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1. Introduction and results

Let IN denote the set of all positive integers. Let M (M∗) be the
set of complex-valued multiplicative (completely multiplicative) functions. A
function g is said to be unimodular if g satisfies the condition |g(n)| = 1 for
all positive integers n. In the following we shall denote by M(1) and M∗(1)
the class of all unimodular functions g ∈M and g ∈M∗, respectively.

More than 15 years ago I.Kátai stated as a conjecture that f ∈ M,
∆ f(n) = f(n + 1) − f(n) = o(1) as n → ∞ imply that either f(n) = o(1)
or f(n) = ns (n ∈ IN), 0 ≤ Re s < 1. This was proved by Wirsing in 1984 and
some years later independently by Tang and Shao. The joint paper of Wirsing,
Tang and Shao [5] contains two different proofs. It is not hard to deduce from
Wirsing’s theorem that if f, g ∈ M, g(n + 1) − f(n) = o(1) as n → ∞,
then either f(n) = o(1), or f(n) = g(n) (n ∈ IN), and in the last case
f(n) = ns (n ∈ IN), 0 ≤ Re s < 1.

Recently, improving these results we showed in [2] that if k ∈ IN is given
and f, g ∈M satisfy the condition

g(n + k)− f(n) = o(1) as n →∞,

then either f(n) = o(1) as n → ∞ or there are F, G ∈ M and a complex
constant s such that

f(n) = nsF (n), g(n) = nsG(n), 0 ≤ Re s < 1

and G(n + k) = F (n) are satisfied for all n ∈ IN . In [1] the equation

G(n + k) = F (n)
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for functions F, G ∈M is solved completely.

The general case concerning the characterization of those f, g ∈ M for
which

g(an + b)− Cf(An + B) = o(1) as n →∞,

where a > 0, b, A > 0, B are fixed integers with Ab − aB 6= 0 and C
is a non-zero complex constant, seems to be a hard problem and a complete
solution is not known.

For unimodular multiplicative functions there are few partial results con-
cerning this problem. In [3] and [4] we obtained a generalization of E.Wirsing’s
theorem, namely we proved that if functions g1 ∈M(1) and g2 ∈M(1) satisfy
the condition

g1(an + b)− dg2(cn) = o(1) as n →∞
for some positive integers a, b, c and non-zero complex number d, then there
are a real number τ and functions G1, G2 ∈M(1) such that

g1(n) = niτG1(n), g2(n) = niτG2(n), G1(an + b)− d
ciτ

aiτ
G2(cn) = 0

for all positive integers n. Furthermore, it is shown in [4] that if a, b, c are
positive integers and d is a non-zero complex number, then the functions g1 ∈
∈M(1) and g2 ∈M(1) satisfy the condition

∑

n≤x

1
n
|g1(an + b)− dg2(cn)| = o(log x) as x →∞

if and only if there are functions g ∈M∗(1) and G1, G2 ∈M(1) such that

g1(n) = g(n)G1(n), g2(n) = g(n)G2(n), G1(an + b)− d
g(c)
g(a)

G2(cn) = 0

are satisfied for all positive integers n, furthermore

∑

n≤x

1
n
|g(n + 1)− g(n)| = o(log x) as x →∞.

Trivially, this relation holds for functions of the type g(n) = niτ , where τ is a
real number, and it has been conjectured that these are the only multiplicative
functions of modulus 1 that satisfy the last relation. This conjecture remains
open.
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Our purpose in this paper is to prove the following

Theorem 1. Let a > 0, b, A > 0, B be integers with (a,A) = 1, ∆ =
= Ab−aB 6= 0 and let C be a non-zero complex number. If g ∈M∗(1) satisfies
the condition

(1)
∑

n≤x

1
n
|g(an + b)− Cg(An + B)| = o(log x) as x →∞,

then

(2)
∑

n≤x

1
n
|g(n + 1)− g(n)| = o(log x) as x →∞.

Theorem 2. Let a > 0, b, A > 0, B be integers with (a,A) = 1, ∆ =
= Ab−aB 6= 0 and let C be a non-zero complex number. If g ∈M∗(1) satisfies
the condition

(3) g(an + b)− Cg(An + B) = o(1) as n →∞,

then there is a real-number τ such that

(4) g(n) = niτ for all n ∈ IN.

We note that if h(n) is a real-valued completely function, then f(n) :=
:= e2πih(n) is a complex-valued completely multiplicative function of modulus
1. By using the fact

‖ x ‖ ¿ | e2πix − 1 | ¿ ‖ x ‖,

where ‖ x ‖ denotes the distance of a real number x to the nearest integer, the
following corollary follows directly from Theorem 2

Corollary. If a real-valued completely additive function h(n) satisfies

‖ h(an + b)− h(An + B)−D ‖= o(1) as n →∞

with integers a > 0, b, A > 0, B, (a, A) = 1, ∆ = Ab− aB 6= 0 and some real
number D, then there exists a real number τ for which

‖ h(n)− τ log n ‖= 0 for all n ∈ IN.
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2. Proof of Theorem 1

We may suppose without loss of generality that (A, B) = (a, b) = 1, ∆ =
= Ab−aB > 0, and so by our assumption we have (a,A) = (a,∆) = (A,∆) = 1.
Let

M := (aA + 1)max(A−1, a−1).

First we prove that

(5)
∑
n≤x

(n, A)=1

1
n
|g (Mn + A∆)− g(M)g(n)| = o(log x)

and

(6)
∑
m≤x

(m, a)=1

1
m
|g (Mm− a∆)− g(M)g(m)| = o(log x)

as x →∞.

Let Q = aA + 1 and k ∈ IN . We start from the relation

Qk(an + b) = a

(
Qkn + b

Qk − 1
a

)
+ b,

whence by (1), we have

∑

n≤x

1
n

∣∣∣∣g
(

A

(
Qkn + b

Qk − 1
a

)
+ B

)
− g(Q)kg(An + B)

∣∣∣∣ = o(log x).

Consequently

(7)
∑

n≤x

1
n

∣∣∣∣g
(

Qk(An + B) + A∆
Qk − 1
Q− 1

)
− g(Q)kg(An + B)

∣∣∣∣ = o(log x).

Repeating the argument that was used above, we also have

(8)
∑

m≤x

1
m

∣∣∣∣g
(

Qk(am + b)− a∆
Qk − 1
Q− 1

)
− g(Q)kg(am + b)

∣∣∣∣ = o(log x)

as x →∞.
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Since Q = aA + 1, therefore Qk−1
Q−1 ≡ k (mod A). This shows that for each

positive integer l, (l, A) = 1, there is a positive integer k = k(l) < A such that
lk(l) ≡ B (mod A), therefore

Qk(l) − 1
Q− 1

l ≡ B (mod A).

Hence, if we write k(l) in place of k and

Qk(l) − 1
Q− 1

t +
1
A

(
Qk(l) − 1

Q− 1
l −B

)

in place of n, then

An + B =
Qk(l) − 1

Q− 1
(At + l),

and so we can write the condition (7) in the form

∑

t≤x

1
t

∣∣∣g
[
Qk(l)(At + l) + A∆

]
− g(Q)k(l)g(At + l)

∣∣∣ = o(log x).

Since

M = Qk(l)Qmax(A−1, a−1)−k(l) and Qmax(A−1, a−1)−k(l) ≡ 1 (mod A),

we infer from the above relation that

∑

t≤x

1
t
|g [M(At + l) + A∆]− g(M)g(At + l)| = o(log x)

holds for each positive integer l, (l, A) = 1. Hence, (5) immediately follows.

By using (8), the proof of (6) is similar and we omit it. Thus, we have
proved (5) and (6).

In the following, we denote by S(A) the set of those positive integers which
are products of the prime factors of A. Next, we prove that there is a positive
integer P = P (a,A) such that

(9)
∑
n≤x

(n, A)=1

1
n
|g (aPsn + ∆)− g(aPs)g(n)| = o(log x)

for all s ∈ S(A).
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Let s ∈ S(A). Since (A, M) = (a,A) = 1, there are positive integers
xs, ys, such that

Asxs + a = Mys, (xsys, aA) = 1 and xs < aAM.

Since xs < aAM and (xs, aA) = 1 for all s ∈ S(A), we can define P as

P := LCMs∈S(A)[xs].

Hence, if m = (asxsn + ∆)ys, then we have

(aMysn + A∆)sxs = Mm− a∆

and
(m, a) = ((asxsn + ∆)ys, a) = 1 for all n ∈ IN.

Consequently, (5) and (6) imply

∑
n≤x

(n, A)=1

1
n
|g(asxsn + ∆)− g(asxs)g(n)| = o(log x),

which, using the definition of P and the fact (P, aA) = 1, proves (9). Thus,
the relation (9) is proved.

Now we prove Theorem 1. We shall deduce from (9) that

(10)
1

log x

∑

n≤x

1
n
|g(aPn + ∆)− g(aPn)| = o(1) as x →∞.

Let A = πα1
1 · . . . · παr

r , r ≥ 1, A1 = πα2
2 · . . . · παr

r . To show (10), we shall
prove that we can reduce A to A1 in (9), i.e.

(11)
1

log x

∑
n≤x

(n, A1)=1

1
n
|g (aPs1n + ∆)− g(aPs1)g(n)| = o(1)

for all s1 ∈ S(A1). Repeating this argument we conclude that (10) holds.

Let s1 ∈ S(A1) and π = π1. For each integer γ ≥ 0 let

Sγ(x) :=
1

log x

∑
n≤x, (n,A1)=1

πγ‖n

1
n
|g(aPs1n + ∆)− g(aPs1n)|,
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where πγ ‖ n denotes that πγ |n and
(

n
πγ , π

)
= 1. One can get from (9) that

Sγ(x) = o(1) as x →∞ is satisfied for each γ ≥ 0. This relation together with
|g| ≡ 1 implies that for each positive integer µ, we have

1
log x

∑
n≤x

(n, A1)=1

1
n
|g (aPs1n + ∆)− g(aPs1)g(n)| ≤

≤
∑

0≤j≤µ−1

Sj(x) +
1

log x

∑
n≤x
πµ|n

2
n
¿ o(µ) +

2
πµ

,

and so

lim sup
x→∞

1
log x

∑
n≤x

(n, A1)=1

1
n
|g (aPs1n + ∆)− g(aPs1)g(n)| ¿ π−µ.

This with µ →∞ shows that

1
log x

∑
n≤x

(n, A1)=1

1
n
|g (aPs1n + ∆)− g(aPs1)g(n)| = o(1) as x →∞,

as asserted in (11). Thus, the proof of (10) is complete.

Finally, it is shown in [4, Lemma 2] that if g ∈M∗(1) satisfies the condition
(10), then (2) holds, and so the proof of Theorem 1 is finished.

3. Proof of Theorem 2

Assume that the function g ∈ M∗(1) satisfies the condition (3). We will
go along a thought line similar to the proof of (10) to deduce that there is a
positive integer P = P (a,A) such that

(12). g(aPn + ∆)− g(aPn) = o(1) as n →∞.

Finally, it is shown in the proof of Theorem 3 [4] that if the function
g ∈M∗(1) satisfies the condition (12), then

g(n + 1)− g(n) = o(1) as n →∞.
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This with Wirsing’s theorem [5] implies that there is a real number τ such that
(4) is true. Thus, Theorem 2 is proved.
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of Kátai for additive functions, J. Number Theory, 56 (1996), 391-395.

(Received June 8, 2002)

Bui Minh Phong
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