Then (hj,m;) < mj, A; =

(4.10) implies that
fi(m) =0 (mod Aj)

for all but finitely many 7 € P.
This contradicts to our assumption. The theorem is proved.

5. Kym proved that for f € A, f(n) mod 1 is distributed uniformly if and
only if for every nonzero integer k either

[

<

e(kf(bg™)) =0

S
I
o

for some [, or

(5.1) Do k@I =

TeEP

Let s := = f(n-¢") mod 1. From Kym’s result we have: the sequences
{sq(lh)} are distributed uniformly for every h =0, 1,2, ... if and only if (5.1)
n=0
holds.

Let I(n) be defined by (1.3). We are interested in the following question.

Under what condition is true that {{(ng’) (mod 1)} , is distributed uniformly
for every j.

Theorem 7. The sequences {l(n -¢’) mod 1};0:0 are mod 1 uniformly
distributed for every j in each case, except when there is an integer m
#0, v1,.--,7 € R, | € Ng such that

(a1 +...+apy) =0  (mod 1),

and

(5.2) > lmfi(r) =yl <00 (G=1,....,k)
TEP

hold.
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The assertion is a direct consequence of Weyl’s theorem and our result in
[2] which we quote now as Lemma 1.

Let t(n) = gi(ain)...gx(agn), tj(n) = t(n - ¢’), where g,(n) are g-

multiplicative functions, |g,(n)] = 1 (n € Ny, v = 1,...,k). Assume
furthermore that aq, ..., ax satisfies the conditions stated in Section 1. Let
1
Mj(x) = ti(n), m;(N)= quMj(qN),

n<x

a; = liminf |m;(N)|, fB; = limsup |m;(N)|.

Lemma 2. Assume that §; > 0 for some j. Then oy = — 1 as | — oo,
furthermore there exist suitable real numbers ~v1,...,v, and some jo > 0 such
that

¢ (na1 +...+yag) =0 (mod 1),

and in the notation h;(n) :=e (—y;n)g;(n),

oo

Z Z Re(1—Mh(cq?)) <oo (I=1,...,k).

j=0ceA,

Proof of Theorem 7. Let m # 0, g,(n) = e (mf,(n)), t(n) =
= gl(aln) . .gk(akn).

By Weyl’s famous theorem {I(ng’) mod 1} is distributed uniformly mod 1

M
for every j, if and only if M () — 0 (z — oo) for every j, and every m # 0.
x
M;(x) .
If —/———~ —0 (z— c0), then oy = 3 =0 for every [ and m. This proves the
x

necessity of the conditions. Let us assume now that for some m(# 0), 5, =
=0 (j=0,1,...).

Let ¢V < x < ¢V*!. Consider the sequences AM = {(g¢,€1,...,em-1),
ey, € A}, We classify them according to the following rule. We say that
(€0,€15---y6m—1) € Bo, if epy—1 = 0, and that (eg,...,ep—1) € By, if
eEM—h-1 = 0, and epr—p, Ep—ht1,---,EM—1 are nonzero. Let finally B* be
the set of those elements for which e, 20 (v=M —-1,M —2,...,0).

Observe that #B = ¢M~1 #B, = M2(1-1/q), #B, = ¢M~ 1

(A =1/q)?, .. #By =M (1= 1/q)", and #B* = ¢M (1 —1/¢)™.

Let us write each n < z as ng+¢™u = n, where ng € {0,1,...,¢¥ -1}, u €
€ {0,..., {i\;]} If v < {?4]’ then n < x holds for each ng €
q q

€ {0, 1,...,qM — 1}. U= [m occurs for O(¢M) distinct integers n.

qM
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Thus
[qLM]_lqM—l
M;(z) = >t (no +¢"u) + 0(¢M) =
u=0 no=0
_ zh: 0™ +0 (z(1-1/9)").
Here
[x/qM}fl
Zh = Z Z t; (no + un) ,
u=0 nOEBh

where By, is the set of those nonnegative integers ng < ¢ for which (g (ng)y ...,
em—1(ng)) belongs to By,.

Let ng € Bj,. Then ng = v+ g™, where 0 < v < gM~h=1 0 < < g,
and each digit of p differs from zero. The opposite assertion is true as well.
Let v € [0, gM—h=1 — 1], and p € [O, - 1] such that ¢,(u) #0 (v =
=0,...,h—1). Let us observe furthermore that

t; (no + un) =1t;(v) t; (,qu_h + un) .

. D=3 () oty ().

and so h

(5.3) ‘Zh’ < |M; (qM"“l)IqiM(q—l)h~
Thus

(5.4) %Zh <mi(M—h—1)(1—-1/g)".

By using (5.4) for h =0,..., K, and the trivial inequality

1
T2

<(1-1/g)"
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for h > K, we obtain that

‘ M;()

Simj(M—h—l) (1_;>h+
h=0
+k§+1(1—1/q)"’+0 (9’:) ) ((1— ;>M> .

M.
We shall prove that lim sup ’Jx(x)‘ = 0. Indeed, let K > 0 be fixed, M =

log x
logq
as £ — 00. Therefore

:N—K,N:{ }.Thenforxeoo,M—>oo,thusmj(M—h—1)—>0

—0( )40 ((1_ ;)K> .

Since the inequality holds for every K, therefore it holds for K — oo,
consequently
| M; ()]
x

M;(z)

lim sup ‘

lim sup =0.
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