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VERTEX DISJOINT POLYP PACKING

G.Y. Katona (Budapest, Hungary)

Abstract. A graph is called a p-polyp if it consists of p simple paths of the

same length and one endvertex of all these paths is a common vertex. The

Polyp Packing problem is a generalization of the well known Bin Packing

problem: How to pack a set of paths with different lengths to a set of polyps

vertex disjointly? It is proved in [4] that the Polyp Packing problem is NP-

complete. In the present paper we prove that a modification of the First

Fit algorithm gives a reasonable approximation.

1. Introduction

We will use the standard terminology of graph theory through the paper,
but a few terms have multiple meaning in general so they are defined next.

Let G,H1,H2, . . . ,Hk be simple graphs on the disjoint vertex sets V (G),
V (H1), V (H2), . . . , V (Hk). An edge disjoint embedding of H1, . . . , Hk into
G is a mapping f : V (G) → ∪V k

i=1(Hi) such that if u and v are adjacent
vertices of Hi then f(u) and f(v) are adjacent in G. (Note that u 6= v does
not imply f(u) 6= f(v).) A vertex disjoint embedding of H1, . . . ,Hk into G
is an edge disjoint embedding for which u 6= v implies f(u) 6= f(v). The
phrase path usually refers to a subgraph of a graph but in the present paper
it will refer to the simple graph which is a path itself. So a simple path
of length s refers to the graph with vertex set {v0, v1, . . . , vs} and edge set
{{v0, v1, }, {v1, v2}, . . . , {vs−1, vs}}.

Both of the following problems may be considered as a generalization of
the Bin Packing problem [2]: Given a simple path P , a set of simple paths
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>
1
2
≥ b2 >

1
3
≥ b3 >

1
4

then b1 ≥ 2 + ε− 2
7
− b2 − b3 is obtained. Therefore

(2)

3∑

i=1

W (bi) ≥ 3
2p

b1 +
6

5p + 1
b2 +

p− 1
(2p + 1)(5p + 1)

+

+
18p

(2p + 1)(5p + 1)
b3 − p− 1

(2p + 1)(5p + 1)
>

>
3
2p

(
2− 2

7
− b2 − b3

)
+

6
5p + 1

b2 +
18p

(2p + 1)(5p + 1)
b3 =

=
18
7p
− b2

3p + 3
2p(5p + 1)

+ b3
6p2 − 21p− 3

2p(2p + 1)(5p + 1)

holds. In general the coefficients of b2 and b3 may be independently positive or
negative for some fixed p, but the expression can reach its minimum only if b2

and b3 have minimum or maximum value. If we are interested in the minimum
of the expression the following four cases must be checked:

1) b2 =
1
2

and b3 =
1
3
,

2) b2 =
1
2

and b3 =
1
4

+ ε,

3) b2 =
1
3

+ ε and b3 =
1
3
,

4) b2 =
1
3

+ ε and b3 =
1
4

+ ε.

In each case an inequality is obtained with one variable and, though it can
be quite complicated, it may be proved that the inequality is true. In fact the
author used the computer software MAPLE to find the proofs faster.

In this particular case it is easy to see that the coefficient of b2 is always
negative and the coefficient of b3 is positive if p ≥ 4, so we need to check only
Case 2) for p ≥ 4:

18
7p
− b2

3p + 3
2p(5p + 1)

+ b3
6p2 − 21p− 3

2p(2p + 1)(5p + 1)
− 7

3p + 1
=

=
274p3 + 859p2 + 586p + 81
56p(5p + 1)(2p + 1)(3p + 1)

> 0.

If 1 ≥ b1 >
1
2
≥ 1

3
> b2 ≥ b3 then b1 + b2 + b3 <

5
3

<
12
7

, so the proof may

be continued with the case of four paths.
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When two of the four paths are >
1
2

then we obtain

4∑

i=1

W (bi) ≥ 2
1
p

+ 2W

(
1
4

)
>

7
3p + 1

if p ≥ 4, since the other two paths are at least
1
4
.

The next case is b1 >
1
2
≥ b2 ≥ b3 ≥ b4 >

1
3
, when

4∑

i=1

W (bi) >
1
p

+ 3
1

2p + 1
≥ 7

3p + 1

holds.

If b1 >
1
2
≥ b2 ≥ b3 >

1
3
≥ b4 >

1
4

then one can apply the detailed method

explained above and obtain

4∑

i=1

W (bi) ≥

≥
(

2− 2
7
− b2 − b3 + b4

)
3
2p

+ (b2 + b3)
6

5p + 1
+ 2

p− 1
(2p + 1)(5p + 1)

+

+ b4
18p

(2p + 1)(5p + 1)
− p− 1

(2p + 1)(5p + 1)
>

7
3p + 1

,

because b2 + b3 may be considered as one variable.

The same method works with the appropriate coefficients if b1 >
1
2
≥ b2 >

>
1
3
≥ b3 ≥ b4 >

1
4
.

If b1 >
1
2

>
1
3
≥ b2 ≥ b3 ≥ b4 >

1
4

then

4∑

i=1

W (bi) ≥
(

2− 2
7
− b2 − b3 − b4

)
3
2p

+

+ (b2 + b3 + b4)
18p

(2p + 1)(5p + 1)
− 3

p− 1
(2p + 1)(5p + 1)

>
7

3p + 1
,

because the coefficient of (b2+b3+b4) will be positive if p ≥ 4 and b2+b3+b4 >

>
3
4
.



Vertex disjoint Polyp Packing 97

In the rest of this case all paths have length ≤ 1
2
. If all paths are also >

1
3

then
4∑

i=1

W (bi) ≥
(

2− 2
7

)
6

5p + 1
+ 4

p− 1
(2p + 1)(5p + 1)

>
7

3p + 1

is obtained.

If
1
2
≥ b1 ≥ b2 ≥ b3 >

1
3
≥ b4 >

1
4

then similarly to the previous cases

4∑

i=1

W (bi) ≥
(

2− 2
7
− b4

)
6

5p + 1
+ 3

p− 1
(2p + 1)(5p + 1)

+

+ b4
18p

(2p + 1)(5p + 1)
− p− 1

(2p + 1)(5p + 1)
>

7
3p + 1

.

If
1
2
≥ b1 ≥ b2 >

1
3
≥ b3 ≥ b4 >

1
4

then 2− 2
7

< 2 + ε− αd ≤
4∑

i=1

bi ≤ 5
3

is

a contradiction.
This was the last case of four paths so we can continue with five paths.

If one of the paths is >
1
2

then we obtain

5∑

i=1

W (bi) ≥ 1
p

+ 4W

(
1
4

)
=

1
p

+
2

2p + 1
+

2
5p + 1

>
7

3p + 1

is obtained because all the other paths are >
1
4
.

If
1
2
≥ b1 ≥ b2 ≥ b3 ≥ b4 ≥ b5 >

1
3

then

5∑

i=1

W (bi) > 5W

(
1
3

)
>

7
3p + 1

is obtained.

If
1
2
≥ b1 ≥ b2 ≥ b3 ≥ b4 >

1
3
≥ b5 >

1
4

then

5∑

i=1

W (bi) ≥
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≥
(

2− 2
7
− b5

)
6

5p + 1
+ b5

18p

(2p + 1)(5p + 1)
+ 3

p− 1
(2p + 1)(5p + 1)

>
7

3p + 1

holds because the coefficient of b5 is positive if p ≥ 4 and b5 >
1
4
.

If
1
2
≥ b1 ≥ b2 ≥ b3 >

1
3
≥ b4 ≥ b5 >

1
4

then the proof is the same as in

the previous case.

If
1
2
≥ b1 ≥ b2 >

1
3
≥ b3 ≥ b4 ≥ b5 >

1
4

then

5∑

i=1

W (bi) ≥ (b1 + b2)
6

5p + 1
+

+
(

2− 2
7
− b1 − b2

)
18p

(2p + 1)(5p + 1)
+

p− 1
(2p + 1)(5p + 1)

>
7

3p + 1

holds because the coefficient of b1 + b2 is negative if p ≥ 4 and b1 + b2 ≤ 1.

If
1
2
≥ b1 >

1
3
≥ b2 ≥ b3 ≥ b4 ≥ b5 >

1
4

then

5∑

i=1

W (bi) ≥

≥ b1
6

5p + 1
+

(
2− 2

7
− b1

)
18p

(2p + 1)(5p + 1)
+ 3

p− 1
(2p + 1)(5p + 1)

>
7

3p + 1

is obtained since the coefficient of b1 is negative if p ≥ 4 and b1 ≤ 1
2
.

If all 5 paths are <
1
3

then the sum of their sizes is <
5
3

<
12
7

which is a

contradiction therefore we continue with the case of six paths.

If one path is >
1
2

then

6∑

i=1

W (bi) >
1
p

+ 5W (
(

1
4

)
>

7
3p + 1

holds since the other paths are >
1
4
.

The proof is similar if
1
2
≥ b1 ≥ b2 >

1
3

since p ≥ 4.



Vertex disjoint Polyp Packing 99

If
1
2
≥ b1 >

1
3
≥ b2 ≥ . . . ≥ b6 >

1
4

then

6∑

i=1

W (bi) > b1
6

5p + 1
+

p− 1
(2p + 1)(5p + 1)

+

+
(

2− 2
7
− b1

)
18p

(2p + 1)(5p + 1)
− 5

p− 1
(2p + 1)(5p + 1)

>
7

3p + 1

since b1 ≤ 1
2
.

The last case is when there are seven or more paths. All of them must be

over
1
4
, thus

t∑

i=1

W (bi) > 7W

(
1
4

)
>

7
3p + 1

.

To complete the proof of this part a contradiction is shown. It is supposed

that αd+1 = αd which implies that the sum of the weights is ≥ 7
3p + 1

in the

paired arms and the weight sum is ≥ 3
3p + 1

in each of the p − 2 single arms.

This is a contradiction since

7
3p + 1

+ (p− 2)
3

3p + 1
= 1.

Case 5.
2
7

< αd ≤ 1
3
, the center is covered.

Suppose that αd+1 6> αd. It will be shown that this implies
t∑

i=1

W (bi) ≥ 1,

a contradiction. Unfortunately we have to go through a number of cases again
but as αd increases, the number of the cases decreases.

There is an exceptional case which cannot be covered by the ususal method,
so it has to be proved in a different way. This is the case when there are 5

paths in the paired arms (the center is covered) and
1
2
≥ b1 ≥ b2 >

1
3
≥ b3 ≥

b4 ≥ b5 > αd >
2
7
.

Let us prove this case first. It will be proved that the weight sum is at
least

23p + 13
(2p + 1)(5p + 1)

+ αd
6p− 24

(2p + 1)(5p + 1)
,
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in the paired arms and the weight sums are at least

10p2 − 16p− 12− 6αdp + 24αd

(2p + 1)(5p + 1)(p− 2)

in the single arms. The total weight sum is the sum of the weights in the paired
arms and in the (p− 2) single arms

23p + 13
(2p + 1)(5p + 1)

+ αd
6p− 24

(2p + 1)(5p + 1)
+

10p2 − 16p− 12− 6αdp + 24αd

(2p + 1)(5p + 1)
≥ 1,

which is a contradiction.
It is easy to prove the first claim. Now b1 + b2 ≥ 2 + ε− b3 − b4 − b5 − αd

holds which implies

5∑

i=1

W (bi) > (2− b3 − b4 − b5 − αd)
6

5p + 1
+

+ (b3 + b4 + b5)
18p

(2p + 1)(5p + 1)
− p− 1

(2p + 1)(5p + 1)
=

= (b3 + b4 + b5)
6p− 6

(2p + 1)(5p + 1)
+

12− 6αd

5p + 1
− p− 1

(2p + 1)(5p + 1)
>

> αd
18p− 18

(2p + 1)(5p + 1)
+

12− 6αd

5p + 1
− p− 1

(2p + 1)(5p + 1)
=

=
23p + 13

(2p + 1)(5p + 1)
+ αd

6p− 24
(2p + 1)(5p + 1)

.

The second claim about the single arms is proved next.

If there is only one path in the arm it must be over
2
3

otherwise αd+1 > αd.

The weight of a path over
2
3

is at least
1
p
, and the inequality

1
p

>
10p2 − 16p− 12− 6αdp + 24αd

(2p + 1)(5p + 1)(p− 2)

holds for αd ≤ 1
3
, proving our claim.

If there are two paths, b1 ≥ b2 >
1
3

then

W (b1) + W (b2) ≥

> (1− αd)
6

5p + 1
+ 2

p− 1
(2p + 1)(5p + 1)

≥ 10p2 − 16p− 12− 6αdp + 24αd

(2p + 1)(5p + 1)(p− 2)
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holds, since αd ≤ 1
3
.

If b1 >
1
3
≥ b2 >

2
7

then

W (b1) + W (b2) ≥ b1
6

5p + 1
+

p− 1
(2p + 1)(5p + 1)

+

+ b2
18p

(2p + 1)(5p + 1)
− p− 1

(2p + 1)(5p + 1)
>

> (1− b2 − αd)
6

5p + 1
+ b2

18p

(2p + 1)(5p + 1)
=

= b2
6p− 6

(2p + 1)(5p + 1)
+

6− 6αd

5p + 1
≥

≥ 10p2 − 16p− 12− 6αdp + 24αd

(2p + 1)(5p + 1)(p− 2)

is obtained.
1
3
≥ b1 ≥ b2 is not possible so the only case left is when there are at least

3 paths. The weight of each path is at least W (αd) and

3W (αd) ≥ 10p2 − 16p− 12− 6αdp + 24αd

(2p + 1)(5p + 1)(p− 2)

can be proved easily.
The proof of the exceptional case is completed. Notice that

10p2 − 16p− 12− 6αdp + 24αd

(2p + 1)(5p + 1)(p− 2)
≥ 2

2p + 1

holds for the previous lower bound if p ≥ 4 and αd ≤ 1
3
. Thus it can be proved

that the sum of the weights is at least
2

2p + 1
in the single arms since these

inequalities do not depend on the conditions of the exceptional case.
In order to finish this case it will be proved that the weight sum is at least

5
2p + 1

in the paired arms (except the exceptional case).

It is easy to see that there are least 2 paths, otherwise the weight of the

only path is > 1. If both paths are >
1
2

then the lower bound
3
2p

x on the
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weight of a path of length x can be used as earlier. The other observation is

that b1 + b2 ≥ 2 + ε− αd >
5
3
. Thus

W (b1) + W (b2) ≥ 3
2p

(b1 + b2) >
3
2p

5
3

>
5

2p + 1

holds. The same proof can be applied if there are more than 2 paths and all

are >
1
2
. In the rest of the proof there will be at least one path which is ≤ 1

2
.

Therefore if there are only two paths then αd+1 > αd, since the other path is
≤ 1.

The cases when there are 3 paths in the paired arms are proved next. If

b1 ≥ b2 >
1
2
≥ b3 ≥ 1

3
then

3∑

i=1

W (bi) ≥ 2
1
p

+
1

2p + 1
>

5
2p + 1

holds.

If b1 ≥ b2 >
1
2

>
1
3

> b3 > αd >
2
7

then a better lower bound must be

used for the paths >
1
2
. It is obvious that

W (x) ≥ x
21p + 6

(2p + 1)(5p + 1)
− 4p2 − 3p− 1

p(2p + 1)(5p + 1)

in
(

1
2
, 1

]
. Using the bound b1 + b2 > 2 + ε− αd − b3

3∑

i=1

W (bi) ≥ (b1 + b2)
21p + 6

(2p + 1)(5p + 1)
− 2

4p2 − 3p− 1
p(2p + 1)(5p + 1)

+

+ b3
18p

(2p + 1)(5p + 1)
− p− 1

(2p + 1)(5p + 1)
>

> (2− αd − b3)
21p + 6

(2p + 1)(5p + 1)
+

+ b3
18p

(2p + 1)(5p + 1)
− 9p2 − 7p− 2

p(2p + 1)(5p + 1)
=

= −b3
3p + 6

(2p + 1)(5p + 1)
+

13p + 2
p(5p + 1)

≥ 5
2p + 1
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is obtained since now b3 <
1
3

and αd ≤ 1
3
.

If b1 >
1
2
≥ b2 ≥ b3 ≥ 1

3
then none of our usual methods works. However,

if we take into consideration that these paths got their place in the polyp with
the First Fit algorithm then we can settle it easily. The following more general
claim is proved because this method is used in other case, too.

Claim 1. If the paired arms contain the paths b1, . . . , bt, for every 1 ≤
i ≤ t and every partition of {b1, . . . , bt} − {bi} into two sets (one of them may
be empty) the sum of the sizes in one of the parts is ≤ 1 − bi, then the center
cannot be covered.

Proof of Claim 1. The only reason to cover the center with bi is that it
does not fit to neither arm of the paired arms. This happens only if the sum
of the sizes in both of these arms is > 1− bi.

If b1 >
1
2
≥ b2 ≥ b3 ≥ 1

3
then the conditions of Claim 1 clearly hold, the

center cannot be covered.

If b1 >
1
2
≥ b2 ≥ 1

3
> b3 >

2
7

then

3∑

i=1

W (bi) ≥ b1
21p + 6

(2p + 1)(5p + 1)
− 4p2 − 3p− 1

p(2p + 1)(5p + 1)
+

+ b2
6

5p + 1
+

p− 1
(2p + 1)(5p + 1)

+

+ b3
18p

(2p + 1)(5p + 1)
− p− 1

(2p + 1)(5p + 1)
≥

≥
(

2− 1
3
− b2 − b3

)
21p + 6

(2p + 1)(5p + 1)
− 4p2 − 3p− 1

p(2p + 1)(5p + 1)
+

+ b2
6

5p + 1
+ b3

18p

(2p + 1)(5p + 1)
>

5
2p + 1

using the method explained in detail earlier.

If b1 >
1
2

>
1
3

> b2 ≥ b3 >
2
7

then
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3∑

i=1

W (bi) ≥ b1
21p + 6

(2p + 1)(5p + 1)
− 4p2 − 3p− 1

p(2p + 1)(5p + 1)
+

+ (b2 + b3)
18p

(2p + 1)(5p + 1)
− 2

p− 1
(2p + 1)(5p + 1)

≥

≥
(

2− 1
3
− b2 − b3

)
21p + 6

(2p + 1)(5p + 1)
− 4p2 − 3p− 1

p(2p + 1)(5p + 1)
+

+ (b2 + b3)
18p

(2p + 1)(5p + 1)
− 2

p− 1
(2p + 1)(5p + 1)

>
5

2p + 1

since the coefficient of b2 + b3 is negative and b2 + b3 <
2
3
.

If there is no path >
1
2

then the sum of the sizes may reach only
3
2
, but

then αd+1 > αd, so we can continue with the case of four paths in the paired
arms.

If there are at least two paths >
1
2

then, since the other two must be >
2
7
,

we obtain
3∑

i=1

W (bi) ≥ 2
p

+ 2W

(
2
7

)
>

5
2p + 1

.

If b1 >
1
2
≥ b2 ≥ b3 ≥ b4 ≥ 1

3
then

4∑

i=1

W (bi) ≥ 1
p

+ 3
1

2p + 1
>

5
2p + 1

holds.

If b1 >
2
3

>
1
2
≥ b2 ≥ b3 ≥ 1

3
> b4 >

2
7

then the complicated method

must be used again:

4∑

i=1

W (bi) ≥ b1
21p + 6

(2p + 1)(5p + 1)
− 4p2 − 3p− 1

p(2p + 1)(5p + 1)
+ (b2 + b3)

6
5p + 1

+

+ 2
p− 1

(2p + 1)(5p + 1)
+ b4

18p

(2p + 1)(5p + 1)
− p− 1

(2p + 1)(5p + 1)
>

> b1
21p + 6

(2p + 1)(5p + 1)
+ (2− αd − b1 − b4)

6
5p + 1

+

+ b4
18p

(2p + 1)(5p + 1)
− 3p2 − 2p− 1

p(2p + 1)(5p + 1)
>

5
2p + 1
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holds since αd < b4, the coefficient of b1 is positive, the coefficient of b4 is

negative, b1 >
2
3

and b4 <
1
3
.

If
2
3
≥ b1 >

1
2
≥ b2 ≥ b3 ≥ 1

3
>

2
7

then

4∑

i=1

W (bi) >
1
p

+
(

2− 2
3
− b4

)
6

5p + 1
+ 2

p− 1
(2p + 1)(5p + 1)

+

+ b4
18p

(2p + 1)(5p + 1)
− p− 1

(2p + 1)(5p + 1)
>

5
2p + 1

since b1 ≤ 2
3
, the coefficient of b4 is positive and b4 >

2
7
.

If
2
3
≥ b1 >

1
2
≥ b2 ≥ 1

3
> b3 ≥ b4 >

2
7

then

4∑

i=1

W (bi) ≥ 1
p

+
(

2− 2
3
− b3 − b4

)
6

5p + 1
+

p− 1
(2p + 1)(5p + 1)

+

+ (b3 + b4)
18p

(2p + 1)(5p + 1)
− 2

p− 1
(2p + 1)(5p + 1)

>
5

2p + 1

because b1 ≤ 2
3
, the coefficient of b3 + b4 is positive and b3 + b4 >

4
7
.

If
2
3
≥ b1 >

1
2

>
1
3

> b2 ≥ b3 ≥ b4 >
2
7

then it is easy to see that
αd+1 > αd.

If
1
2
≥ b1 ≥ b2 ≥ b3 ≥ b4 then the center cannot be covered by Claim 1.

This completes the case of 4 paths.
In the next cases there are five paths in the paired arms. If at least one of

them is >
1
2

then

5∑

i=1

W (bi) >
1
p

+ 4W

(
2
7

)
>

5
2p + 1

is a good lower bound, since the other paths are over
2
7
.

If all paths are ≥ 1
3

then the weight sum is clearly ≥ 5
2p + 1

.
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If
1
2
≥ b1 ≥ b2 ≥ b3 ≥ b4 ≥ 1

3
> b5 > αd >

2
7

then the usual method

works, thus we obtain

5∑

i=1

W (bi) ≥ (b1 + b2 + b3 + b4)
6

5p + 1
+ 4

p− 1
(2p + 1)(5p + 1)

+

+ b5
18p

(2p + 1)(5p + 1)
− p− 1

(2p + 1)(5p + 1)
>

> (2− αd − b5)
6

5p + 1
+ b5

18p

(2p + 1)(5p + 1)
+ 3

p− 1
(2p + 1)(5p + 1)

>

>
5

2p + 1
,

since αd < b5. The same idea works if
1
2
≥ b1 ≥ b2 ≥ b3 ≥ 1

3
> b4 ≥ b5 > αd >

>
2
7
.

The next case,
1
2
≥ b1 ≥ b2 ≥ 1

3
> b3 ≥ b4 ≥ b5 > αd >

2
7
, is the

exceptional case which is already proved.

If
1
2
≥ b1 ≥ 1

3
> b2 ≥ b3 ≥ b4 ≥ b5 > αd >

2
7

then the center remains

uncovered. By Claim 1 the only way the center could be covered if two of the

paths are <
1
3

are in one of the paired arms, the other two are in the other side

and the path of size ≥ 1
3

covers the center. However this cannot occur since

any 3 of the 4 paths of size <
1
3

fits completely to one arm, thus we do not

place a path of size <
1
3

into a new arm until there are three of them in the

first arm.
The last case is when there are at least 6 paths in the paired arms.

However, it is easy to prove this, because

t∑

i=1

W (bi) ≥ 6W

(
2
7

)
>

5
2p + 1

.

Case 6.
1
3

< αd ≤ 1
2
, the center is not covered.
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As usual, the case when the center is not covered must be distinguished.
If there are two arms where the empty space is more than

αd

2
then a path of

size αd fits to this place. Hence it may be supposed that there is only one arm,
A1, where the sum of the sizes is 1− αd

2
− z such that 0 < z ≤ αd

2
. If z >

αd

2
then a path of size > αd already fits to this arm. In this way the sum of the
sizes in all other arms is ≥ 1− αd

2
+ z. It will be proved that if the sum of the

sizes in an arm is S >
1
2

then the sum of the weights is

≥ 6
5p + 1

S +
2p− 2

(2p + 1)(5p + 1)
.

If there is only one path and S >
2
3

then

W (S) =
(21p + 6)

(2p + 1)(5p + 1)
S − 4p2 − 3p− 1

p(2p + 1)(5p + 1)
>

6
5p + 1

S +
2p− 2

(2p + 1)(5p + 1)

holds.

If there is only one path and
1
2

< S <
2
3

then

W (S) =
1
p

>
6

5p + 1
2
3

+
2p− 2

(2p + 1)(5p + 1)
≥ 6

5p + 1
S +

2p− 2
(2p + 1)(5p + 1)

.

If there are two paths then the claim is true, because

W (x) ≥ 6
5p + 1

x +
p− 1

(2p + 1)(5p + 1)

holds in the interval
[
1
3
, 1

]
.

Therefore the proof is complete if αd ≤ 2
5
, because

t∑

i=1

W (bi) ≥

≥
[(

1− αd

2
+ z

)
(p− 1) +

(
1− αd

2
− z

)] 6
5p + 1

+ p
2p− 2

(2p + 1)(5p + 1)
>

> p
(
1− αd

2

) 6
5p + 1

+ p
2p− 2

(2p + 1)(5p + 1)
> 1
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holds in this case.

If
2
5

< αd ≤ 1
2

then it can be shown that the sum of the sizes in each arm

is at least
1
p
. If there is a path >

1
2

in the arm then this is clearly true. If

there is only one path but it is ≤ 1
2

then the empty space with the center is

larger than αd which is a contradiction. If there are two paths then both must

be larger than αd >
2
5
, thus

W (b1) + W (b2) >
4
5

6
5p + 1

+ 2
p− 1

(2p + 1)(5p + 1)
>

1
p
.

Therefore the weight sum is at least
1
p

in each arm, thus the weight sum in the

polyp is at least 1, proving our claim.

Case 7.
1
3

< αd ≤ 5
12

, the center is covered.

Like in the previous cases a lower bound will be proved for the paired arms
and an other lower bound for the other arms. It will be proved that the weight

sum is >
5

2p + 1
in the paired arms and >

2
2p + 1

in the other arms.

There are only two subcases in the latter case, so we begin with the single

arm. If there is only one path in the arm, b1, then b1 ≥ 1 − αd ≥ 1 − 5
12

,

otherwise αd+1 > αd, so clearly W (b1) ≥ 1
p

>
2

2p + 1
.

If there are two paths then both must be >
1
3

assuring that the weight

sum is >
2

2p + 1
. Finally there is not enough place for three paths each >

1
3
.

Now the other claim is proved for the paired arms. If there is only one
path in the paired arms then αd+1 > αd or the weight sum is ≥ 1. If there are
two paths then it may be supposed that both are ≤ 1. However, it is easy to
see that the center cannot be covered in this case.

We may suppose now that there are three paths. If all three are >
1
2

then

we obtain ∑
W (bi) >

3
p

>
5

2p + 1
.
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If b1 ≥ b2 >
1
2
≥ b3 >

1
3

then

∑
W (bi) ≥ 2

1
p

+
1

2p + 1
>

5
2p + 1

holds.

The next case is b1 >
1
2
≥ b2 ≥ b3 > αd >

1
3
. In this case the center

cannot be covered again by Claim 1.
There are no more cases with three paths in the paired arms, since if there

are three paths each ≤ 1
2

then αd+1 > αd.

There are two more cases when there are four paths but at most one is

>
1
2
, b1 >

1
2
≥ b2 ≥ b3 ≥ b4 > αd >

1
3
. In this case

4∑

i=1

W (bi) ≥ 1
p

+ 3
1

2p + 1
>

5
2p + 1

holds. If
1
2
≥ b1 ≥ b2 ≥ b3 ≥ b4 > αd >

1
3

then the center cannot be covered

by Claim 1.
Therefore there is only one case left, when there are at least five paths in

the paired arms. Now we obtain

t∑

i=1

W (bi) ≥ 5
1

2p + 1

immediately completing the proof for this set of cases.

Case 8.
5
12

< αd ≤ 1
2
, the center is covered.

It will be proved in this case that the lower bound for the weight sum is
2
p

in the paired arms and
1
p

in the single arms. If there is only one path in a

single arm then its weight is at least
1
p

since it is ≥ 1− αd and > αd. If there

are at least two paths then

W (b1) + W (b2) ≥ 2W

(
5
12

)
=

12p + 3
(2p + 1)(5p + 1)

>
1
p
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holds.
It is clear that two paths in the paired arms, each ≤ 1, cannot cover the

center with the First Fit algorithm. If there are three paths but one of them

is >
1
2

then, similarly to the previous case,

W (b1) + W (b2) + W (b3) ≥ 1
p

+ 2W

(
5
12

)
>

2
p

is obtained. If all three paths are ≤ 1
2

then the center cannot be covered by

Claim 1.
If there are at least four paths in the paired arms then

t∑

i=1

W (bi) ≥ 4W

(
5
12

)
>

2
p

holds.

Case 9.
1
2

< αd ≤ 1.

Now W (b1) ≥ . . . ≥ W (bt) ≥ 1
p

so if t ≥ p then
t∑

i=1

W (bi) ≥ 1 holds.

Suppose that there are less than p paths. From the definition of the algorithm
it is clear that in this way these paths must be in the ends of the arms, thus
the center is not covered. But if there are less than p paths then one of the
arms is empty, so a path of size > 1 fits in, thus αd+1 > αd. This completes
the proof of Lemma 2.

Lemma 3. Let a polyp Pd of coarseness αd ≤ 1 be filled with paths b1 ≥
≥ b2 ≥ . . . ≥ bt in the completed First Fit algorithm. If

t∑
i=1

W (bi) = 1−

−βd (0 < βd < 1) then either αd+1 ≥ min
(

αd +
1
3
βd, 1

)
holds or there is an

arm containing at most one path of size ≤ 1
2
.

Proof. The second alternative is satisfied unless there are at least two
paths or one with size >

1
2

in every arm. Suppose that αd+1 < αd +
1
3
βd ≤ 1

when the list of paths L is packed to the polyps with the First Fit algoithm.
A modified list L′ will be created in the following way. Some of the paths in

Pd will be enlarged. The proof is similar if αd +
1
3
βd > 1.
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Case 1. The center is covered.

Let A1 and A2 denote the paired arms and bc the path which covers the
center. The empty part is ”together” in this pair of arms, because the First Fit
algorithm was used to pack the paths. Let e denote the length of the empty
part. This empty part does not contain the center, so it is contained by an
arm completely, suppose that it is in A1. A1 contains a part of bc and it must
contain some paths which are as far from the center as possible, otherwise the
First Fit algorithm could not cover the center. Let be be the closest path to

the center among these paths. If be >
1
2

then this path will be enlarged, let

b′e = be + min
(

1
3
βd, e

)
. In this way the size of this empty part decreases

by
1
3
βd or is becomes 0. If be ≤ 1

2
then other paths will be enlarged in the

following way. Suppose that there is another path, bf , in A1 besides be. If

bf >
1
2

then let b′f = bf + min
(

1
3
βd, e

)
. If bf ≤ 1

2
then let b′e = be + x and

b′f = bf + y such that x + y = min
(

1
3
βd, e

)
, x ≤ 1

2
− be and y ≤ 1

2
− bf . It is

easy to see that such x, y exist since min
(

1
3
βd, e

)
≤ 1− be − bf .

There is one more possibility that bc ≤ 1
2
, A1 contains a part of bc but

there is no other path in it along be. If be >
1
2

then let b′e = be +min
(

1
3
βd, e

)
.

If bc >
1
2

then b′c = bc +min
(

1
3
βd, e

)
. If bc ≤ 1

2
and be ≤ 1

2
then let bf a path

from A2. If bf >
1
2

then let b′e = be + x, b′c = bc + y and b′f = bf + z such that

x + y + z = min
(

1
3
βd, e− ε

)
, x ≤ 1

2
− be, y ≤ 1

2
− bc and z ≤ 1 − bf . It is

easy to see that such x, y, z exist since min
(

1
3
βd, e− ε

)
< 2− be − bc − bf . If

bf ≤ 1
2

then choose a further path, bg, from A2. It may be supposed that it is

≤ 1
2
. Now enlarge be, bc, bf , bg similarly as above.

In each case the empty part decrease by
1
3
βd, e or e−ε such that if a path

bx ≤ 1
2

then b′x ≤
1
2
, if bx ≤ 1 then b′x ≤ 1 and the sum of the enlarged paths
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in A2 is ≤ 1. The last condition ensures that if L′ is packed with the First Fit
algorithm then b′c covers the center.

It is easy to see that such an enlargement can be done in the unpaired
arms in the same way.

Case 2. The center is not covered.

The empty part in these arms are attached to the center and all paths in
the arms are as far from the center as possible. (There must be at least one
path in each arm.) Let e1 ≥ e2 ≥ . . . ≥ ek be the sizes of the empty parts in the
unpaired arms, bei the closest path to the center in arm Ai. By our assumption

ad +
1
3
βd > e1 + e2. If e1 < αd +

1
6
βd then let b′ei

= bei + min
(

1
6
βd, ei

)
for all

i. If e1 ≥ αd +
1
6
βd then

1
6
βd > e2 ≥ e3 ≥ . . . holds since e1 + e2 < αd +

1
3
βd.

Let b′e1
= be1 +

1
3
βd− e2 + ε and b′ei

= bei
+ ei− ε for i = 2, 3, . . . , k, where ε is

as small as possible. If bei
≤ 1

2
for some i then there must be at another path

be′
i
≤ 1

2
in the same arm where bi is. Then it is easy to see that it is possible

to enlarge bi and bi′ together with the same size, such that b′i ≤
1
2

and b′i′ ≤
1
2
.

This completes Case 2.

The modified list L′ = b′1, b
′
2, . . . is obtained by replacing the above paths

by the enlarged paths. If L′ is packed with the First Fit algorithm then
every paths will go the same arm of the same polyp in the same order as
the corresponding path in L, because no path fits to an earlier place, but every
path fits to its ”old” place. On the other hand it is easy to see that after
packing L′ there will not be enough empty space to insert an additional path
of size > αd.

The slope of W in the interval
[
0,

1
2

]
and

(
1
2
, 1

]
(we did not ”jump”

over
1
2

during the enlargements) is less than
3
p
, the sum of the enlargements is

≤ (p− 1)
1
3
βd, therefore

∑
W (b′i) ≤

∑
W (bi) + (p− 1)

3
p

1
3
βd = 1− βd

p
< 1

is obtained. Thus L′ would be a counterexample to Lemma 2 which is a
contradiction.
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Now we are prepared to complete the proof of Theorem 2.

Proof of Theorem 2. Let Q1, . . . , Qf denote the polyps for which
t∑

i=1

W (bj) = 1− βi with βi > 0 in the First Fit algorithm in the same order as

they appear in the list of the polyps. The other polyps have weight sum at least
1. Furthermore let γi be the coarseness of Qi. γi ≤ 1 holds for i = 1, . . . , f ,
since Qi cannot contain a path of size > 1.

By Lemma 3 and the definition of coarseness,

γi+1 > γi +
1
3
βi for i = 1, . . . , f − 1,

except when Qi has an arm containing at most one single path of size ≤ 1
2
.

Suppose Qj has an arm containing one path of size ≤ 1
2
, then a path of size

≥ 1
2

would fit to Qj , thus all the paths in the larger indexed polyp must be

>
1
2
. Thus for i > j Qi cannot have an arm which contains one path of size

≤ 1
2
. However, it is possible that Qk for some k > j has an empty arm. Then

all the larger indexed polyps must have paths only of size > 1 which implies
that their weight sum is not less than 1. Therefore if such k exists then k = f .
So

βi < 3(γi+1 − γi)

holds for i = 1, . . . , j − 1, j + 1, . . . , f − 1. Obviously βk, βf ≤ 1 and it was
also shown that γ1 < . . . < γf ≤ 1, thus

f∑

i=1

βi < 3
j−1∑

i=1

(γi+1− γi)+3
f−1∑

i=j+1

(γi+1− γi)+βj +βf < 3
f−1∑

i=1

(γi+1− γi)+2 =

= 3(γf − γ1) + 2 ≤ 5.

Summing the weights for all paths in L

FFp(L)− 5 ≤
∑

W (li)

is obtained. Finally, applying Lemma 1 we conclude

FFp(L) ≤
m∑

i=1

W (li) + 5 ≤ OPTp(L)
[

p− 1
5p + 1

+
p− 1
2p + 1

+
p− 1

p
+ 1

]
+ 5
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completing the proof.

Conjecture. If the arm size of the polyp is suitably large then there exists
a list L for any enough OPTp(L) such that for

FFp(L) ≥ OPTp(L)
[

p− 1
5p + 1

+
p− 1
2p + 1

+
p− 1
p + 1

+ 1
]
− const.

Note that this ratio is very close to the bound in Theorem 2. The difference

is only
1

p(p + 1)
. For some values of p this would give the following lower bounds

for the ratio (the upper bounds are given by Theorem 2):

2.076 < R4(< 2.227),

2.184 < R5(< 2.318),

2.260 < R6(< 2.380),

2.522 < R15(< 2.570),

2.7 = lim
i→∞

Ri.

The following method may give a proof for this conjecture. However, the
proof may be very long and complicated.

As it was mentioned before the arm size of the polyp will be 1 and the
sizes of the rational numbers. All sizes are multiplied by a suitable integer to
get integer sizes after having the complete list.

The elements of L will belong to four regions. In the first region all the

elements have size near
1
6
, in the second one all the sizes are near

1
3
, in the

third one each length is
1
2

+ε and finally in the fourth region all the paths have

size 1+ ε. In the optimal packing every polyp should contain one element with
size 1 and every other arm should contain one element from each other region.
In the list they will be ordered so that all the paths from the first region in a
given order are first, then paths from region two and so on. There may also be
a constant number of exceptional paths packed to a constant number of polyps.

The exact sizes should be determined so that in the First Fit algorithm

5p + 1 paths with size about
1
6

fit into the first polyp, five to each arm and

one through the center. The rest of the paths with size about
1
6

will fit into

the next few polyps the same way. The paths with sizes near
1
3

and
1
2

will fit
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into the next number of polyps in a similar way, 2p + 1 and p + 1 to each one,
respectively. Finally only one path with size 1 + ε fits to each of the remaining
polyps.

Perhaps one may prove that it is possible to determine the exact sizes in
such a way. Moreover there may be an algorithm which gives these sizes. I
suppose Johnson et al. [2] probably used such an algorithm, but since there
were only 12 different sizes, it was enough to give the sizes created by the
algorithm in their paper.

A somewhat weaker bound will be proved now.

Theorem 3. If the arm size of the polyp is suitably large then there exists
a list L for any large enough M such that OPTp(L) ≥ M and

FFp(L) ≥ OPTp(L)
[
p− 1
42p

+
p− 1
6p + 1

+
p− 1
2p + 1

+
p− 1
p + 1

+ 1
]

.

Note that this ratio is still very close to the bound in Theorem 2. For
some values of p this gives the following lower bounds for the ratio (the upper
bounds are given by Theorem 2):

2.071 < R4(< 2.227),

2.178 < R5(< 2.318),

2.253 < R6(< 2.380),

2.502 < R15(< 2.570),

2.69047 < lim
i→∞

(≤ 2.7).

Unfortunately the asymptotic result still has a 0.01 gap.

Proof. Let N be a positive integer divisible by 42p, (6p + 1), (2p + 1)

and (p+1) and let ε denote
1
s

where s, the length of the arms of the polyps, is

chosen suitably large. The list of paths denoted by L consists of the following
regions of paths in the order of appearance

a) N(p− 1) paths of size
1
42
− 3ε,

b) N(p− 1) paths of size
1
7

+ ε,

c) N(p− 1) paths of size
1
3

+ ε,

d) N(p− 1) paths of size
1
2

+ ε,
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e) N paths of size 1 + ε.

If these paths are packed with the First Fit algorithm then each arm of

the first
N(p− 1)

42p
polyp will contain 42 paths of region a). The coarseness of

the next polyp will be (2 · 42 · 3 + 1) · ε. We choose s large enough, and thus ε
small enough, to exclude that one of the later coming paths could fit in. (Note

that sum of the sizes of two arms is 2 + ε). Namely 253ε <
1
7

must be true. In

this way all the paths in region b) will go to later polyps. Exactly 6 will fit to
the first arm, then 6 to the second one etc., and finally 1 through the center.

This makes 6p + 1 in one polyp. Thus region b) will fill up
N(p− 1)
6p + 1

polyps.

The coarseness of the next polyp will be
1
7
− 5ε, so no later paths will fit into

these polyps. In the same way region c) will fill up
N(p− 1)
2p + 1

polyps and region

d)
N(p− 1)

p + 1
polyps. Finally only one path of size 1 + ε may fit into a polyp.

Thus we have additional N polyps filled. In this way

N

[
p− 1
42p

+
p− 1
6p + 1

+
p− 1
2p + 1

+
p− 1
p + 1

+ 1
]

polyps are needed to pack these paths.
If an optimal packing of list L is considered, it is possible to pack the list

into N polyps. Put one path from region e) into the first arm such that it
completely covers the first arm and the center. Then put one path from each
other region to each arm. In this way one polyp is completely filled. Follow the
same procedure until there are some paths left. It is easy to see that N polyps
are needed. This packing is optimal since the sum of the sizes of the paths is
equal to the sum of the sizes of the polyps.

3. Conclusions

We have seen that although it looks very hard to find an optimal packing,
the very easily applicable First Fit algorithm works quite well. So if we can
model some practical problem by the Polyp-packing one might use the First
Fit algorithm.
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The vertex disjoint p-polyp packing may be considered as a variant of the
Bin Packing problem. Now we have groups of bins each group containing p
bins. It is possible to break at most one item into two pieces and place the two
parts into two different bins of the same group, but it is allowed to do this at
most once in each group. In [2] the reader may find some problems which are
modeled by the Bin Packing problem. With this modification we may model
some modified problems. For example file allocation. It is desired to place
files of varying sizes on as few disks as possible, where files may not be broken
between tracks except one file per disk.

There are some open problems left. First of all our results are not sharp
so they may be improved.

There are on-line algorithms for the Bin Packing problem which give
packing closer to the optimal. Probably such an algorithm would give a better
result here also.

Further investigation of this problem may include other graphs not just
polyps. However, there should be some restrictions. If we want to pack
arbitrary paths into arbitrary graphs then, with any algorithm, when we want
to pack a particular path, it must be decided that this path fits into the graph
or not. But this problem is NP-complete in general, since it contains the
hamiltonian path problem as a special case. One possible restriction is that
the sizes of the paths have a constant upper bound. For example if all paths
are at most 100 long, this problem does not arise.

Most of the known variants of the Bin Packing problem can be formulated
as a special case of the general graph packing problem by choosing a suitable
graph class for ”bins” and an other class for ”items”. For example if the ”bins”
and the ”items” are graphs of rectangular grids we obtain the 2-dimensional
parallel rectangle packing.
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