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A PURELY PROBABILISTIC PROOF
FOR A THEOREM OF BAKSTYS

ON MULTIPLICATIVE ARITHMETICAL FUNCTIONS

J. Galambos (Philadelphia, PA, USA)
I. Simonelli (Commerce, TX, USA)

Abstract. We give a purely probabilistic proof for a theorem of Bakstys

on multiplicative functions and, as a consequence, for the Erdős-Wintner

theorem on additive functions. This is made possible by a recent result on

products of independent random variables by Simonelli. Neither Simonelli

nor us use any analytic tools in the proofs and in the reduction method to

independent random variables no sieve methods are utilized.

1. Introduction

Let g(m) be a multiplicative arithmetical function with g(1) = 1. For
primes p we define sp = sp(m) to be the exponent of p in the prime factorization
of

(1) m =
∏
p

psp .

Then

(2) g(m) =
∏
p

g(psp).

Consider the probability space SN = (ΩN ,AN , PN ), where ΩN = {1, 2, · · · , N},
AN is the collection of all subsets of ΩN and PN is the probability measure
that assigns mass 1/N to each element in ΩN . If A is a set A = {a1, a2, · · ·} of
positive integers aj , we set AN = A ∩ ΩN . Then

lim PN (AN ) = d(A), N → +∞,
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whenever the limit above exists, is called the (natural) density of A. In the
sequel we just put PN (A) for PN (AN ). We write

FN (x) = PN ({m : m ∈ ΩN , g(m) ≤ x}) , x real.

The density limFN (x) = F (x), N → +∞, when it exists, is called the limiting
distribution function of g(m). The limiting distribution function F (x) is called
symmetric if F (x) = 1 − F (−x) for all continuity points of F (x). We deal
with nonsymmetric limiting distribution functions in this paper. Note that, for
integers kj ≥ 0 and for every t ≥ 1,

(3) PN

({
m : m ∈ ΩN , spj

(m) ≥ kj , 1 ≤ j ≤ t
})

=
1
N

⌊ N

pk1
1 pk2

2 · · · pkt
t

⌋
,

where byc signifies the integer part of y. We once again drop m and m ∈ ΩN

from the notation and abbreviate the left hand side to PN (spj (m) ≥ kj , 1 ≤
≤ j ≤ t). The right hand side of (3) expresses an almost stochastic indepen-
dence of the functions spj

= spj
(m). It is indeed our aim of analyzing the

existence of F (x) above through a probabilistic model in which the spj are
completely independent. For this, we introduce an abstract probability space
(Ω,A, P ) on which there are random variables epj

= epj
(ω) which take the

nonnegative integers kj ≥ 0 with distribution

P
(
epj ≥ kj , 1 ≤ j ≤ t

)
=

1
pk1
1 pk2

2 · · · pkt
t

.

Hence, the random variables epj , j ≥ 1, are stochastically independent.
Simonelli (2001) obtained a complete solution to the existence of limiting
distribution of the product

(4) GN (ω) =
∏

g(pep).

Simonelli’s argument is purely probabilistic, free of transforms of distributions.
Hence, our proofs on g(m) will be purely probabilistic if we reduce the
distributional properties of the multiplicative function g(m) of (2) to that of
GN (ω) of (4) without any number theoretic tools such as sieve methods.

2. The theorem of Bakstys and the Erdős-Wintner theorem

Our aim is to give a new proof for the following theorem of Bakstys (1968).
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Theorem 1. Let g(m) 6= 0 and assume

∑

g(p)<0

1
p

< +∞.

Then g(m) has a limiting distribution function F (x), continuous at 0, if, and
only if, g∗(m) = |g(m)| does. Equivalently, g(m) has a limiting distribution
function continuous at 0 if, and only if, for arbitrary 0 < M < +∞, the three
series

(5) (i)
∗∑ 1

p
, (ii)

∗∗∑ log |g(p)|
p

, (iii)
∗∗∑ log2 |g(p)|

p

converge, where summation in
∑∗ is over primes p such that | log |g(p)|| >

> M , and in
∑∗∗, | log |g(p)|| < M . The limiting distribution function F (x)

is symmetric if, and only if, g(2k) = −1 for all k.

From (5) it is clear that g(m) and g∗(m) have limiting distribution
functions at the same time.

The special case g(m) > 0, for all m ≥ 1, allows one to take logarithm of
g(m). We have from (2)

(6) f(m) = log g(m) =
∑

p

log g(psp) =
∑

p

f(psp).

The property at (6) is referred to as f(m)’s being additive. Hence, Theorem 1
implies the celebrated Erdős-Wintner theorem (Erdős and Wintner (1939), or
Elliott (1979), p. 187).

Theorem 2. An additive arithmetical function f(m) has a limiting
distribution if, and only if, the three series at (5) converge (upon replacing
log |g(p)| by f(p)).

Theorem 2 resembles the three-series theorem of Kolmogorov from proba-
bility theory. If one rewrites (6) as

f(m) =
∑

p

εp,sp
(m)f(psp),

where, with the notation at (1),

εp,sp(m) =





1 if psp‖m,

0 otherwise,
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an additive function f(m) becomes an “infinite sum of random variables”.
It came up in the literature several times, and both P. Erdős and A. Rényi
suggested to one of us (Galambos) in personal discussions to reduce Theorem
2 from the Kolmogorov three-series theorem rather than proceeding with a
dependent model and extending the three series theorem to such model in order
to prove Theorem 2 on probabilistic lines (see Galambos [4]). Such a solution
is now given in the present paper via proving the more general Theorem 1.

When we use Chebyshev’s inequality in one argument in the next section
the variance of the logarithm of |g(m)| enters, that can be estimated by (iii) of
(5). In order to avoid new computations we refer there to the Kubilius-Turán
inequality (see Kubilius [6] or Elliott [2], p.147).

3. Proof of Theorem 1

For the random variable GN (ω) of (4), Simonelli (2001) proved the
following theorem.

Theorem 3. Let g(m) 6= 0 and assume

∑

g(p)<0

1
p

< +∞.

(i) GN (ω) converges weakly to a random variable continuous at zero if,
and only if, |GN (ω)| does. The limiting distribution of GN (ω) is symmetric if,
and only if, g(2k) = −1 for all k ≥ 1.

(ii) GN (ω) converges weakly to a random variable discontinuos at zero if,
and only if, GN (ω) converges to zero almost surely.

We wish to stress that no analytic tools (transforms such as characteristic
functions) are employed by Simonelli.

Proof of Theorem 1. First let us assume the validity of the three series
in (5). This, Kolmogorov three series theorem, and Theorem 3 immediately
imply that GN (ω) converges weakly to a random variable continuous at 0. We
claim that GN (ω) and g(m) have the same limiting distribution. Since for each
T ,

∏
p≤T

g(psp(m)) converges weakly to GT (ω), as N → +∞, to prove our claim

it suffices to show that for any δ > 0,

R = lim
T→+∞

lim sup
N→+∞

PN

(∣∣∣
∏

p≤N

g(psp(m))−
∏

p≤T

g(psp(m))
∣∣∣ > δ

)
= 0.
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Now, the following estimates

PN

( ∏

T<p≤N

g(psp(m)) < 0
)
≤


 ∑

p>T :g(p)<0

1
p

+
∑

p>T

1
p2


 → 0 as T → +∞

and
PN

(
sp(m) 6= βp(m), p > T

)
≤

∑

p>T

1
p2
→ 0 as T → +∞,

where βp(m) = 1 if p|m and 0 otherwise, give

R = lim
T→+∞

lim sup
N→+∞

PN

(∣∣∣
∏

p≤T

g(psp(m))
∣∣∣
∣∣∣

∏

T<p≤N

g(psp(m))− 1
∣∣∣ > δ

)
≤

≤ lim
T→+∞

lim sup
N→+∞

PN

(∣∣∣
∏

p≤T

g(psp(m))
∣∣∣
∣∣∣

∏

T<p≤N

∣∣∣g(pβp(m))
∣∣∣− 1

∣∣∣ > δ
)
.

This last estimate and the weak convergence of GT (ω) to a proper distribution
imply that R = 0 holds whenever for arbitrary ε > 0

(7) lim
T→+∞

lim sup
N→+∞

PN

(∣∣∣
∏

T<p≤N

∣∣∣g(pβp(m))
∣∣∣− 1

∣∣∣ > ε
)

= 0.

The convergence of the first series in (5) and the inequality

PN

(∣∣∣
∏

T<p≤N

∣∣∣g(pβp(m))
∣∣∣− 1

∣∣∣ > ε
)
≤

≤
∗∑

T<p≤N

1
p

+ PN

(∣∣∣
∗∗∏

T<p≤N

|g(pβp(m))| − 1
∣∣∣ > ε

)
,

where
∏∗∗ is over all primes p such that | log |g(p)|| < M , give that (7) is

equivalent to

lim
T→+∞

lim sup
N→+∞

PN

(∣∣∣
∗∗∏

T<p≤N

|g(pβp(m))| − 1
∣∣∣ > ε

)
= lim

T→+∞
lim sup
N→+∞

RN,T = 0.

Let 0 < ε1 < ε. The convergence of the second series in (5) implies we can find
a To such that whenever N > T > To,

∣∣∣
∗∗∏

T<p≤N

|g(p)| 1p − 1
∣∣∣ < ε1.
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Hence,





∣∣∣
∗∗∏

T<p≤N

|g(pβp(m))| − 1
∣∣∣ > ε



 =

=





∗∗∏

T<p≤N

|g(pβp(m))| > 1 + ε or
∗∗∏

T<p≤N

|g(pβp(m))| < 1− ε



 ⊆

⊆




∗∗∏

T<p≤N

|g(pβp(m))|
|g(p)| 1p

(1 + ε1) > 1 + ε or

∗∗∏

T<p≤N

|g(pβp(m))|
|g(p)| 1p

(1− ε1) < 1− ε



 =

=



ln




∗∗∏

T<p≤N

|g(pβp(m))|
|g(p)| 1p


 > ln

(
1 + ε

1 + ε1

)
or

ln




∗∗∏

T<p≤N

|g(pβp(m))|
|g(p)| 1p


 < ln

(
1− ε

1− ε1

)

 ⊆

⊆




∣∣∣
∗∗∑

T<p≤N

ln |g(pβp(m))| −
∗∗∑

T<p≤N

ln |g(p)|
p

∣∣∣ > ε′



 ,

where ε′ = min
{

ln
(

1 + ε

1 + ε1

)
,− ln

(
1− ε

1− ε1

)}
. Hence

RN,T ≤ PN

(∣∣∣
∗∗∑

T<p≤N

ln |g(pβp(m))| −
∗∗∑

T<p≤N

ln |g(p)|
p

∣∣∣ > ε′
∣∣∣
)
.

Now, by Chebyshev’s inequality, after estimating the variance by Kubilius-
Turán inequality, PN () above is at most

C

ε′2

∗∗∑

p>T

ln2 |g(p)|
p

,

and by assumption this bound goes to 0 as T → +∞. Hence R = 0 and the
weak convergence of g(m) and |g(m)| is established.
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Next we assume |g(m)| has a limiting distribution continuous at zero. Let
|GTk

(ω)| be an arbitrary subsequence of |GN (ω)| that converges weakly, and
denote by H(x) its limiting distribution. We claim that H(x) is a proper
distribution continuous at zero. If this is indeed the case, the convergence of
|g(m)| and the first part of the proof would imply that H(x) must coincide
with the limiting distribution of |g(m)|, and since |GTk

(ω)| was arbitrary this
would give the convergence of |GN (ω)|. Kolmogorov three series theorem and
the first part of our proof would further imply the convergence of the three
series in (5) and of g(m). So let us first assume that H(x) is not continuous at
zero. Then from Theorem 3 |GTk

(ω)| converges to zero almost surely. We show
that this is not possible since it would imply that the limiting distribution of
|g(m)| is also degenerate at 0, contradicting our initial assumption. Let βp(m)
be as in the first part of the proof. To prove our claim it suffices to show that
for arbitrary ε > 0,

(8) lim
k→+∞

lim sup
n→+∞

PTn


 ∏

Tk<p≤Tn

|g(pβp(m))| > ε


 = 0.

In fact the convergence of |g(m)| and (8) immediately give that for arbitrary k

lim
N→+∞

PN


 ∏

p≤N

|g(psp)| > ε


 = lim

n→+∞
PTn


 ∏

p≤Tn

|g(psp)| > ε


 ≤

≤ lim sup
n→+∞

(
PTn


 ∏

Tk<p≤Tn

|g(pβp(m))| > ε


 +

+ PTn


 ∏

p≤Tk

|g(psp(m))| ≥ 1


 +

∑

p>Tk

1
p2

)
,

and the right hand side of the above inequality goes to zero as k → +∞. By
Markov inequality ([5], p.50)

lim sup
n→+∞

PTn


 ∏

Tk<p≤Tn

|g(pβp(m))| > ε


 ≤ 1

ε
lim sup
n→+∞

ETn


 ∏

Tk<p≤Tn

|g(pβp(m))|

 ,

and by Schwarz’s inequality ([5], p.50 and 419) the above expectation is
bounded by

(9)


ETn


 ∏

Tk<p≤Tk+t

|g(pβp(m))|2

 ETn


 ∏

Tk+t<p≤Tn

|g(pβp(m))|2






1
2

.
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Since the first expectation in (9) goes to zero as n and then t go to infinity, the
validity of (8) will follow if we can show that

α = lim
t→+∞

lim sup
n→+∞

ETn


 ∏

Tk+t<p≤Tn

|g(pβp(m))|2



is bounded. Let tn be the number of primes p, Tk+t < p ≤ Tn. By applying
Hölder inequality tn − 1 times one obtains that α is at most

lim
t→+∞

lim sup
n→+∞


 ∏

Tk+t<p≤Tn

ETn

[
|g(pβp(m))|2tn

]



1
tn

,

and hence to show that α is bounded it suffices to show that

lim
t→+∞

lim sup
n→+∞

∏

Tk+t<p≤Tn

ETn

[
|g(pβp(m))|2tn

]

is bounded.

ETn

[
|g(pβp(m))|2tn

]
= 1− (1− |g(p)|2tn)

bTn/pc
Tn

≤

≤




1− 1−|g(p)|2tn

p if |g(p)| ≥ 1,

1− 1−|g(p)|2tn

p + 1−|g(p)|2tn

Tn
if |g(p)| < 1.

Let
∏∗∗ denote product over all p’s with |g(p)| < 1, and bp(ω) = 1 if ep(ω) ≥ 1,

0 otherwise. Then
(10) ∏

Tk+t<p≤Tn

ETn

[
|g(pβp(m))|2tn

]
≤

≤
∏

Tk+t<p≤Tn

E
[
|g(pbp(ω))|2tn

] ∗∗∏

Tk+t<p≤Tn


1− 1−|g(p)|2tn

p + 1−|g(p)|2tn

Tn

1− 1−|g(p)|2tn

p


 ≤

≤
∏

Tk+t<p≤Tn

E
[
|g(pbp(ω))|2tn

] ∗∗∏

Tk+t<p≤Tn

[
1 +

p

p− 1
1
Tn

]
≤

≤
∏

Tk+t<p≤Tn

E
[
|g(pbp(ω))|2tn

]
e

∗∗∑
Tk+t<p≤Tn

2
Tn

=

=E


 ∏

Tk+t<p≤Tn

|g(pbp(ω))|2tn


 e

∗∗∑
Tk+t<p≤Tn

2
Tn

.
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Since |GTk
(ω)| converges to zero almost surely, the first term in (10) goes to

zero as n → +∞, whereas the second term goes to one since the exponent of e
is at most tn/Tn that also goes to zero as n → +∞. Hence

lim
t→+∞

lim sup
n→+∞

∏

Tk+t<p≤Tn

ETn

[
|g(pβp(m))|2tn

]
= 0,

that implies α is bounded and consequently (8) holds, completing the proof of
our claim.

Next we assume that H(x), the limiting distribution of |GTk
|, is continuous

at 0 but not proper. In this case we consider |GTk
|−1. Since g(m) 6= 0, this

new random variable is well defined. Since H(x) is not proper, by Theorem 3
|GTk

|−1 converges to 0 almost surely, and as in the previous case this implies
that the limiting distribution of the multiplicative function |g(m)|−1 is also
degenerate at 0 which contradicts our initial assumption on g(m). Hence weak
convergence of |g(m)| implies weak convergence of |GN (ω)|, the convergence of
the three series in (5), and by the first part of our proof weak convergence of
g(m).

Clearly, if g(m) has a limiting distribution so does |g(m)|, reducing this
case to the one we have just proved. The proof of Theorem 1 is now complete.
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