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THE SOLUTION OF
LINEAR PROGRAMMING PROBLEMS

WITH QUASI–TRIANGULAR FUZZY NUMBERS
IN CAPACITY VECTOR

Z. Makó (Cluj-Napoca, Roumania)

Abstract. We propose a new solution concept for fuzzy linear program-

ming problems. This is similar to the concept proposed by J.J. Buckley

in [3], but is differs from that, because in this paper we define the feasible

set and solution set by using the degree of possibility. First we define

this concept and obtain the basic properties of the new solution set and

the fuzzy optimal value of the objective function. After that we present

in details a method to resolve linear programming problems with quasi-

triangular fuzzy numbers in capacity vector. Finally we apply this method

for a special problem.

1. Introduction

In a lot of practical problems, the quantities may only be uncertainly
estimated. If these quantities are coefficients of linear programming problems,
then they are possible to be characterized with fuzzy numbers. That linear
programming problem, in which at least one coefficient is a fuzzy number, we
call a fuzzy linear programming problem. Optimal solutions and optimal value
of this problem was formulated by J.J. Buckley in [3].

In practice, when one or more coefficients have uncertain values, then the
optimal value will be uncertain. As a conclusion, the optimal value of fuzzy
linear programming problem has to be a fuzzy quantity. In order to reach the
α-level of optimal value we must make an optimal decision. This decision must
be exact. Therefore the set of α-optimal solution of a fuzzy linear programming
problem contains vectors of real numbers.
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In the present paper we define a new optimal solution concept and new
optimal value concept of fuzzy linear programming problems, such that they
fulfil the above expectations. In the third section we present the elementary
properties of these concepts, if the coefficients of fuzzy linear programming
problems are fuzzy numbers or quasi-triangular fuzzy numbers. This concept
of quasi-triangular fuzzy numbers was introduced by M. Kovács in [9]. In
the fourth section is presented a solving method of fuzzy linear programming
problems with quasi-triangular fuzzy numbers in the capacity vector. In the
last section we resolve an example of linear programming problem with quasi-
triangular fuzzy numbers in the capacity vector.

2. Preliminaries

In this section we collect those definitions and basic propositions which
will be needed in the present paper.

2.1. Fuzzy number

Definition 1. Let be X a set. A mapping µ : X → [0, 1] is called
membership function, and the set A = {(x, µ (x)) / x ∈ X} is called fuzzy set
on X. The membership function of A is denoted by µA. The collection of all
fuzzy sets on X is denoted by F (X) .

Definition 2. The support of A is the subset of X given by

(1) supp A = {x ∈ X / µA (x) > 0} .

Definition 3. The α-cut of A is

(2) [A]α =




{x ∈ X / µA (x) ≥ α} , if α > 0,

cl (supp A) , if α = 0,

where cl (supp A) is closure of the support of A. The height of A is

(3) hgt (A) = sup
x∈X

µA (x) .

Definition 4. A fuzzy set A on X is convex, if all α-cuts are convex
subsets of X, and it is normal if [A]1 6= ∅.
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Definition 5. A convex, normal fuzzy set on the real line R with upper
semicontinuous membership function will be called fuzzy number. The set of
all fuzzy numbers will be denoted by N .

Let g : [0, 1] → [0,∞] be a continuous, strictly decreasing function with the
boundary properties g (1) = 0 and lim

t→0
g (t) = g0 ≤ ∞. The concept of quasi-

triangular fuzzy numbers generated by g was introduced first by M. Kovács [9]
and defined, as follows.

Definition 6. If λ and d are real numbers, with d > 0, let Fg the subset
of fuzzy numbers with the membership function

(4) µ (t) =





g(−1)
(
|t−λ|

d

)
, if d > 0,

χ{λ} (t) , if d = 0

for all t ∈ R, where

(5) g(−1) (t) =





g−1 (t) , if t ∈ [0, g (0)),

0, if t ≥ g (0) = g0.

Here and in the following χA denotes the characteristic function of the set
A. The elements of Fg will be called quasi-triangular fuzzy numbers generated
by g with center λ and spread d and we will denote them with (λ, d) . The
following results are given in [7], [8], [9].

Proposition 1. Let A be a fuzzy number. Let us introduce the lower
and upper bound functions a1, a2 : [0, 1] → R ∪ {−∞,+∞} of its α−cuts,
namely a1 (α) = min [A]α and a2 (α) = max [A]α . Then (i) a1 (α) ≤ a2 (α)
for all α ∈ [0, 1]; (ii) a1 is increasing and a2 is decreasing functions; (iii) a1

is lower semicontinuous and a2 is upper semicontinuous functions; (iv) [A]α =
= [a1 (α) , a2 (α)]; (v) [A]0 = cl (suppA) = [a1 (0) , a2 (0)] .

Proposition 2. If (λ, d) ∈ Fg and d > 0, then for all α ∈ [0, 1]

(6) [(λ, d)]α = [λ− dg (α) , λ + dg (α)] .

If d = 0, then for all α ∈ [0, 1]

(7) [(λ, d)]α = {λ} .

Let X be a vector space. Using the Zadeh’s extension principle we define
extended addition, extended substraction, extended opposite and extended
multiplication of a fuzzy set by a scalar in F (X), as follows.
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Definition 7. (Extended Addition) Suppose A and B are fuzzy sets on
X. If using the extension principle, then the membership function of fuzzy set
A + B is

(8) µA+B (x) = sup
t1+t2=x

min {µA (t1) , µB (t2)} .

Definition 8. (Extended Opposite) Suppose A is a fuzzy set on X. If
using the extension principle, then the membership function of fuzzy set −A is

(9) µ−A (x) = µA (−x) .

Definition 9. (Extended Substraction) Suppose A and B are fuzzy sets
on X. If using the extension principle, then the membership function of fuzzy
set A−B is

(10) µA−B (x) = sup
t1−t2=x

min {µA (t1) , µB (t2)} .

Definition 10. (Extended Multiplication) Suppose A is a fuzzy set on X
and c is a real number. If using the extension principle, then the membership
function of fuzzy set cA is

(11) µcA (x) =





µA

(
x
c

)
, if c 6= 0,

hgt (A) , if c = 0 and x = 0,

0, if c = 0 and x 6= 0.

Proposition 3. Suppose A and B are fuzzy numbers with [A]α =
= [a1 (α) , a2 (α)] and [B]α = [b1 (α) , b2 (α)] for all α ∈ [0, 1]. Then for all
α ∈ [0, 1] and for all c ∈ R

(12) (i) [A + B]α = [a1 (α) + b1 (α) , a2 (α) + b2 (α)] ;

(13) (ii) [A−B]α = [a1 (α)− b2 (α) , a2 (α)− b1 (α)] ;

(14) (iii) [cA]α =





[ca1 (α) , ca2 (α)] , if α ≥ 0,

[ca2 (α) , ca1 (α)] , if α < 0.
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2.2. Possibility

Definition 11. Let A and B be fuzzy numbers. The degree of possibility
that the proposition ,,A is less than or equal to B” is true we denote by
Pos(A ≤ B) and define by the extension principle as

(15) Pos (A ≤ B) = sup
x≤y

min {µA (x) , µB (y)} .

Definition 12. Let A and B be fuzzy numbers. The degree of possibility
that the proposition ,,A is greater than or equal to B” is true we denote by
Pos(A ≥ B) and define by the extension principle as

(16) Pos (A ≥ B) = sup
x≥y

min {µA (x) , µB (y)} .

Definition 13. Let A and B be fuzzy numbers. The degree of possibility
that the proposition ,,A is equal to B” is true we denote by Pos(A = B) and
define by the extension principle as

(17) Pos (A = B) = sup
x

min {µA (x) , µB (x)} .

Proposition 4. Let A and B be fuzzy numbers. Then

(18) Pos (A = B) = min {Pos (A ≥ B) ,Pos (A ≤ B)} .

Proposition 5. Let A and B be fuzzy numbers. Then

(19) Pos (A ≤ B) =

=





sup {α ∈ [0, 1] / min [A]α ≤ max [B]α} , if min [A]0 < max [B]0 ,

0, if min [A]0 ≥ max [B]0.

Proposition 6. Let A = (λ1, d1) ∈ Fg and B = (λ2, d2) ∈ Fg. If d1 > 0
or d2 > 0, then

(20) Pos (A ≤ B) =





1, if λ1 ≤ λ2,

g(−1)

(
λ1 − λ2

d1 + d2

)
, if λ1 > λ2,
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and

(21) Pos (A = B) = g(−1)

( |λ1 − λ2|
d1 + d2

)
.

If A = (λ1, 0) ∈ Fg and B = (λ2, 0) ∈ Fg, then

(22) Pos (A ≤ B) =

{ 1, if λ1 ≤ λ2,

0, if λ1 > λ2,

and

(23) Pos (A = B) =

{ 1, if λ1 = λ2,

0, if λ1 6= λ2.

3. Fuzzy optimal value of fuzzy linear programming problems

In this section we present the new solution concept and the fuzzy optimal
value concept of fuzzy linear programming problems.

A fuzzy linear programming problem is

(24)





Z = c̄x → max (or min) ;
Āix ≤ b̄i i ∈ I,
Ājx ≥ b̄j j ∈ J,
Ākx = b̄k k ∈ K,
x ≥ 0,

where c̄ = (C1, C2, ..., Cn) is a 1 × n vector of fuzzy numbers, Bl are fuzzy
numbers for all l ∈ I ∪J ∪K, Āl = (Al,1, Al,2, ..., Al,n) is a 1×n vector of fuzzy
numbers for any l ∈ I ∪ J ∪K.

Definition 14. Let α ∈ [0, 1] . The α-feasible set of problem (24) is

(25)

Fα

(
Ā, b̄

)
= {x ≥ 0 / Pos (Aix ≤ Bi) ≥ α, ∀i ∈ I

and Pos (Ajx ≥ Bj) ≥ α, ∀j ∈ J

and Pos (Akx = Bk) ≥ α, ∀k ∈ K} .
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Definition 15. Let α ∈ [0, 1] . The α-optimal solution set is

(26) Sα

(
Ā, b̄, c̄

)
=

=
{
x ∈ Fα

(
Ā, b̄

)
/ Pos (cx ≥ cy) ≥ α, ∀y ∈ Fα

(
Ā, b̄

)}
,

if we are searching the maximum in the problem (24), and

(27) Sα

(
Ā, b̄, c̄

)
=

=
{
x ∈ Fα

(
Ā, b̄

)
/ Pos (cx ≤ cy) ≥ α, ∀y ∈ Fα

(
Ā, b̄

)}
,

if we are searching the minimum in the problem (24).

We define next the fuzzy set M which will represent the fuzzy optimal
value of the objective function in the problem (24).

Definition 16. Let

(28)
Pα =

{
vx / x ∈ Sα

(
Ā, b̄, c̄

)
and v = (v1, v2, ..., vn) ,

where vi ∈ [Ci]
α

, ∀i = 1, ..., n

}
,

0 ≤ α ≤ 1. M will be a fuzzy set on R, defined by its membership function

(29) µM (t) =

=





sup {α ∈ [0, 1] / t ∈ Pα} if ∃α ∈ (0, 1] such that t ∈ Pα,

0, else.

Proposition 7. (i) For all i ∈ I and α ∈ (0, 1] we have

(30) {x ≥ 0 / Pos (Aix ≤ Bi) ≥ α} =

=

{
x ≥ 0 /

n∑

l=1

min [Ail]
α

xl ≤ max [Bi]
α

}
.

(ii) For all j ∈ J and α ∈ (0, 1] we have

(31) {x ≥ 0 / Pos (Ajx ≥ Bj) ≥ α} =
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=

{
x ≥ 0 /

n∑

l=1

max [Ajl]
α

xl ≥ min [Bj ]
α

}
.

(iii) For all k ∈ K and α ∈ (0, 1] we have

(32) {x ≥ 0 / Pos (Akx = Bk) ≥ α} =

=

{
x ≥ 0 /

n∑

l=1

max [Akl]
α

xl ≥ min [Bk]α
}
∩

∩
{

x ≥ 0 /

n∑

l=1

min [Akl]
α

xl ≤ max [Bk]α
}

.

(iv) F0

(
Ā, b̄

)
= Rn

+;

(v) S0

(
Ā, b̄, c̄

)
= Rn

+.

Proof. (i) Let i ∈ I and α ∈ (0, 1] . Using Proposition 5 we have

{x ≥ 0 / Pos (Aix ≤ Bi) ≥ α} =

=

{
x ≥ 0 / sup

{
p ∈ [0, 1] / min

[
n∑

l=1

Ailxl

]p

≤ max [Bi]
p

}
≥ α

}
=

=

{
x ≥ 0 / sup

{
p ∈ [0, 1] /

n∑

l=1

min [Ail]
p
xl ≤ max [Bi]

p

}
≥ α

}
.

Because Ail, l = 1, ..., n are fuzzy numbers, it follows that min [Ail]
p ≥

≥ min [Ail]
α and max [Bi]

p ≤ max [Bi]
α , for all p ≥ α. Therefore

{x ≥ 0 / Pos (Aix ≤ Bi) ≥ α} =

{
x ≥ 0 /

n∑

l=1

min [Ail]
α

xl ≤ max [Bi]
α

}
.

The following properties will be proved similarly.

Lemma 1. If A and B are closed convex subsets of Rn, then

AB = {xy / x ∈ A and y ∈ B}

is closed convex subset of R.

Theorem 8. The sets Fα

(
Ā, b̄

)
, Sα

(
Ā, b̄, c̄

)
, and Pα are convex and

closed for any α ∈ [0, 1] .
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Proof. If α = 0, then it is evident, that Fα

(
Ā, b̄

)
and Sα

(
Ā, b̄, c̄

)
are

convex and closed. Since P0 is product of F0

(
Ā, b̄

)
and [C]0 = [C1]

0× [C2]
0 ×

...× [Cn]0 , from Lemma 1 it follows that P0 is convex and closed, too.
If α ∈ (0, 1] , then

Fα

(
Ā, b̄

)
=

(
m⋂

i=1

{
x ≥ 0 /

n∑

l=1

min [Ail]
α

xl ≤ max [Bi]
α

}) ⋂

⋂

⋂

j∈J

{
x ≥ 0 /

n∑

l=1

max [Ajl]
α

xl ≥ min [Bj ]
α

}
 ⋂

⋂( ⋂

k∈K

{
x ≥ 0 /

n∑

l=1

max [Akl]
α

xl ≥ min [Bk]α
}) ⋂

⋂( ⋂

k∈K

{
x ≥ 0 /

n∑

l=1

min [Akl]
α

xl ≤ max [Bk]α
})

and

Sα

(
Ā, b̄, c̄

)
=

{
x ∈ Fα

(
Ā, b̄

)
/ Pos (cx ≥ cy) ≥ α, ∀y ∈ Fα

(
Ā, b̄

)}
=

= Fα

(
Ā, b̄

) ∩ {
x ≥ 0 / Pos (cx ≥ cy) ≥ α, ∀y ∈ Fα

(
Ā, b̄

)}
=

= Fα

(
Ā, b̄

)∩

∩
{

x ≥ 0 /

n∑

l=1

max [Cl]
α

xl ≥
n∑

l=1

min [Cl]
α

yl, ∀y ∈ Fα

(
Ā, b̄

)
}

.

Since the sets
{

x ≥ 0 /

n∑

l=1

min [Ail]
α

xl ≤ max [Bi]
α

}
,

{
x ≥ 0 /

n∑

l=1

max [Ajl]
α

xl ≥ min [Bj ]
α

}
,

{
x ≥ 0 /

n∑

l=1

max [Akl]
α

xl ≥ min [Bk]α
}

,

{
x ≥ 0 /

n∑

l=1

min [Akl]
α

xl ≤ max [Bk]α
}
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are convex and closed for any i ∈ I, j ∈ J, k ∈ K, it follows that the intersection
of these sets are convex and closed.

Consider the linear programming problem

(33)





n∑
l=1

min [Cl]
α

yl → max,

y ∈ Fα

(
Ā, b̄

)
.

Three cases are possible.
1. If Fα

(
Ā, b̄

)
= ∅, then Sα

(
Ā, b̄, c̄

)
= ∅. Therefore Sα

(
Ā, b̄, c̄

)
is convex

and closed.

2. If zα = max
y∈Fα(Ā,b̄)

n∑
l=1

min [Cl]
α

yl = +∞, then Sα

(
Ā, b̄, c̄

)
= ∅. Therefore

Sα

(
Ā, b̄, c̄

)
is convex and closed.

3. If zα = max
y∈Fα(Ā,b̄)

n∑
l=1

min [Cl]
α

yl =< +∞, then Sα

(
Ā, b̄, c̄

)
=

= Fα

(
Ā, b̄

)∩
{

x ≥ 0 /
n∑

l=1

max [Cl]
α

xl ≥ zα

}
. Because these sets are convex

and closed, it follows that their intersection is convex and closed, too.
Since Pα is product of Fα

(
Ā, b̄

)
and [C]α = [C1]

α× [C2]
α × ... × [Cn]α ,

from Lemma 1 it follows that Pα is convex and closed, too.

If we are using Proposition 5 and Proposition 7, then the general problem
(24) can be rewritten as

(34)





Z = c̄x → max (or min) ;
Āix ≤ b̄i i ∈ I,(−Āj

)
x ≤ (−b̄j

)
j ∈ J,

Ākx ≤ b̄k k ∈ K,(−Āk

)
x ≤ (−b̄k

)
k ∈ K,

x ≥ 0.

These transformations lead to the standard form of fuzzy linear programming
problems

(35)

{
Z = c̄x → max (or min) ;
Āix ≤ b̄i, i ∈ I,
x ≥ 0.
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4. Fuzzy optimal value of linear programming problems with quasi-
triangular fuzzy numbers in capacity vector

In this section we present elementary properties of fuzzy optimal value, if
the capacity vector of linear programming problem contains fuzzy numbers or
quasi-triangular fuzzy numbers.

Such a problem can be written as

(36)

{
Z = cx → max;
Ax ≤ b̄,
x ≥ 0,

where c = (c1, c2, ..., cn) ∈ Rn, x = (x1, x2, ..., xn) ∈ Rn, A = (aij) i=1,...m
j=1,...,n

is a

matrix of real numbers and b̄ = (B1, B2, ..., Bm) is a vector of fuzzy numbers.
In this case, for any α ∈ (0, 1]

(37) Fα

(
A, b̄

)
=



x ≥ 0 /

n∑

j=1

aijxj ≤ max [Bi]
α

, i = 1, 2, ...m



 ,

(38)

Sα

(
A, b̄, c

)
=



x ∈ Fα

(
A, b̄

)
/

n∑

j=1

cjxj ≥
n∑

j=1

cjx
′
j , ∀x′ ∈ Fα

(
A, b̄

)


 ,

(39)

Pα =
{
cx / x ∈ Sα

(
A, b̄, c

)}
=

=





∅, if Sα

(
A, b̄, c

)
= ∅;

{
max

x∈Fα(A,b̄)
cx

}
, if Sα

(
A, b̄, c

) 6= ∅.

Proposition 9. The following properties are true: i) If α′ ∈ (0, α] ,
then Fα

(
A, b̄

) ⊆ Fα′
(
A, b̄

)
. ii) If for some α ∈ (0, 1] , Sα

(
A, b̄, c

) 6= ∅ and
F1

(
A, b̄

) 6= ∅, then Sα′
(
A, b̄, c

) 6= ∅, for any α′ ∈ (α, 1] . iii) If for some

α ∈ (0, 1] , Sα

(
A, b̄, c

) 6= ∅ and max [Bi]
α′

< ∞, for all i = 1, ..., m, where
α′ ∈ (0, α) , then Sα′

(
A, b̄, c

) 6= ∅. iv) If α, β ∈ (0, 1] where α < β and
Sα

(
A, b̄, c

)
,Sβ

(
A, b̄, c

)
are not empty, then for any λ ∈ [α, β] , Sλ

(
A, b̄, c

)
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is not empty. v) Let β ∈ [0, 1] be the biggest number such that Sβ

(
A, b̄, c

) 6= ∅,
as well as α ∈ [0, 1] be the smallest number such that Sα

(
A, b̄, c

) 6= ∅. If we
denote z (α′) = max

x∈Fα′(A,b̄)
cx, then the function z : [α, β] → R is decreasing.

If the functions fi : [α, β] → R, fi (α′) = max [Bi]
α′ are continuous for all

i = 1, ..., m, then the function z is continuous and [M ]α
′

= [z (β) , z (α′)] for
any α′ ∈ [α, β] .

These properties are consequences of Proposition 7 and Proposition 5.

In the following, we assume that all components of the capacity vector b̄
are quasi-triangular fuzzy numbers. Let Bi (bi, di) ∈ Fg, for all i = 1, 2, ..., m.
In this case max [Bi]

α = bi + dig (α) for all i = 1, 2, ..., m.

Proposition 10. If S1

(
A, b̄, c

)
is non-empty then the fuzzy optimal value

M of the objective function in the problem (36) is a fuzzy number, where [M ]α =
= [z (1) , z (α)] for any α ∈ [0, 1] .

To solve problem (36) in a fuzzy sense means, that we determine the
fuzzy optimal value of the objective function and give at least one element of
Sα

(
A, b̄, c

)
for all α ∈ [0, 1] .

In this case we will get the fuzzy optimal value, if we solve the following
linear programming problem for all α ∈ [0, 1]

(40)





n∑
j=1

cjxj → max

n∑
j=1

aijxj + xn+i = bi + dig (α) , i = 1, ...,m,

xi ≥ 0 , i = 1, ..., n + m.

For every α, the optimal value of this problem will be an element of Pα and
the optimal solution will be an element of Sα

(
A, b̄, c

)
.

If α = α0 then let B be a basis associated to the optimal solution of the
linear problem. Let I the set of indices i ∈ {1, 2, ...,m + n} , if the i-th vector
is in a basis B and let J = {1, 2, ...,m + n} \I.

The solution of (40) for α ≥ α0 associated to B is

xB (α) = B−1e (α) = B−1 ( b + dg (α)) = B−1b + B−1dg (α) .

If we denote

x0
B =

(
x0

1, x
0
2, ..., x

0
n

)
= B−1 (b + g (α0) d) and x1

B =
(
x1

1, x
1
2, ..., x

1
n

)
= B−1d,
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then the solution xB (α) is

(41) xB (α) = x0
B + (g (α)− g (α0))x1

B .

Let us discuss the following problem. Can we find an upper bound of α,
such that xB (α) remains an optimal solution of (40)?

Theorem 11. If B is optimal basis on α = α0, then B remains optimal
for any α ∈ [α0, αmax], where

Case I. If x1
i ≤ 0 for all i ∈ I, then

(42) αmax = 1.

Case II. If exist some p ∈ I such that x1
p > 0, then

(43) αmax =





g−1

(
g (α0)− min

i∈I:x1
i
>0

(
x0

i

x1
i

))
, if min

i∈I:x1
i
>0

(
x0

i

x1
i

)
< g (α0),

1, if min
i∈I:x1

i
>0

(
x0

i

x1
i

)
≥ g (α0).

Proof. Let α ≥ α0. We know, that the basis B is optimal when xB (α) is
a feasible solution and all components c′j relative on B are not negative, where

(44) c′j = zj − cj = cBB−1aj − cj , j = 1, ..., n + m.

Since c′j does not depend on α, it follows that it is not negative, because B is
optimal for α0.

If the components of xB (α) denoted with xi (α) , and the components of
x0

B and x1
B with x0

i and x1
i respectively, then xB (α) is feasible solution, when

(45) xi (α) = x0
i + (g (α)− g (α0)) x1

i ≥ 0, for all i ∈ I.

The values of x0
i are not negative, because B is optimal on α0.

Two cases are possible.

Case I. If x1
i ≤ 0 for all i ∈ I, then for any α ∈ [α0, 1] we have g (α) ≤

≤ g (α0) . Thus inequalities (45) are performed.
Case II. If there exists some p ∈ I such that x1

p > 0, then

(46) g (α) ≥ g (α0) + max
i∈I:x1

i
>0

{−x0
i

x1
i

}
= g (α0)− min

i∈I:x1
i
>0

{
x0

i

x1
i

}
.
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This condition is true for any α ∈ [α0, αmax], where αmax is given by the
formula (43).

Thus, when we know the optimal basis B on α0, then we can determine
an interval in which B remains optimal, if α changes in this interval.

Since we supposed, that the value of α is in the interval [0, 1] , we put the
following question. How can we generate a new optimal basis B on α > αmax,
if αmax < 1?

We assume that αmax < 1. If α = αmax, then two cases are possible.

A) If there exists only one indice l such that min
x1

i
>0, i∈I

(
x0

i

x1
i

)
=

x0
l

x1
l

, then

x0
l + (g (αmax)− g (0)) x1

l = 0.

B) If there exists more indices s ∈ S such that min
x1

i
>0, i∈I

(
x0

i

x1
i

)
=

x0
s

x1
s

, then

x0
s + (g (αmax)− g (0)) x1

s = 0 for all s ∈ S.

Let ε > 0 such that α = αmax + ε ≤ 1. Then at least one component
of xB (α) will be negative. However the solution xB (α) remains dual-feasible.
Consequently, the transformation of basis generates a new basis. We discuss
the two cases separately.

Case A) If we take α = αmax + ε in place of αmax, then the component
xl (α) of the vector xB (α) will become negative. Therefore we are studying
sign of the components glj in row of xl. Two cases are possible.

a) All glj ≥ 0 when j ∈ J. In this case, if α > αmax, then there is no
optimal solution of (40).

b) If there exists some indices j ∈ J1 ⊂ J such that glj < 0, then we
perform a basis transformation. Let B1 be a new basis. We get this basis from
B, where we replaced the vector xl with xk. These basis B and B1 are optimal
for α = αmax. Thus, a value αmax is critical, because for this value of α two
different optimal basis exist. For basis B1 it is also possible to determine a new
interval, in which B1 remains also an optimal basis. We denote by [αmax, α1]
this interval. We will show, that α1 > αmax.

Proof. The solution of (40) on α ≥ αmax associated to B1 is

x̄B1 = B−1
1 e (α) = B−1

1 ( b + dg (α)) = B−1
1 b + g (α)B−1

1 d.

We determine the interval in which B1 is optimal.
Components of solution xB1 are

x̄i (αmax) = x̄0
i + g (αmax) x̄1

i ≥ 0,

for all i ∈ I − {l} − {k} and x̄k (αmax) = 0.
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If α = αmax + ε, then

(47)

x̄i (αmax + ε) = x̄0
i + g (αmax + ε) x̄1

i =

= x̄0
i + g (αmax) x̄1

i + (g (αmax + ε)− g (αmax)) x̄1
i =

= x̄i (αmax) + (g (αmax + ε)− g (αmax)) x̄1
i

for all i ∈ I − {l} − {k} , and
(48)

x̄k (αmax + ε) = − 1
glk

(
x̄0

l + g (αmax + ε) x̄1
l

)
=

= − 1
glk

(
x0

l + g (αmax)x1
l + (g (αmax + ε)− g (αmax)) x̄1

l

)
=

= − 1
glk

(g (αmax + ε)− g (αmax)) x̄1
l .

From (47) and (48) it follows that

- if all components of vector x̄1 = B−1
1 d are not positive, then B1 is optimal

for any ε > 0. Thus, αmax = 1.

- If the component x̄1
l of x̄1is strictly positive, then B1 is not optimal for

ε > 0. Thus, if α > αmax, then there is not optimal solution.
- If x1

l ≤ 0, but there is an i ∈ I − {l} − {k} such that x1
i > 0, then the

condition x̄ (αmax + ε) ≥ 0 is satisfied for ε, where

(49) ε ≤ εmax = g−1

(
max

i:x1
i
>0

(−x̄i (αmax)
x1

i

)
+ g (αmax)

)
− αmax.

Since x̄i (αmax) > 0 for any undegenerate solution, it follows that B1 is optimal
for αmax < α < α1 = αmax + εmax.

Using this method, we determine a sequence of optimal basis B1, B2, ..., Bp

associated to the intervals [α1, α2] , [α2, α3] , ..., [αp−1, αp]. The limits of these
intervals we call critical values. They constitute an increasing sequence. The
endpoint element of this sequence may be equal or not equal to one.

Case B) In this case all components xs, s ∈ S of x (αmax) are equal to zero
and will become nonnegative, if we put α = αmax + ε in place of αmax. To
determine a new solution of problem (40) for α, it is necessary that we apply in
finite times the simplex-dual algorithm. Henceforth, we obtain the conclusion
that optimal basis for α > αmax may exist or it may not exist. If optimal basis
exists, then αmax is the critical value of α.
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4.1. Solution algorithm of linear programming problems with quasi-
triangular fuzzy numbers in capacity vector

Step 1. Let α0 = 0 and k := 0.

Step 2. Using simplex method, we decide if exists or does not exist an
optimal basis. If exists, then go to step 4, else go to step 3.

Step 3. If α > α0, then we put

(50) Sα

(
A, b̄, c

)
= ∅ and Pα = ∅,

and after that go to step 8.

Step 4. Let k := k +1. We denote optimal basis with Bk, optimal solution
with xk and optimal value with zk.

Step 5. We determine the value of αmax with formulas:
Case I. If x1

i ≤ 0 for all i ∈ I, then

(51) αmax = 1.

Case II. If there exists some p ∈ I such that x1
p > 0, then

(52) αmax =





g−1

(
g (α0)− min

i∈I:x1
i
>0

(
x0

i

x1
i

))
, if min

i∈I:x1
i
>0

(
x0

i

x1
i

)
< g (α0),

1, if min
i∈I:x1

i
>0

(
x0

i

x1
i

)
≥ g (α0).

Let αk := αmax. We calculate components of vector y := B−1
k d and after that

we determine the optimal solution with the formula

(53) xB (α) = xk + (g (α)− g (α0)) y;

and optimal value with the formula

(54) z (α) = zk + (g (α)− g (α0)) cy,

when α ∈ [αk−1, αk] .

Step 6. If αmax = 1, then go to step 8. Else we determine

(55) bi := xk
i + (g (αmax)− g (α0)) yi,
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when i ∈ I,

(56) z := z (αmax)

and

(57) α0 := αmax.

We decide which of cases A) or B) is occurred. Using the correspondent method
we decide if exist or not a new optimal basis.

Step 7. If the optimal basis exists, then go to step 4, else go to step 3.

Step 8. We determine the membership function of optimal value with
formula
(58)

µM (t) =

{
sup

α∈[0,1]

{α / t = z (α)} , if ∃α ∈ [0, 1] such that t = z (α),

0, else.

5. Example

Consider the function g : [0, 1] → R+, g (x) = 1 − x2. Assume that
B1 = (6, 2) , B2 = (10, 3) , B3 = (10, 3) are quasi-triangular fuzzy numbers.
Then we wish to solve the following problem

(59)





z = 2x1 + x2 + 2x3 → max
x1 + x2 + x3 ≤ B1,
x1 + x2 + 2x3 = B2,
2x1 + x2 + x3 = B3,
x1, x2, x3 ≥ 0.

We solve this problem using the algorithm described in the previous section.
We write the problem in the following form

(60)





z = −2x1 − x2 − 2x3 → min
x1 + x2 + x3 ≤ 6 + 2g (α) ,
x1 + x2 + 2x3 ≤ 10 + 3g (α) ,
x1 + x2 + 2x3 ≥ 10− 3g (α) ,
2x1 + x2 + x3 ≤ 10 + 3g (α) ,
2x1 + x2 + x3 ≥ 10− 3g (α) ,
x1, x2, x3 ≥ 0.
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