
Annales Univ. Sci. Budapest., Sect. Comp. 21 (2004) 41-56

INTERPOLATION AND QUADRATURE FORMULAE
FOR RATIONAL SYSTEMS ON THE UNIT CIRCLE

Z. Szabó (Budapest, Hungary)

Abstract. Over the last years a general theory has been developed

for the construction and analysis of rational orthonormal basis functions,

often called generalized orthonormal basis functions in the engineering

literature. These investigations motivate the interest in the examination of

the approximation properties of the rational orthonormal systems generated

by a given set of poles. These basis can be viewed as an extension of the

trigonometric system on the unit circle, that corresponds to the special

choice when all of the poles are located at the origin. The aim of this

paper is to present a computationally effective quadrature method based

on a rational interpolation formula on the unit circle. The paper provides

a generalization of the Marcinkiewicz classical Lp norm convergence the-

orem of the trigonometric interpolation on equidistant nodes on the unit

circle, see [23], to the rational interpolation process generated by the case

where the underlying orthonormal basis is a rational one that contains the

trigonometric basis as a special case.

1. Introduction

The first mention of rational orthonormal systems seems to have occured
in the mid 20-th in the work of Takenaka and Malmquist [20, 11]. The context
of this early work was application to approximation via interpolation. The
wide ranging work of Walsh studied further the application of these bases for
approximation on the unit disk and on the half plane [22].
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Although rational functions are to be considered in this paper, it has to be
mentioned the role of the polynomials in the genesis of the ideas. The simplest
way to see what it is meant by orthogonal rational functions is to consider them
as generalizations of orthogonal polynomials [19, 7].

It is an important problem in numerical analysis to compute integrals.
Most quadrature formulae approximate the integral by a weighted combination
of the function values in certain nodes. It is known that interpolation processes
lead in a natural way to such quadrature formulae. For the polynomial case,
concerning convergence properties and domain of validity, an adequate selection
of the nodes of the interpolation turns out to be fundamental. For the
orthogonal polynomials on the unit circle pn, also called Szegő polynomials,
one can introduce the so called paraorthogonal polynomials qn, defined as

qn(z) = pn(z) + wp∗n(z), where |w| = 1 is fixed and p∗n(z) = znp

(
1
z

)
is

the reciprocal polynomial. The zeros of qn are simple and contained on T. The
Lagrange interpolation based on these zeros give rise to a Gauss quadrature
formula, valid for all the Laurent polynomials of P±n, of degree less then n, [9].
This idea was extended to the case of rational orthonormal functions on the
unit circle [2]. The drawback of these methods that it is needed to compute the
zeros of recursively defined polynomials in order to obtain the set of desired
interpolation nodes.

This paper is to present a more transparent and computationally much
more attractive method to determine the interpolation nodes, hence the
quadrature formula, if one restricts the problem to the classical situation on
the unit circle, when the underlying measure is the Lebesgue measure.

In contrast to the algebraic polynomial interpolation, where a large number
of different node systems were used, for the interpolation of functions defined on
T, most of the results make use only of the roots of unity as interpolation nodes,
see e.g. [16]. The classical Erdős-Turán theorem tells us that if one considers
the set u2n+1 of roots of unity and the symmetric interpolation polynomial Pn

based on these nodes, then for every f continuous on T one has

lim
n→∞

‖f − Pnf‖2 = 0.

A similar result is true for the interpolating polynomial defined by the n-th
roots of unity on the disc algebra A. Moreover, it is true the mean convergence
of the interpolation process on the roots of unity for A, see e.g. [15] and [3] for
the Marcinkiewicz type inequalities.

In [17] a generalization of the Marcinkiewicz-Zygmund inequalities and the
classical Lp norm convergence theorem was given to the rational interpolation
process generated by the case where the underlying system of nodes are defined
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by a periodic set of poles that determine the rational orthonormal basis. This
paper extends these results to the general situation, i.e. for the nonperiodic
case. Applications of the presented methods in system identification and control
theory can be found in [13, 14, 18].

The structure of the presentation will be the following. First, the basic
notations must be fixed. An important tool will be the monotone increasing,
invertable and differentiable function β(n), for a finite Blaschke product Bn

of order n defined as a mapping of the interval [−π, π) onto itself, such that
Bn(eit) = einβ(n)(t). After this, a rational interpolation operator with nodes
on the unit circle will be defined and the properties of the quadrature formula
induced by this operator will be investigated. Finally a Marcinkiewicz type
theorem and a theorem for Lp norm convergence of these rational interpolation
operators will be proved.

The paper is concluded with a small numerical example that illustrates
the efficiency of the quadrature method.

2. Basic notations

In this chapter we are concerned with complex function theory on the unit
circle. Let us denote by R the set of real numbers, by C the set of complex
numbers and let Z be the set of integers. The open unit disc, its boundary will
be denoted by

D := {z ∈ C| |z| < 1} and T := {z ∈ C| |z| = 1}.

Let us denote by I the integral mean operator on T, i.e.

I(f) :=
1
2π

π∫

−π

f(eit)dt.

By Lp, 1 < p < ∞ will be denoted the classical Lp(T) Banach space endowed
with the norm

‖f‖p :=


 1

2π

π∫

−π

|f(eit)|pdt




1
p

, f ∈ Lp, 1 < p < ∞,
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and L∞ is the Banach space of essentially bounded functions on the unit circle.
The scalar product considered in L2 is the usual one, i.e.

〈f, g〉 :=
1
2π

π∫

−π

f(eit)g(eit)dt = I(fg), f, g ∈ L2.

H2 will be the Hardy space of square integrable functions on T whose
continuation through the Cauchy integral formula on the unit disc is analytic.
The disc algebra A = H∞ ∩ C(T), where C(T) is the space of continuous
functions on the unit circle. For a classical introduction in Hp theory see e.g.
[8, 12, 4]. A more advanced treatise of the topic can be found in [6].

If otherwise is not stated, throughout this paper it will be supposed z ∈ T,
i.e. z := eit, t ∈ R. Let Bn be a finite Blaschke product of order n written in
the form

Bn :=
n∏

j=1

bαj
, where bαj

(z) :=
z − αj

1− αjz
, |αj | < 1.

For further usage let us introduce the notation

Bn(z) := Bn(z), z ∈ T.

If Pk denotes the space of polynomials of degree at most

k, η(z) :=
n∏

i=1

(1− αiz) and w(z) :=
n∏

i=1

(z − αi),

then set

Rn :=
{

p

η
| p ∈ Pn−1

}
, Rn :=

{ p

w
| p ∈ Pn−1

}
,

respectively. Accordingly, one can set

R±n :=
{

p

ηw
| p ∈ P2n−1

}
.

If these sets include the constants, then they will be denoted by R0
n and R0

±n.

If ϕj =
dj

1− αjz
, where dj =

√
1− |αj |2, one has that the system

(1) Φn =

{
φj = ϕjBj−1, Bj−1 :=

j−1∏

k=1

bαj | j = 1, . . . , n

}
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forms an orthonormal basis in Rn. This is the so-called Takenaka-Malmquist
system.

As a starting point, let us mention the fact that for a finite Blaschke prod-
uct Bn of order n there exists a strictly monotone increasing and differentiable
function β(n), mapping the interval [−π, π) onto itself, see [13], so that

Bn(eit) = einβ(n)(t).

Denote by γ(n) the inverse function β−1
(n).

Let us denote the phase function of a single term by βk, i.e. bαk(eit) =
= eiβk(t), then the function β(n) can be expressed as

β(n)(t) :=
1
n

n∑

k=1

βk(t).

For the derivatives one has, see [14],

(2) β′k(t) =
1− |αk|2
|1− αkeit|2 .

Since 1− |αk| ≤ |1− αkeit| ≤ 1 + |αk|, one can obtain the bounds

1− |αk|
1 + |αk| ≤ β′k(t) ≤ 1 + |αk|

1− |αk| ,

and hence
1
n

n∑

k=1

1− |αk|
1 + |αk| ≤ β′(n)(t) ≤

1
n

n∑

k=1

1 + |αk|
1− |αk| .

It follows that the derivative of the inverse is bounded by

n
n∑

k=1

1+|αk|
1−|αk|

≤ γ′(n)(t) ≤
n

n∑
k=1

1−|αk|
1+|αk|

.

If there is a constant 0 < c < 1 such that |αk| < c, k = 1, . . . , n, then one
has the uniform bounds

1− c

2
≤ β′(n)(t) ≤

2
1− c

and
1− c

2
≤ γ′(n)(t) ≤

2
1− c

.
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The reproducing kernel K : T× T→ C of a subspace V ⊂ L2 is defined
by its reproducing property, i.e. ∀f ∈ V f(µ) = 〈f, K(·, µ)〉, µ ∈ T. If
an orthonormal basis is considered in the finite dimensional subspace V say
{ψj(z) | j = 1, . . . , n}, where n = dimV , then the reproducing or Dirichlet
kernel is given by

Kn(z, µ) =
n∑

k=1

ψk(z)ψk(µ), z, µ ∈ T,

and it is independent of the choice of the orthonormal system, see [1]. Applying

this to the subspace Rn one can obtain Kn(z, w) =
n∑

k=1

φk(z)φk(w) as a

reproducing kernel, that can be expressed in a compact form by the following
Christoffel-Darboux formula, see [5, 10].

Lemma 2.1.

(3) Kn(z, w) :=
n∑

k=1

φk(z)φk(w) =
1−Bn(z)Bn(w)

1− zw
, z, µ ∈ D ∪ T.

Using the expression for the derivative of the function β(n) derived from
(1) and (2) one has

(4) Kn(eit, eit) :=
n∑

k=1

|φk(eit)|2 = nβ′(n)(t).

2.1. A discrete rational orthonormal system on the unit circle

Let us denote the set of equidistant nodes on the unit circle, i.e. the n-th
roots of unity, by

Un =
{

eiνk

∣∣∣∣ νk =
2kπ

n
, k = 0, . . . , n− 1

}

and by

Wn =
{

ζk = eiγk

∣∣∣ γk = β−1
(n)(νk), k = 0, . . . , n− 1

}

the image of the roots of unity through the γ(n) = β−1
(n) function.
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Considering as nodes the set Wn, one can introduce the following rational
interpolation operator

(5) (Lnf)(z) :=
∑

ζ∈Wn

Kn(z, ζ)
Kn(ζ, ζ)

f(ζ),

where f is a continuous function on T and z ∈ T. Let us denote by

ln,ζ(z) :=
Kn(z, ζ)
Kn(ζ, ζ)

, ζ ∈Wn.

From the definition ofWn and by (3) it follows that for 0 ≤ k, l < n, k 6= l,
one has

ln,ζk
(ζl) =

1− ein(βn(γk)−βn(γl))

1− ζlζk

=
1− e2π(k−l)

1− ζlζk

= 0.

Consequently, for 0 ≤ k, l < n,

(6) ln,ζk
(ζl) = δk,l,

i.e. ln,ζ , ζ ∈ Wn, are the Lagrange functions corresponding to the system
{φi, | i = 1, . . . , n}.

This implies that Lnf interpolates f at the points of Wn, i.e. Lnf(ζ) =
= f(ζ), ζ ∈Wn. It is also clear that Lnf = f for f ∈ Rn, and {ln,ζ | ζ ∈Wn}
is a basis in Rn.

Let us define the discrete scalar product

[f, g]n :=
∑

ζ∈Wn

f(ζ)g(ζ)
Kn(ζ, ζ)

=
∑

ζ∈Wn

f(ζ)g(ζ)
nβ′(n)(γ)

,

where ζ = eiγ .
For the classical case, i.e. when α1 = . . . = αn = 0, the β function is the

identity and this scalar product is exactly the discrete Fourier scalar product
defined by

[f, g]n :=
1
n

∑

ζ∈Un

f(ζ)g(ζ).

Using this discrete scalar product the interpolation operator can be written
as

(Lnf)(z) = [f, Kn(·, z)]n



48 Z. Szabó

for f ∈ A. Using this fact and by (6) follows that for ζ, ξ ∈Wn one has

(7) I(ln,ζln,ξ) = δζ,ξ.

It is easy to see using the reproducing property of the kernel that

〈Lnf,Lng〉 = [f, g]n,

and follows that every orthonormal system {ψk | k = 1, . . . , n} on the subspace
defined by the reproducing kernel is also discrete orthonormal, i.e.

[ψk, ψl]n = δk,l for 1 ≤ k, l ≤ n.

Let us denote by W0
n the set of nodes that corresponds to zBn−1 and by

K0
n and L0

n the corresponding kernel interpolation operator, respectively.

2.2. A quadrature formula for rational functions on the unit circle

Using the interpolation operator Ln, see (5), one can introduce a quadra-
ture formula as

(8) In(f) :=
∑

ζ∈Wn

ρ
(n)
ζ f(ζ), where ρ

(n)
ζ := I

(
Kn(·, ζ)
Kn(ζ, ζ)

)
,

where I denotes the integral mean operator on T. Then it is clear that In(f) =
= I(f) for all f ∈ Rn.

To get ρ
(n)
ζ it have been used the fact that for any g ∈ A one has I(g) =

= g(0). Thus by (3) for ζ ∈Wn one has

I(Kn(·, ζ)) =
n∑

k=1

I(φk)φk(ζ) =
n∑

k=1

φk(0)φk(ζ) = 1−Bn(0)Bn(ζ) = 1−Bn(0).

Consequently by (8) the coefficients of the quadrature formula are of the form

(9) ρ
(n)
ζ :=

1−Bn(0)
Kn(ζ, ζ)

=
1−Bn(0)
nβ′(n)(γ)

, where ζ = eiγ .
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If one of the zeros of the Blaschke product is zero, say, αn = 0, hence bαn(z) = z,
one has Bn(0) = 0. Follows that in this case the coefficients of the quadrature
formula

ρ
(n)
ζ =

1
nβ′(n)(γ)

> 0, where ζ = eiγ ,

are positive.
For every g ∈ Rn one has I(g) = 0, and g = hBn for some h ∈ Rn. It

follows, that In(g) = In(h) = I(h) = h(0), i.e. in general one cannot expect
I(g) = In(g). But I(g) = In(g) if g ∈ Rn ∩ zRn.

One can obtain a completely analogous result as for the polynomial case,
if one chose the quadrature formula induced by L0

n, based on the interpolation
nodes W0

n.

Theorem 2.2. Let us introduce the Gauss type quadrature formula

I0
n(f) :=

∑

ζ∈W0
n

f(ζ)
K0

n(ζ, ζ)
,

then I0
n(f) = I(f) for all f ∈ R0

±n.

Proof. In what follows, we make explicit the argument above. By

I
(

K0
n(·, ζ)

K0
n(ζ, ζ)

)
=

1
K0

n(ζ, ζ)

one has I(L0
nf) = I0

n(f), i.e. I0
n(f) = I(f) for all f ∈ R0

n.
One can consider that αn = 0, i.e. R0

n = Rn−1 ⊕ C. Let us consider a
basis {φk} in Rn−1, then {φkBn−1} is a basis in Rn−1. Using the fact that
ζBn−1(ζ) = 1 for ζ ∈W0

n, i.e. ζBn−1(ζ) = 1, follows

I0
n(φkBn−1) =

∑

ζ∈W0
n

φk(ζ)Bn−1(ζ)
K0

n(ζ, ζ)
=

∑

ζ∈W0
n

ζφk(ζ)
K0

n(ζ, ζ)
= I0

n(zφk) = I(zφk) = 0.

It follows that I0
n(f) = I(f) for all f ∈ R0

±n.

Since 1 ∈ R0
±n, one has

∑

ζ∈W0
n

1
K0

n(ζ, ζ)
= 1.

One can show that in fact the quadrature formula introduced above has a
maximal domain of validity.
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Theorem 2.3. Let us consider an n-point quadrature formula of interpola-
tory type, i.e. a set of distinct nodes Xn = {ξi ∈ T, i = 1, 2, . . . , n} and Inf :=
:=

∑
ξ∈Xn

κξf(ξ). Then, there does not exist a formula that has R±n as a domain

of validity.

Proof. The proof follows the ideas presented in [9] for the polynomial

case. Let us consider wn =
∏

ξ∈Xn

(z − ξ) and r(z) :=
wn(z)

ηn
∈ H2. For every

f ∈ Rn, one has fr ∈ R±n. Suppose now that the quadrature formula is true
for R±n. It follows, that I(fr) = 〈f, r〉 = In(fr) = 0, i.e. r is orthogonal to
Rn. Therefore r ∈ BnH2, a contradiction.

Let us return for a moment to the quadrature formula induced by Ln.
Then one has

Theorem 2.4. For every n ∈ N, n ≥ 2,

(10)
∑

ζ∈Wn

1
Kn(ζ, ζ)

=
1− |Bn(0)|2
|1−Bn(0)|2

and consequently for the norm of the functionals In one has

(11) ‖In‖ =
∑

ζ∈Wn

∣∣∣ρ(n)
ζ

∣∣∣ <
2

1− |α1| .

Moreover, if
∞∑

k=1

(1− |αk|) = ∞, then

(12) lim
n→∞

∑

ζ∈Wn

1
Kn(ζ, ζ)

= lim
n→∞

∑

ζ∈Wn

∣∣∣ρ(n)
ζ

∣∣∣ = 1.

Proof. Let us consider the function g ∈ Rn defined as

g(z) :=
∑

ζ∈Wn

Kn(z, ζ)
Kn(ζ, ζ)

.

Then, it is clear that In(g) = I(g), i.e. by (8) and (9)

(1−Bn(0))
∑

ζ∈Wn

1
Kn(ζ, ζ)

=
n∑

k=1

I(φk)
∑

ζ∈Wn

φk(ζ)
Kn(ζ, ζ)

=

=
1

1−Bn(0)

n∑

k=1

I(φk)I(φk) =
Kn(0, 0)

1−Bn(0)
,
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and (10) is proved. To see (11) observe that |Bn(0)| =
n∏

k=1

|αk| < |α1| < 1, and

consequently by (10) one has
∑

ζ∈Wn

∣∣∣ρ(n)
ζ

∣∣∣ = (1− |Bn(0)|)
∑

ζ∈Wn

1
Kn(ζ, ζ)

=

=
1− |Bn(0)|2
|1−Bn(0)| ≤

2
1− |Bn(0)| ≤

2
1− |α1| ,

and (11) is proved. It is known that
∞∑

k=1

(1− |αk|) = ∞, implies lim
n→∞

|Bn(0)| =

= lim
n→∞

n∏
k=1

|αk| = 0, see [12], and (12) follows from (10).

As a corollary one has

Theorem 2.5. If
∞∑

k=1

(1− |αk|) = ∞, then for every f ∈ A one has

lim
n→∞

In(f) = I(f).

Proof. Since
∞∑

k=1

(1−|αk|) = ∞, then the orthonormal system is complete

and using (11) by a usual density argument follows the assertion.
Based on this result, one has the following generalization of the Erdős-

Turán theorem for Ln on A.

Theorem 2.6. Consider the interpolation operator

(Lnf)(z) =
∑

ζ∈Wn

Kn(z, ζ)
Kn(ζ, ζ)

f(ζ).

If
∞∑

k=1

(1− |αk|) = ∞, then for every f ∈ A, one has

lim
n→∞

‖f − Lnf‖2 = 0.

Proof. The proof follows the method of [21]. Let us consider the function
gn ∈ Rn as the best uniform approximant of f , and denote by en := f − gn

and by En(f) := ‖f − gn‖∞. It is known that lim
n→∞

En(f) = 0. Then

‖f −Lnf‖2 ≤ ‖f − gn‖2 + ‖Lnf −Lngn‖2 ≤ En(f)+I




∣∣∣∣∣∣
∑

ζ∈Wn

en(ζ)ln,ζ

∣∣∣∣∣∣

2



1
2

.
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Since for ζ, ξ ∈ Wn one has I(ln,ζln,ξ) = 0 if ζ 6= ξ, see (7), the assertion
follows by

‖f − Lnf‖2 ≤ En(f)


1 +


 ∑

ζ∈Wn

1
Kn(ζ, ζ)




1
2

 ≤ CEn(f).

2.3. Lp norm convergence of certain rational interpolation operators
on the unit circle

In what follows an extension of the Marcinkiewicz-Zygmund type inequal-
ities will be given for the interpolation operator Ln on A. Based on this result
the mean convergence of this interpolation operator will be proved.

Theorem 2.7. Let f ∈ Rn and 1−|αk| > δ > 0, k ∈ N. Then there exist
constants C1, C2 > 0 depending only on p, such that for 1 < p < ∞ one has

C1‖f‖p ≤ [In(|f |p)] 1
p ≤ C2‖f‖p.

Proof. For the first part of the assertion let us consider the identity

f(z)Kn(z, ζ) = 〈fKn(·, ζ),Kn(·, z) + Bn(·)Bn(z)Kn(·, z)〉

for f ∈ Rn. Let us introduce the kernel

Tn(z, w) =
|Kn(z, w)|2
Kn(w, w)

.

It follows that
|f(ζ)| ≤ 2〈|f |, Tn(·, ζ)〉.

Since Tn > 0 and I(Tn(·, ζ)) = 1 by the Jensen inequality, see e.g. [12], one
has

|f(ζ)|p ≤ 2p〈|f |p, Tn(·, ζ)〉.

Using the fact that
∑

ζ∈Wn

|Kn(ζ, w)|
Kn(ζ, ζ)

= Kn(w, w) follows

∑

ζ∈Wn

|f(ζ)|p ≤ 2p

〈
|f |p, maxKn(·, ·)

min Kn(ζ, ζ)

〉
,
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and by
δ

2
≤ Kn(w,w) ≤ 2

δ
, one has

[In(|f |p)] 1
p ≤ C‖f‖p.

The proof of the second part uses the fact that for f ∈ Lp exists g ∈
∈ Lq,

1
p

+
1
q

= 1, such that ‖g‖q = 1 and ‖f‖p = 〈f, g〉. Using the Hölder

inequality and the previous result one can obtain

‖f‖p = 〈f, g〉 = 〈f, Sng〉 = [f, Sng]βn ≤
≤ [In(|f |p)] 1

p [In(|Sng|q)] 1
q ≤ C2[In(|f |p)] 1

p ,

where we have used the fact that ‖Sng‖q ≤ C‖g‖q.
One can observe that for the case when B(z) = z one can obtain the

classical Marcinkiewicz theorems.
By using these results one can prove the following mean convergence

theorem.

Theorem 2.8. If 1 − |αk| > δ > 0, k ∈ N, then for every f ∈ A and
1 < p < ∞ one has

‖f − Lnf‖p ≤ CEn(f),

and consequently,
lim

n→∞
‖f − Lnf‖p = 0.

Proof. The proof is almost the same as the one for the Erdős-Turán
theorem. Let us consider the function gn ∈ Rn as the best uniform approximant
of f , and denote by en := f − gn. Then by Theorem 2.7

‖f − Lnf‖p ≤ ‖f − gn‖p + ‖Lnf − Lngn‖p ≤ En(f) + C2[I(|en|p)]
1
p ≤

≤ En(f)


1 + C2


 ∑

ζ∈Wn

1
Kn(ζ, ζ)




1
p


 ≤ CEn(f),

that is exactly the assertion of the theorem.
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generalized orthonormal basis - a frequency domain approach, Proc. IFAC
World Congress, San Francisco, 1996, 387-392.

[14] Schipp F. and Bokor J., Approximate identification in Laguerre and
Kautz bases, Automatica, 34 (1998), 463-468.
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[19] Szegő G., Orthogonal polynomials, AMS Colloquium Publications XXIII,
AMS, 1939.

[20] Takenaka S., On the orthogonal functions and a new formula of interpo-
lations, Japanese J. of Mathematics, 2 (1925), 129-145.

[21] Walsh J. and Sharma A., Least squares and interpolation on the roots
of unity, Pacific J. Math., 14 (1964), 727-730.

[22] Walsh J., Interpolation and approximation by rational functions in the
complex domain, AMS Colloquium Publications XX, AMS, 1935.

[23] Zygmund A., Trigonometric series, Vol. 1,2, Cambridge Univ. Press,
Cambridge, 1977.



56 Z. Szabó
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