ON LINEAR COMBINATIONS OF q-ADDITIVE FUNCTIONS

K.-H. Indlekofer (Paderborn, Germany)I. Kátai (Budapest, Hungary)

1. Let $q \ge 2$, $A = \{0, 1, \dots, q - 1\}$, $\varepsilon(n) (\in A)$ be the sequence of the digits in the q-ary expansion of n,

(1.1)
$$n = \sum \varepsilon_j(n) q^j.$$

Let \mathcal{A}_q be the set of real valued q-additive functions. We say that $f : \mathbb{N}_0 (=$ = $N \cup \{0\}) \to \mathbb{R}$ belongs to \mathcal{A}_q , if f(0) = 0 and

(1.2)
$$f(n) = \sum_{j=0}^{\infty} f(\varepsilon_j(n)q^j)$$

holds for every n.

Let $1 \leq a_1 < a_2 < \ldots < a_k \ (< q), \ (a_i, q) = 1, \ (a_i, a_j) = 1$ for every i and $j \neq i$. Let furthermore $f_1, \ldots, f_k \in \mathcal{A}_q$,

(1.3)
$$l(n) := f_1(a_1n) + f_2(a_2n) + \ldots + f_k(a_kn).$$

We say that a function $g: \mathbb{N} \to \mathbb{R}$ is "tough" if there is a sequence E_N such that

(1.4)
$$\begin{cases} \limsup_{N \to \infty} \frac{1}{q^N} \# \{n < q^N | |f(n) - E_N| > K\} := c(K), \\ c(K) \to 0 \quad (K \to \infty). \end{cases}$$

We say that g is "bounded in mean" if (1.4) holds with $E_N = 0$. Let $\alpha > 0$. We say that g belongs to the class L^{α} , if

(1.5)
$$\limsup_{x \to \infty} \frac{1}{x} \sum_{n < x} |g(n)|^{\alpha} < \infty.$$

Financially supported by OTKA T031877.

The following assertions are quite obvious.

Theorem 1. The function $f \in A_q$ is tough if and only if

(1.6)
$$\sum_{j=0}^{\infty} \sum_{b \in A} f^2(bq^j) < \infty.$$

Theorem 2. Let $f \in A_q$. f is bounded in mean if and only if (1.6) holds and

(1.7)
$$E_N^* := \frac{1}{q} \sum_{j=0}^{N-1} \sum_{b \in A} f(bq^j)$$

is bounded.

Theorem 3. Let $f \in \mathcal{A}_q$. If f is bounded in mean, then $f \in L^{\alpha}$ for each $\alpha > 0$.

Remark. The opposite assertion is clear. Theorems 1,2 are well-known in probability theory.

Let

$$m_j := \frac{1}{q} \sum_{b=0}^{q-1} f(bq^j), \quad E_N^* = \sum_{j=0}^{N-1} m_j,$$

 X_0, X_1, \ldots be a sequence of independent random variables,

$$P(X_j = f(bq^j) - m_j) = 1/q \quad (b \in \mathbb{A}) \quad b = 0, \dots, q-1$$

and let

$$Y_N = X_0 + \ldots + X_{N-1}.$$

Let us prove Theorem 3. Assume that f is bounded in mean, that is (1.6) holds and (1.7) is bounded.

It is clear that EX_j , the mean value of X_j , is zero, furthermore that $X_j \rightarrow 0 \quad (j \rightarrow \infty)$ in measure.

Let $k \geq 1$. Then

$$Y_N^{2k} = \sum_{\substack{\alpha_1 + \ldots + \alpha_r = 2k \\ \alpha_\nu \ge 1}} c(\alpha_1, \ldots, \alpha_r) \sum X_{i_1}^{\alpha_1} \ldots X_{i_r}^{\alpha_k},$$

where the coefficient $c(\alpha_1, \ldots, \alpha_r)$ depends only on k. From the independency of X_0, \ldots, X_{N-1} we obtain that $E(X_{i_1}^{\alpha_1} \ldots X_{i_r}^{\alpha_k}) = 0$ if $\alpha_{\nu} = 1$ for some ν . Furthermore

$$\left| E\left(X_{i_1}^{\alpha_1} \dots X_{i_r}^{\alpha_r} \right) \right| \le C \cdot E\left(X_{i_1}^2 \right) \dots E\left(X_{i_r}^2 \right)$$

with some constant C which may depend on k.

Consequently from (1.6) we have that

$$E\left(Y_N^{2k}\right) \ll \sum_{r \leq k} \left(\sum_{j=0}^{N-1} E^2\left(X_j\right)\right)^r \ll C_k.$$

The proof is completed.

2. In our paper [2] we proved the following theorem which we state here as

Lemma 1. Assume that l(n) is defined by (1.3), and the conditions, stated there, are satisfied. Then l(n) is "tough" if and only if there exist $\gamma_1, \ldots, \gamma_k \in \mathbb{R}$ such that $a_1\gamma_1 + \ldots + a_k\gamma_k = 0$, and for $\psi_l(n) = f_l(n) - \gamma_l n$

(2.1)
$$\sum_{j} \sum_{b} \psi_l^2(bq^j) < \infty \qquad (l = 1, \dots, k).$$

Let

$$E_N^{(l)} = \frac{1}{q} \sum_{j=0}^{N-1} \sum_{b \in \mathbb{A}} \psi_l(bq^j),$$

(2.2)
$$E_N = E_N^{(1)} + \ldots + E_N^{(k)}$$

Furthermore, l(n) is bounded in mean, if (2.1) is satisfied and (2.2) is bounded.

By using the argument which was applied by the proof of Theorem 3, we obtain

Theorem 4. Let l(n) as is (1.3). If l(n) is bounded in mean, then so are $f_j(n)$ (j = 1, ..., k), and $l \in L^{\alpha}$ for every $\alpha > 0$.

3. The $\log n$ is a very special function among the additive arithmetical functions. Somehow its role is played by cn among the q-additive functions.

The function f(n) = n has a simple distribution, if we normalize appropriately:

(3.1)
$$\lim_{x \to \infty} \frac{1}{x} \# \left\{ n < x \mid \frac{n}{x} < y \right\} = G(y),$$

$$G(y) = \begin{cases} y & \text{if } y \in [0, 1], \\ 1 & \text{if } y \ge 1, \\ 0 & \text{if } y \le 0. \end{cases}$$

Theorem 5. Assume that $f \in \mathcal{A}_q$, and

(3.3)
$$\lim_{N \to \infty} \frac{1}{x} \left\{ n < q^N \mid \frac{f(n)}{x} < y \right\} = G(y).$$

Then f(n) = n + h(n), and $\frac{h(n)}{n} \to 0 \quad (n \to \infty)$.

Proof. Assume that (3.3) holds. Let

$$F_x(y) := \frac{1}{x} \# \left\{ n < x \mid \frac{f(n)}{x} < y \right\}.$$

Since G is continuous, therefore the convergence of $F_{q^N}(y) \to G(y)$ is uniform in y.

First we prove that

$$\limsup_{N \to \infty} \frac{f(bq^N)}{bq^N} \le 1, \quad b = 1, \dots, q - 1,$$
$$\liminf_{N \to \infty} \frac{f(bq^N)}{bq^N} \ge -1/b, \quad b = 1, \dots, q - 1.$$

Let $\delta > 0$ be an arbitrary small constant, and $N \to \infty$. From (3.3) we obtain that for all but o(x) of the integers $\nu \leq x$,

$$f(\nu) \in \left[-\delta x, \ (1+\delta)x\right].$$

Let us consider the integers $n \in [bq^N, (b+1)q^N]$. A typical integer m can be written as $m = bq^N + \nu$, $\nu < q^N$. Since

$$-\delta q^N < f(m) \le (b+1+\delta)q^N$$

for all but $o(q^N)$ integers, and for $\varepsilon > 0$ the number of the integers ν satisfying $\frac{f(\nu)}{q^N} \in (1 - \varepsilon, 1 + \varepsilon)$ has a positive proportion, therefore

$$\frac{f(bq^N)}{q^N} + 1 \in \left[-\delta - \varepsilon, \ b + 1 + \delta + \varepsilon\right],$$

and so

$$\frac{f(bq^N)}{bq^N} < 1 + \frac{\delta + \varepsilon}{b},$$

if N is large enough. Thus

$$\limsup_{N \to \infty} \frac{f(bq^N)}{bq^N} \le 1.$$

Similarly, we can prove that

$$\liminf \frac{f(bq^N)}{bq^N} \ge -1/b.$$

Let $c \in \{1, \ldots, q\}$. Count the integers $n < cq^N$ for which $\frac{f(n)}{cq^N} < y$. We subdivide the set of those n according to the leading digit.

If $n = bq^N + \nu$, then

$$\frac{f(n)}{cq^N} < y \quad \text{if and only if} \quad \frac{f(\nu)}{cq^N} < y - \frac{f(bq^N)}{cq^N},$$

i.e. if

$$\frac{f(\nu)}{q^N} < cy - \frac{f(bq^N)}{q^N}.$$

Hence we obtain that

$$cq^{N}F_{cq^{N}}(y) = \sum_{b=0}^{c-1} q^{N}F_{q^{N}}\left(cy - \frac{f(bq^{N})}{q^{N}}\right),$$

and from (3.3) we obtain that

(3.4)
$$cG(y) = \sum_{b=0}^{c-1} G\left(cy - \frac{f(bq^N)}{q^N}\right) + O(\varepsilon_N),$$

where $\varepsilon_N \to 0$ as $N \to \infty$. The relation (3.4) is valid uniformly in y. Thus

$$\sum_{b=0}^{c-1} G\left(\frac{-f(bq^N)}{q^N}\right) \to 0 \quad (N \to \infty)$$

which proves that

$$\liminf \frac{f(bq^N)}{bq^N} \ge 0.$$

Assume that $\liminf_{N\to\infty} \frac{f(bq^N)}{bq^N} < 1$ holds for some *b*. Let *b* be the smallest digit with this property. Let

$$\frac{f(bq^{N_j})}{bq^{N_j}} \to 1 - \Delta \quad (j \to \infty),$$
$$\frac{f(sq^{N_j})}{sq^{N_j}} \to 1 \quad \text{as} \quad s = 1, \dots, b - 1, \quad j \to \infty$$

Choose c = b + 1. Then

$$cG(y) = G(cy - (c-1)(1-\Delta)) + \sum_{s=0}^{c-2} G(cy - s).$$

Put now $y = \frac{c-1}{c}$. Then

$$c-1 = cG\left(\frac{c-1}{c}\right) = G(\Delta(c-1)) + \sum_{s=0}^{c-2} G(c-1-s).$$

The sum on the right is c-1, G(c-1-s) = 1 for $s = 0, \ldots, c-2$, consequently $G(\Delta(c-1)) = 0$, and so $\Delta(c-1) \leq 0$, which by $\Delta \geq 0$ implies that $\Delta = 0$. The proof is ready.

4. Let a_1, \ldots, a_k , q be as earlier, f_1, \ldots, f_k be integer valued q-additive functions. For some integers m_1, \ldots, m_k let

(4.1)
$$\delta_{m_1,...,m_k}(u_1,...,u_k) = \\ = \lim_{x \to \infty} \frac{1}{x} \# \{ n \le x \mid f_j(a_j n) \equiv u_j \pmod{m_j}, \quad j = 1,...,k \},$$

assuming that the limit exists.

Let \mathcal{P} be the set of "generating elements",

$$\mathcal{P} = \left\{ bq^j \mid b \in A, \quad j = 0, 1, 2, \dots \right\}.$$

Theorem 6. Assume that $(m_i, m_j) = 1$, $(a_i, m_i) = 1$ for i = 1, ..., k, $j \neq i$. Let Δ_j be the largest divisor of m_j for which $\Delta_j \mid f_j(\pi)$ holds for all but finitely many $\pi \in \mathcal{P}$.

The relation

(4.2)
$$\delta_{m_1,\dots,m_k}(u_1,\dots,u_k) = \frac{1}{m_1\dots m_k}$$

holds for every $u_j = 0, \ldots, m_j - 1$ $(j = 1, \ldots, k)$ if and only if $\Delta_1 = \Delta_2 = \ldots = \Delta_k = 1$.

Proof. I. Assume that the limit in (4.1) exists for every u_1, \ldots, u_k . Let $m_1^* \mid m_1, \ldots, m_k^* \mid m_k$. Then $\delta_{m_1^*, \ldots, m_k^*} (v_1, \ldots, v_k)$ exists for every v_1, \ldots, v_k . If the distribution is uniform for $\{m_1, \ldots, m_k\}$, (i.e. if (4.2) holds), then it is uniform for $\{m_1^*, \ldots, m_k^*\}$ as well.

II. If the distribution of $\{f_1(a_1n) \pmod{m_1}, \ldots, f_k(a_kn) \pmod{m_k}\}$ is uniform, and $\{i_1, \ldots, i_h\}$ is a subset of $\{1, \ldots, k\}$, then the distribution of

$$\{f_{i_l}(a_{i_l}n) \mod m_{i_l} \mid l = 1, \dots, h\}$$

is uniform. Especially

$$\{f_i(a_i n) \mod m_i\}$$

is distributed uniformly.

III. Let m > 1, $a \in \mathbb{N}$, (a,m) = (m,q) = (a,q) = 1, $f \in \mathcal{A}_q$, $f(n) \in \mathbb{Z}$ $(n \in \mathbb{N})$. Assume that for some $l_0 \in \mathbb{N}_0$, $f(nq^{l_0}) \equiv 0 \pmod{m}$. Then the limit distribution of $f(an) \pmod{m}$ exists and it is non-uniform.

Indeed, let us write n as $n = n_0 + q^{l_0} n_1$, $s(n) = n_1$, $T(n) = n_1 = \left[\frac{n}{q^{l_0}}\right]$. Then $an = s(an) + q^{l_0}T(an)$, $an_0 = s(an_0) + q^{l_0}T(an_0)$, consequently $s(an) \equiv \equiv s(an_0) \mod q^{l_0}$, and

(4.3)
$$f(an) \equiv f(s(an_0)) \pmod{m}$$

The density of the integers $n \equiv u \pmod{q^{l_0}}$ is $1/q^{l_0}$, for every $u \pmod{q^{l_0}}$. Therefore

$$\delta_m(v) := \lim \frac{1}{x} \sum_{\substack{f(an) \equiv v \pmod{m} \\ n \le x}} 1 = \sum_{h=0}^{q^{i_0}-1} \tau_h(v),$$

where

$$\tau_h(v) = \lim_{x \to \infty} \frac{1}{x} \sum_{\substack{n \le x \\ n \equiv h \pmod{q^{l_0}}} \\ f(an) \equiv v \pmod{m}}} 1.$$

Since the fulfilment of $f(an) \equiv v \pmod{m}$ does depend only on $n \pmod{q^{l_0}}$, therefore $\tau_h(v)$ equals 0 or $1/q^{l_0}$. Consequently $\delta_m(v) = \frac{\text{integer}}{q^{l_0}}$, so $\delta_m(v) = 1/m$ cannot hold.

IV. If (4.2) holds, then $\Delta_1 = \ldots = \Delta_k = 1$. This is a direct consequence of III. Assume that $\Delta_1 > 1$. If (4.2) holds, then by II., $\{f_1(a_1n) \mod m_1\}$ is distributed uniformly, and from I., $\{f_1(a_1n) \pmod {\Delta_1}\}$ is distributed uniformly. But this is impossible due to III.

V. From now we assume that $\Delta_1 = \ldots = \Delta_k = 1$. The fulfilment of (4.2) is equivalent to

(4.4)
$$\frac{1}{x} \sum_{n < x} e\left(\frac{h_1}{m_1} f_1(a_1 n) + \ldots + \frac{h_k}{m_k} f_k(a_k n)\right) \to 0$$

for each choice of $h_j \pmod{m_j}$ (j = 1, ..., k) except the case when $h_j \equiv \equiv 0 \pmod{m_j}$ for every j. Assume that (4.2) does not hold. Then there exists h_1, \ldots, h_k , $h_j \in \{0, \ldots, m_j - 1\}$, $(h_1, \ldots, h_k) \neq (0, \ldots, 0)$ such that

(4.5)
$$\limsup \frac{1}{x} \left| \sum e\left(\frac{h_1f_1(a_1n)}{m_1} + \ldots + \frac{h_kf_k(a_kn)}{m_k}\right) \right| > 0.$$

From our theorem [2] we have: there exist $\gamma_1, \ldots, \gamma_k \in \mathbb{R}$ such that

$$a_1\gamma_1+\ldots+a_k\gamma_k=\frac{E}{q^{l_0}},$$

 $l_0 \geq 0, E \in \mathbb{Z}$, and

(4.6)
$$\sum_{\pi \in \mathcal{P}} \left\| \frac{h_j f_j(\pi)}{m_j} - \gamma_j \pi \right\|^2 < \infty.$$

It implies that

(4.7)
$$\sum_{\pi \in \mathcal{P}} \|m_j \gamma_j \pi\|^2 < \infty$$

Hence we obtain that $m_j \gamma_j$ is rational. Indeed, assume that $\lambda = m_j \gamma_j$ is irrational. We shall show that for every c there is an l > c for which $||\lambda q^l|| > 1/q^2$, and this is enough.

Assume that $q^{-T} < \|\lambda q^h\| < q^{-T+1}$ (for j = 0, ..., T-2), and so $\|\lambda q^{h+(T-2)}\| > 1/q^2$. Let $\lambda = \frac{U_j}{V_j}$, $(U_j, V_j) = 1$. From (4.7) we obtain that

 $V_j \mid q^{l_0}$ for some suitable integer l_0 . If $V_j = P_j Q_j$, $(Q_j, q) = 1$, $P_j \mid q^{l_0}$, $Q_j > 1$, then $\|\lambda q^l\| \ge \frac{1}{Q_j}$, which contradicts to (4.7).

Thus we can write

$$\gamma_j = \frac{U_j}{V_j m_j}, \quad V_j \mid q^{l_0} \quad (j = 1, \dots, k)$$

and from (4.6), that

$$\frac{h_j f_j(\pi \cdot q^{l_0})}{m_j} - \frac{U_j \left(\frac{q^{l_0}}{V_j}\right) \pi}{m_j} \equiv 0 \pmod{1},$$

whence

$$h_j f_j \left(\pi q^{l_0} \right) \equiv D_j \pi \pmod{m_j}$$
$$D_j = U_j \cdot \left(\frac{q^{l_0}}{V_j} \right),$$
$$\frac{a_1 U_1}{m_1 \cdot V_1} + \ldots + \frac{a_k U_k}{m_k V_k} = \frac{E}{q^{l_1}}.$$

We may assume that $l_1 \geq l_0$. Then

(4.8)
$$\frac{a_1 U_1}{m_1} W_1 + \ldots + \frac{a_k U_k}{m_k} W_k = E,$$
$$W_j = \frac{q^{l_1}}{V_j} \in \mathbb{Z}.$$

Let us multiply (4.8) with m_1, \ldots, m_k . Then m_j is a divisor of

$$a_j U_j W_j \prod_{\substack{\nu=1\\\nu\neq j}}^k m_\nu.$$

Since $(m_j, m_\nu) = 1$, $(m_j, q) = 1$ and $W_j | q^{l_1}$, therefore $(m_j, W_j) = 1$, $(m_j, a_j) = 1$ holds by the assumptions, therefore $m_j | U_j \quad (j = 1, \ldots, k)$. Consequently $\gamma_j \pi = \frac{(U_j | m_j)}{V_j} \pi =$ integer if $q^{l_0} | \pi$, i.e. for all but finitely many $\pi \in \mathcal{P}$. Therefore

(4.9)
$$\sum_{\pi \in \mathcal{P}} \left\| \frac{h_j f_j(\pi)}{m_j} \right\|^2 < \infty \quad (j = 1, \dots, k).$$

Let j be such an index for which $h_j \not\equiv 0 \pmod{m_j}$. From (4.9) we obtain that

$$(4.10) h_j f_j(\pi) \equiv 0 \pmod{m_j}$$

for all but finitely many $\pi \in \mathcal{P}$. Then $(h_j, m_j) < m_j$, $\Delta_j := \frac{m_j}{(m_j, h_j)} > 1$. (4.10) implies that

$$f_j(\pi) \equiv 0 \pmod{\Delta_j}$$

for all but finitely many $\pi \in \mathcal{P}$.

This contradicts to our assumption. The theorem is proved.

5. Kym proved that for $f \in \mathcal{A}_q f(n) \mod 1$ is distributed uniformly if and only if for every nonzero integer k either

$$\sum_{b=0}^{q-1} e\left(kf\left(bq^{l_k}\right)\right) = 0$$

for some l_k , or

(5.1)
$$\sum_{\pi \in \mathcal{P}} \|kf(\pi)\|^2 = \infty.$$

Let $s_n^{(h)} := f(n \cdot q^h) \mod 1$. From Kym's result we have: the sequences $\left\{s_n^{(h)}\right\}_{n=0}^{\infty}$ are distributed uniformly for every $h = 0, 1, 2, \ldots$ if and only if (5.1) holds.

Let l(n) be defined by (1.3). We are interested in the following question. Under what condition is true that $\{l(nq^j) \pmod{1}\}_{n=0}^{\infty}$ is distributed uniformly for every j.

Theorem 7. The sequences $\{l(n \cdot q^j) \mod 1\}_{n=0}^{\infty}$ are mod 1 uniformly distributed for every j in each case, except when there is an integer $m \neq j \neq 0, \gamma_1, \ldots, \gamma_k \in \mathbb{R}, l \in \mathbb{N}_0$ such that

$$q^{\iota}(a_1\gamma_1 + \ldots + a_k\gamma_k) \equiv 0 \pmod{1},$$

and

(5.2)
$$\sum_{\pi \in \mathcal{P}} \|mf_j(\pi) - \gamma_j \pi\|^2 < \infty \quad (j = 1, \dots, k)$$

hold.

The assertion is a direct consequence of Weyl's theorem and our result in [2] which we quote now as Lemma 1.

Let $t(n) = g_1(a_1n) \dots g_k(a_kn)$, $t_j(n) = t(n \cdot q^j)$, where $g_{\nu}(n)$ are qmultiplicative functions, $|g_{\nu}(n)| = 1$ $(n \in \mathbb{N}_0, \nu = 1, \dots, k)$. Assume furthermore that a_1, \dots, a_k satisfies the conditions stated in Section 1. Let

$$M_j(x) = \sum_{n < x} t_j(n), \quad m_j(N) = \frac{1}{q^N} M_j(q^N),$$
$$\alpha_j = \liminf |m_j(N)|, \quad \beta_j = \limsup |m_j(N)|.$$

Lemma 2. Assume that $\beta_j > 0$ for some j. Then $\alpha_l = \beta_l \to 1$ as $l \to \infty$, furthermore there exist suitable real numbers $\gamma_1, \ldots, \gamma_k$ and some $j_0 \ge 0$ such that

$$q^{j_0}(\gamma_1 a_1 + \ldots + \gamma_k a_k) \equiv 0 \pmod{1},$$

and in the notation $h_j(n) := e(-\gamma_j n)g_j(n)$,

$$\sum_{j=0}^{\infty} \sum_{c \in \mathcal{A}_q} \operatorname{Re}\left(1 - h_l(cq^j)\right) < \infty \quad (l = 1, \dots, k).$$

Proof of Theorem 7. Let $m \neq 0$, $g_{\nu}(n) = e (mf_{\nu}(n))$, $t(n) = g_1(a_1n) \dots g_k(a_kn)$.

By Weyl's famous theorem $\{l(nq^j) \mod 1\}$ is distributed uniformly mod 1 for every j, if and only if $\frac{M_j(x)}{x} \to 0$ $(x \to \infty)$ for every j, and every $m \neq 0$. If $\frac{M_j(x)}{x} \to 0$ $(x \to \infty)$, then $\alpha_l = \beta_l = 0$ for every l and m. This proves the necessity of the conditions. Let us assume now that for some $m(\neq 0), \beta_j =$ = 0 $(j = 0, 1, \ldots)$.

Let $q^N < x \leq q^{N+1}$. Consider the sequences $A^M = \{(\varepsilon_0, \varepsilon_1, \ldots, \varepsilon_{M-1}), \varepsilon_{\nu} \in \mathbb{A}\}$. We classify them according to the following rule. We say that $(\varepsilon_0, \varepsilon_1, \ldots, \varepsilon_{M-1}) \in \mathcal{B}_0$, if $\varepsilon_{M-1} = 0$, and that $(\varepsilon_0, \ldots, \varepsilon_{M-1}) \in \mathcal{B}_h$, if $\varepsilon_{M-h-1} = 0$, and ε_{M-h} , $\varepsilon_{M-h+1}, \ldots, \varepsilon_{M-1}$ are nonzero. Let finally \mathcal{B}^* be the set of those elements for which $\varepsilon_{\nu} \neq 0$ $(\nu = M - 1, M - 2, \ldots, 0)$.

Observe that $\#\mathcal{B} = q^{M-1}$, $\#\mathcal{B}_1 = q^{M-2}(1-1/q)$, $\#\mathcal{B}_2 = q^{M-1} \cdot (1-1/q)^2, \dots, \#\mathcal{B}_h = q^{M-1}(1-1/q)^h$, and $\#\mathcal{B}^* = q^M(1-1/q)^M$.

Let us write each n < x as $n_0 + q^M u = n$, where $n_0 \in \{0, 1, \dots, q^M - 1\}$, $u \in \{0, \dots, \left\lfloor \frac{x}{q^M} \right\rfloor\}$. If $u < \left\lfloor \frac{x}{q^M} \right\rfloor$, then n < x holds for each $n_0 \in \{0, 1, \dots, q^M - 1\}$. $u = \left\lfloor \frac{x}{q^M} \right\rfloor$ occurs for $O(q^M)$ distinct integers n.

Thus

$$M_{j}(x) = \sum_{u=0}^{\left[\frac{x}{q^{M}}\right]^{-1}} \sum_{n_{0}=0}^{q^{M}-1} t_{j} \left(n_{0} + q^{M}u\right) + O(q^{M}) =$$
$$= \sum_{h} \sum_{h} +O(q^{M}) + O\left(x \left(1 - 1/q\right)^{M}\right).$$

Here

$$\sum_{h} = \sum_{u=0}^{\left[x/q^{M}\right]-1} \sum_{n_{0} \in \tilde{\mathcal{B}}_{h}} t_{j} \left(n_{0} + q^{M} u\right),$$

where $\tilde{\mathcal{B}}_h$ is the set of those nonnegative integers $n_0 < q^M$ for which $(\varepsilon_0(n_0), \ldots, \varepsilon_{M-1}(n_0))$ belongs to \mathcal{B}_h .

Let $n_0 \in \tilde{\mathcal{B}}_h$. Then $n_0 = \nu + q^{M-h}\mu$, where $0 \leq \nu < q^{M-h-1}$, $0 \leq \mu < q^h$, and each digit of μ differs from zero. The opposite assertion is true as well. Let $\nu \in [0, q^{M-h-1} - 1]$, and $\mu \in [0, q^h - 1]$ such that $\varepsilon_{\nu}(\mu) \neq 0$ ($\nu = 0, \ldots, h - 1$). Let us observe furthermore that

$$t_j \left(n_0 + q^M u \right) = t_j(\nu) \ t_j \left(\mu q^{M-h} + q^M u \right).$$

Thus

$$\sum_{h} = M_j \left(q^{M-h-1} \right) \sum_{\mu,u} t_j \left(\mu q^{M-h} + q^M u \right)$$

and so

(5.3)
$$\left|\sum_{h}\right| \leq \left|M_{j}\left(q^{M-h-1}\right)\right| \frac{x}{q^{M}}(q-1)^{h}.$$

Thus

(5.4)
$$\left|\frac{1}{x}\sum_{h}\right| \le m_j(M-h-1)\left(1-1/q\right)^h.$$

By using (5.4) for h = 0, ..., K, and the trivial inequality

$$\left|\frac{1}{x}\sum_{h}\right| \le \left(1 - 1/q\right)^{h}$$

for h > K, we obtain that

$$\left|\frac{M_j(x)}{x}\right| \le \sum_{h=0}^{K} m_j (M-h-1) \left(1-\frac{1}{q}\right)^h + \sum_{k>K+1} (1-1/q)^h + O\left(\frac{q^M}{x}\right) + O\left(\left(1-\frac{1}{q}\right)^M\right).$$

We shall prove that $\limsup \left| \frac{M_j(x)}{x} \right| = 0$. Indeed, let K > 0 be fixed, M = N - K, $N = \left[\frac{\log x}{\log q} \right]$. Then for $x \to \infty$, $M \to \infty$, thus $m_j(M - h - 1) \to 0$ as $x \to \infty$. Therefore

$$\limsup \left| \frac{M_j(x)}{x} \right| = O\left(q^{-K}\right) + O\left(\left(1 - \frac{1}{q}\right)^K\right).$$

Since the inequality holds for every K, therefore it holds for $K \to \infty$, consequently

$$\limsup \frac{|M_j(x)|}{x} = 0.$$

References

[1-2] Indlekofer K.-H. and Kátai I., Investigations in the theory of q-additive and q-multiplicative functions I-II., Acta Math. Hung. (accepted)

(Received June 9, 2002)

K.-H. Indlekofer

Fachbereich 17 Universität-GH Paderborn Warburger Str. 100 D-33098 Paderborn, Germany k-heinz@uni-paderborn.de

I. Kátai

Department of Computer Algebra Eötvös Loránd University XI. Pázmány Péter sét. 1/C H-1117 Budapest, Hungary katai@compalg.inf.elte.hu