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THE SOLUTION OF
LINEAR PROGRAMMING PROBLEMS
WITH QUASI-TRIANGULAR FUZZY NUMBERS
IN CAPACITY VECTOR

Z. Maké (Cluj-Napoca, Roumania)

Abstract. We propose a new solution concept for fuzzy linear program-
ming problems. This is similar to the concept proposed by J.J. Buckley
in [3], but is differs from that, because in this paper we define the feasible
set and solution set by using the degree of possibility. First we define
this concept and obtain the basic properties of the new solution set and
the fuzzy optimal value of the objective function. After that we present
in details a method to resolve linear programming problems with quasi-
triangular fuzzy numbers in capacity vector. Finally we apply this method
for a special problem.

1. Introduction

In a lot of practical problems, the quantities may only be uncertainly
estimated. If these quantities are coeflicients of linear programming problems,
then they are possible to be characterized with fuzzy numbers. That linear
programming problem, in which at least one coefficient is a fuzzy number, we
call a fuzzy linear programming problem. Optimal solutions and optimal value
of this problem was formulated by J.J. Buckley in [3].

In practice, when one or more coefficients have uncertain values, then the
optimal value will be uncertain. As a conclusion, the optimal value of fuzzy
linear programming problem has to be a fuzzy quantity. In order to reach the
a-level of optimal value we must make an optimal decision. This decision must
be exact. Therefore the set of a-optimal solution of a fuzzy linear programming
problem contains vectors of real numbers.
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In the present paper we define a new optimal solution concept and new
optimal value concept of fuzzy linear programming problems, such that they
fulfil the above expectations. In the third section we present the elementary
properties of these concepts, if the coefficients of fuzzy linear programming
problems are fuzzy numbers or quasi-triangular fuzzy numbers. This concept
of quasi-triangular fuzzy numbers was introduced by M. Kovécs in [9]. In
the fourth section is presented a solving method of fuzzy linear programming
problems with quasi-triangular fuzzy numbers in the capacity vector. In the
last section we resolve an example of linear programming problem with quasi-
triangular fuzzy numbers in the capacity vector.

2. Preliminaries

In this section we collect those definitions and basic propositions which
will be needed in the present paper.

2.1. Fuzzy number

Definition 1. Let be X a set. A mapping p : X — [0,1] is called
membership function, and the set A = {(x, u(z)) / v € X} is called fuzzy set
on X. The membership function of A is denoted by pa. The collection of all
fuzzy sets on X is denoted by F (X).

Definition 2. The support of A is the subset of X given by
(1) supp A={z € X / pa(x)>0}.

Definition 3. The a-cut of A is
(r€X [ pa(@)>a}, ifa>0,
(2) [A]" =
cl (supp A), if a =0,
where ¢l (supp A) is closure of the support of A. The height of A is

(3) hgt (A) = SUp 14 ().

Definition 4. A fuzzy set A on X is convex, if all a-cuts are convex
subsets of X, and it is normal if [A]' # 0.
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Definition 5. A convex, normal fuzzy set on the real line R with upper
semicontinuous membership function will be called fuzzy number. The set of
all fuzzy numbers will be denoted by N.

Let g : [0,1] — [0, o0] be a continuous, strictly decreasing function with the
boundary properties g (1) = 0 and tlir%g (t) = go < oco. The concept of quasi-

triangular fuzzy numbers generated by g was introduced first by M. Kovécs [9]
and defined, as follows.

Definition 6. If A and d are real numbers, with d > 0, let 7, the subset
of fuzzy numbers with the membership function

gD (le) . ifd>0,
(4) p(t) =
X{\} (t), ifd=0

for all t € R, where

g (1), iftel0,9(0)),
(5) gt () =
0, if £ > g(0) = go.

Here and in the following x 4 denotes the characteristic function of the set
A. The elements of F, will be called quasi-triangular fuzzy numbers generated
by g with center A\ and spread d and we will denote them with (A,d). The
following results are given in [7], [8], [9].

Proposition 1. Let A be a fuzzy number. Let us introduce the lower
and upper bound functions ai,as : [0,1] — R U {—o0,+00} of its a—cuts,
namely a (o) = min [A]” and as (o) = max[A]* . Then (i) a1 () < az ()
for all a € [0,1]; (i) a1 is increasing and ag is decreasing functions; (iii) aq
is lower semicontinuous and ay is upper semicontinuous functions; (iv) [A]" =
= la1 (@) ;a2 (a)); (v) [A] = el (suppA) = [a1 (0) a2 (0)].

Proposition 2. If (A\,d) € F, and d > 0, then for all o € [0, 1]
(6) (A )" =[A=dg(a), A+dg(a)].
If d =0, then for all o € [0, 1]
(7) (A @)™ = {A}.
Let X be a vector space. Using the Zadeh’s extension principle we define

extended addition, extended substraction, extended opposite and extended
multiplication of a fuzzy set by a scalar in F (X), as follows.
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Definition 7. (Extended Addition) Suppose A and B are fuzzy sets on
X. If using the extension principle, then the membership function of fuzzy set
A+ Bis

(8) patp (z) = , S min {pa (t1), ps (t2)} -

Definition 8. (Extended Opposite) Suppose A is a fuzzy set on X. If
using the extension principle, then the membership function of fuzzy set —A is

(9) poa (@) = pa(-z).
Definition 9. (Extended Substraction) Suppose A and B are fuzzy sets
on X. If using the extension principle, then the membership function of fuzzy

set A — B is

(10) pa-p (x) = sup min{pa (t1),us (t2)}

tl—tQZI

Definition 10. (Extended Multiplication) Suppose A is a fuzzy set on X
and c is a real number. If using the extension principle, then the membership
function of fuzzy set cA is

:LLA (%) ’ lf c ?é 07
(11) pea () = § hgt (A), if c¢=0andz=0,

0, if c¢=0andz#0.

Proposition 3. Suppose A and B are fuzzy numbers with [A]" =
= lay (a),az ()] and [B]* = [by (a),bs ()] for all a € [0,1]. Then for all
a € [0,1] and for allc € R

(12) (i) [A+B]" =la1(a) +bi(a), az(e)+b2(a)];
(13) (i)  [A=B]" =la () —ba (), az(a)=bi()];

[car (@) ,caz ()], if a0,
(14) (i) [cA]” =
[caz (@) ,car (a)], if «<O.
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2.2. Possibility

Definition 11. Let A and B be fuzzy numbers. The degree of possibility
that the proposition ,,A is less than or equal to B” is true we denote by
Pos(A < B) and define by the extension principle as

(15) Pos (A < B) = supmin {ua (z), 5 (y)} -

<y

Definition 12. Let A and B be fuzzy numbers. The degree of possibility
that the proposition ,,A is greater than or equal to B” is true we denote by
Pos(A > B) and define by the extension principle as

(16) Pos(A> B) = sup min {na (). ps ()}

Definition 13. Let A and B be fuzzy numbers. The degree of possibility
that the proposition ,,A is equal to B” is true we denote by Pos(A = B) and
define by the extension principle as

(17) Pos (4 = B) = supmin {1a (2) . (@)}

Proposition 4. Let A and B be fuzzy numbers. Then
(18) Pos (A = B) = min {Pos (A > B),Pos (A < B)}.
Proposition 5. Let A and B be fuzzy numbers. Then
(19) Pos(A< B) =
sup{a € [0,1] / min[A]* < max[B]*}, if min[A4]° < max[B]",

0, if min[A]° > max[B]°.
Proposition 6. Let A = (A\1,d1) € Fy and B = (A2, d2) € Fg. If di >0
or ds > 0, then
]., lf >\1 < )\2;

(20) Pos(A< B)= - ()\1 — N

] A A
d1+d2>’ ’Lf 1> A2,
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and

A — Do
21 Pos(A = B) = o) (=22l
(21) os ( )=y < 0T d

If A= (\,0) € Fy and B = (A\2,0) € Fy, then

1, if A< g
(22) Pos(A<B)= {

0, ’Lf A1 > Ao,
and

Loif A=A
(23) Pos(A=B)= {

0, if A # Ao

3. Fuzzy optimal value of fuzzy linear programming problems

In this section we present the new solution concept and the fuzzy optimal
value concept of fuzzy linear programming problems.

A fuzzy linear programming problem is

7 = ¢xr — max (ormin) ;
A <b; i€l

(24) ij Z Ej ] S J,
Akl' = Bk keK,
x>0

where ¢ = (C1,Cy,...,Cy) is a 1 x n vector of fuzzy numbers, B; are fuzzy
numbers for alll € IUJUK, A; = (A1, Al 2, ..., A1) is a 1 x n vector of fuzzy
numbers for any [ € TU J U K.

Definition 14. Let o € [0,1]. The a-feasible set of problem (24) is

Fa (/1,5) ={z>0/Pos(Ax<B;)>a, Viel
(25) and Pos(Ajxz > Bj)>a, VjeJ
and Pos(Agx = By) > a, Vk € K}.
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Definition 15. Let « € [0,1]. The a-optimal solution set is

(26) Sa (A,b,¢) =

={z e Fa(Ab)/ Pos(cx > cy) >, VyecFo(AD)},

if we are searching the maximum in the problem (24), and
(27) Sa (A,b,¢) =

= {x € Fa ([1,1_7) / Pos(cx <cy) > a, YyeF, (121,5)} ,
if we are searching the minimum in the problem (24).

We define next the fuzzy set M which will represent the fuzzy optimal
value of the objective function in the problem (24).

Definition 16. Let

Pa z{ ve [ x € Sy (;1,5, é) and v = (v1,v2,...,0p),
(28)
where v; € [C4]",Vi=1,...,n },

0 <a<1. M will be a fuzzy set on R, defined by its membership function
(29) p (t) =
sup{a €[0,1] /t€ Py} if Jae€(0,1] such that t € P,,

0, else.

Proposition 7. (i) For alli € I and « € (0,1] we have
(30) {r >0/ Pos(4;x < B;) >a}=

= {x >0 / i:min [Ail}a.%'l < max [Bl]a} .

=1

(i) For all j € J and o € (0, 1] we have

(31) {z >0/ Pos(Ajz > B;) > a} =
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- {33 >0/ Zmax [Aj]" 21 > min [Bj]a} .
=1
(i11) For all k € K and o € (0,1] we have
(32) { >0/ Pos(Axx = By) > a} =

=1

= {x >0 / Zmax [Akl]a x; > min [Bk]a} n

n {x >0/ Zmin [Ar] 2; < max [Bk]a} )
I=1

(iv) Fo (A, B) = RY;

()  So(Ab.c) =R

Proof. (i) Let i € I and « € (0,1] . Using Proposition 5 we have

{r>0/Pos(Aix < B;) >a}=

n p

> A

=1

< max [Bi]p} > a} =

{0/ e o
:{x>0/sup{p6[01 /me [A4]" 7, < max [B }
=1

Because A;, | = 1,..,n are fuzzy numbers, it follows that min[A4;]" >
> min [4;] and max [B " <max[B;]", for all p> a. Therefore

n
{x >0/ Pos(Ajz < B;) > a} = {x >0/ Zmin [A4]% z; < max [Bi}a} .
=1
The following properties will be proved similarly.
Lemma 1. If A and B are closed convex subsets of R™, then
AB={zy /z€ A and ye€ B}

is closed convex subset of R.
Theorem 8. The sets F, (fl,l_)), Sa (A,B,E), and P, are convex and
closed for any o € [0,1].
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Proof. If a = 0, then it is evident, that F, (/_1,13) and S, ( ,b, ) are
convex and closed. Since Py is product of 7y (4,b) and [€]° = [C1]° x [Ca]° x

. x [Cy]°, from Lemma 1 it follows that Py is convex and closed, too.
If & € (0,1], then

Fa (AD) = (ﬁ {x >0/ zn:min [Aq]® 21 < max [Bi]a}> N
=1
(. {x >0/ zn:max[Aﬂ]o‘xl > min [B

=1

" )N
ﬂ(ﬂ x>0/ Zmax [Ag]® 2, > min [By] })
ﬂ(ﬂ x>0/ me [Ak]" 2, < max [By)] })

keK =1

fa( )/Pos(x>cy)>a Yy € F, (A[_))}
A,0) N {z >0/ Pos(cx > cy) >, Vye Fo(Ab)} =
b

=1 =1

Fa
ﬂ{ O/Zmax (1] zl>me [C1]" 1, Yy € Fq (A b)}

Since the sets

—N

x>0/ Zmin [Ay]® 2 < max |
=1

n
x>0/ Zmax [4;]" 2; > min [B
=1

— ——

=1

——

x>0/ Zmln [Ag]® 7, < max [By]”
=1

x>0/2max [Ar]” 21 > min [By] }
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are convex and closed for any i € I,j € J, k € K, it follows that the intersection
of these sets are convex and closed.

Consider the linear programming problem

(33) lZ:1 min [C}]* y; — max,

yeFa(AD).

Three cases are possible.

1. If F, (fl, l_)) = (), then S, (fl,l_), E) = (). Therefore S, (fl,l_), é) is convex
and closed.

2. If zo = max Z min [C}]% y; = 400, then S, (A4, b,¢) = 0. Therefore
yEFa(AD)1=1
Sa (A, b, E) is convex and closed.
3. If 2, = max Z min [C}]y; =< +o0, then S, ([LB, E) =
ye]—‘a(A b)i=

=Fa (4,0)N {x >0/ Z max [Cy]" z; > za} . Because these sets are convex
=1

and closed, it follows that their intersection is convex and closed, too.
Since P, is product of F, (4,b) and [C]" = [C4]" x [Co]” x ... x [C,]",
from Lemma 1 it follows that P, is convex and closed, too.

If we are using Proposition 5 and Proposition 7, then the general problem
(24) can be rewritten as

Z =¢éxr — max (or min);
A <b iel,
(~Aj)r< () el

(34) Apz < by, B keK,
(-Ap)z < (-by) keK,
x > 0.

These transformations lead to the standard form of fuzzy linear programming
problems

(35) A <by, iel,

{chx—>max (or min);
x> 0.
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4. Fuzzy optimal value of linear programming problems with quasi-
triangular fuzzy numbers in capacity vector

In this section we present elementary properties of fuzzy optimal value, if
the capacity vector of linear programming problem contains fuzzy numbers or
quasi-triangular fuzzy numbers.

Such a problem can be written as

Az <b,
x>0,

Z = cr — max;
(36) {

where ¢ = (¢1,¢2,...,¢n) € R", & = (x1,22,...,Tp) € R", A = (a;5) i=1...n i5 &
J

=1,...,n

matrix of real numbers and b = (B1, Ba, ..., By,) is a vector of fuzzy nulhbers.
In this case, for any a € (0, 1]

(37) Fo(A)=q2>0/ Zaijxj <max|[B;]*, i=1,2,..m p,

(38)

Sa (A,b,c) =z e Fo(AD) / ch:cj > chx;-, V' € Fo (4,0) ¢,
j=1 j=1

(39)

max cxp, if S, (A,
xE]:a(A,B)

Proposition 9. The following properties are true: i) If o/ € (0,q],
then Fo (A,b) C For (A,b). i) If for some o € (0,1], S (A,b,¢) # 0 and
Fi(A,b) # 0, then Sor (A,b,c) # 0, for any o/ € (a,1]. i) If for some
a € (0,1], S, (AJ_J, c) # () and max [Bi]a/ < oo, for all i = 1,...,m, where
o € (0,0), then Sor (A,b,c) # 0. iv) If o, € (0,1] where « < 3 and
Sa (A,I_), c) ,Sp (A,l_), c) are not empty, then for any A € [a, (], S (A,l_), c)
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is not empty. v) Let 8 € [0,1] be the biggest number such that Sp (A,B, c) #0,
as well as o € [0,1] be the smallest number such that S, (A,B, c) £ (. If we
denote z (') = max  cx, then the function z : [o, 8] — R is decreasing.
IE]:Q/(A,E)
If the functions f; : [a, 8] — R, f;i (¢/) = max [Bi]a/ are continuous for all
i = 1,...,m, then the function z is continuous and [M]O/ = [z(8),z(d)] for
any o' € [a, 5].
These properties are consequences of Proposition 7 and Proposition 5.

In the following, we assume that all components of the capacity vector b
are quasi-triangular fuzzy numbers. Let B; (b;,d;) € Fg, for all i =1,2,...,m.
In this case max [B;]" = b; + d;g (a) for all i = 1,2, ...,m.

Proposition 10. If S (A, b, c) is non-empty then the fuzzy optimal value
M of the objective function in the problem (36) is a fuzzy number, where [M]* =
=[2(1),2 ()] for any a € [0,1].

To solve problem (36) in a fuzzy sense means, that we determine the
fuzzy optimal value of the objective function and give at least one element of
Sa (A, b,c) for all o € [0,1].

In this case we will get the fuzzy optimal value, if we solve the following
linear programming problem for all a € [0, 1]

M=

. CjTj; — maX

.
Il

40 n

(40) > 0T+ Ty = bi+dig(a), i=1,...,m,
=1
z; >0, i1=1,..,n+m.

For every «, the optimal value of this problem will be an element of P, and
the optimal solution will be an element of S, (A, b, c) .

If a = ag then let B be a basis associated to the optimal solution of the
linear problem. Let I the set of indices ¢ € {1,2,...,m + n}, if the i-th vector
is in a basis B and let J = {1,2,...,m+n}\I.

The solution of (40) for a > oy associated to B is
zp(0) =B te(a) =B ' (b+dg(a))=B b+ B ldg(a).
If we denote

2% = (29,29,...,20) =B ' (b+g(ap)d) and zp = (z1,23,...,2,) = B 'd,

n PR
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then the solution zp (a) is
(41) zp (@) = 2% + (9 (@) — g (a0)) -
Let us discuss the following problem. Can we find an upper bound of «,

such that xp (o) remains an optimal solution of (40)?

Theorem 11. If B is optimal basis on o = «g, then B remains optimal
for any a € [ag, umax], where
Case I. If 2} <0 for alli € I, then

(42) Omax = 1.

Case II. If exist some p € I such that le, > 0, then

. z? . . z?
o (oo = i (3)) o e, (2F) <5t

(43) Qmax = ‘ ‘ xo
1, if min (Z> > g ().

ieLal>0 \ @}

Proof. Let oo > ag. We know, that the basis B is optimal when zp («) is
a feasible solution and all components c; relative on B are not negative, where

(44) i =zj—cj=cPBa; — ¢, j=1..,n+m.

Since c;- does not depend on «, it follows that it is not negative, because B is
optimal for «ap.

If the components of 25 () denoted with z; (), and the components of
2% and z} with 2? and zlrespectively, then z () is feasible solution, when

(45) zi () =29 + (g () — g(ag))z} >0, forall icl.

The values of ¥ are not negative, because B is optimal on ay.
Two cases are possible.

Case I. If z} < 0 for all i € I, then for any a € [ag, 1] we have g (a) <
< g (ap) . Thus inequalities (45) are performed.

Case II. If there exists some p € I such that :czl, > 0, then

1) gt g0+ ma 22 =gt - wn {51

i€I:z}>0 Zz;
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This condition is true for any « € [, Gmax), Where amax is given by the
formula (43).

Thus, when we know the optimal basis B on «g, then we can determine
an interval in which B remains optimal, if a changes in this interval.

Since we supposed, that the value of « is in the interval [0,1], we put the
following question. How can we generate a new optimal basis B on o > aax,
if apax < 17

We assume that apgax < 1. If @ = apax, then two cases are possible.

0 0

x; z
A) If there exists only one indice I such that min (;) ==L then
z!>0, iel \ T; T;

xlo + (g (amax) —4g (0)) Qfll =0.

0 0
B) If there exists more indices s € S such that min (%) = &, then
x1>0, i€l \ T;
29 4+ (9 (max) — g (0)) 2l =0 for all s € S.

Let € > 0 such that @ = amax + € < 1. Then at least one component
of zp () will be negative. However the solution zp (o) remains dual-feasible.
Consequently, the transformation of basis generates a new basis. We discuss
the two cases separately.

Case A) If we take o = aumax + € in place of @ax, then the component
x; («) of the vector zp () will become negative. Therefore we are studying
sign of the components g;; in row of ;. Two cases are possible.

a) All g;; > 0 when j € J. In this case, if & > aumax, then there is no
optimal solution of (40).

b) If there exists some indices j € J; C J such that g;; < 0, then we
perform a basis transformation. Let By be a new basis. We get this basis from
B, where we replaced the vector x; with x;. These basis B and B; are optimal
for = amax. Thus, a value anyay is critical, because for this value of o two
different optimal basis exist. For basis Bj it is also possible to determine a new
interval, in which B; remains also an optimal basis. We denote by [tmax, 1]
this interval. We will show, that a; > apmax-

Proof. The solution of (40) on a > amax associated to By is
zp, = By 'e(a) = By (b+dg(a)) = By 'b+g(a) By 'd.

We determine the interval in which B; is optimal.
Components of solution xp, are

T; (amax) = j? +9g (amax) i}l > 07

for all i € I — {1} — {k} and &}, (oumax) = 0.
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If @ = amax + €, then

T; (amax + 5) = f? +9 (amax + 5) -i'zl
(47) = i’? + g (Omax) jzl + (9 (max +€) — g (Omax)) @1 =
Zi (0max) + (9 (max +€) — g (Omax)) fll

foralli eI —{l} —{k}, and

(48)
1
Tk (Qmax +€) = —— (a‘c? + g (Qmax +€) ;zll) =
ik
71 -
- o (29 + g (Ctmax) 7] + (g (Omax +€) — g (Omax)) T} ) =
1 —_
== (g (amax + 5) —4g (Oémax)) .Z‘ll
ik

From (47) and (48) it follows that

- if all components of vector ' = Bfld are not positive, then B; is optimal
for any € > 0. Thus, amax = 1.

- If the component Z; of Z'is strictly positive, then Bj is not optimal for
€ > 0. Thus, if a > amax, then there is not optimal solution.

- If z; <0, but there is an i € I — {I} — {k} such that z; > 0, then the
condition Z (amax + €) > 0 is satisfied for e, where

i} >0 T;

_ —T; («
(49) € < Emax = g 1 <max (z(lmax)> + g(amax)> — Omax-
Since Z; (amax) > 0 for any undegenerate solution, it follows that B; is optimal
for Omax < & < &1 = Qmax + Emax-

Using this method, we determine a sequence of optimal basis B1, Bo, ..., By
associated to the intervals [aq, as], (a2, as], ..., [p—1, @p]. The limits of these
intervals we call critical values. They constitute an increasing sequence. The
endpoint element of this sequence may be equal or not equal to one.

Case B) In this case all components z, s € S of & (amax) are equal to zero
and will become nonnegative, if we put o = apax + € in place of apmax. To
determine a new solution of problem (40) for «, it is necessary that we apply in
finite times the simplex-dual algorithm. Henceforth, we obtain the conclusion
that optimal basis for a > apax may exist or it may not exist. If optimal basis
exists, then a,.x is the critical value of a.
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4.1. Solution algorithm of linear programming problems with quasi-
triangular fuzzy numbers in capacity vector

Step 1. Let ag =0 and k := 0.

Step 2. Using simplex method, we decide if exists or does not exist an
optimal basis. If exists, then go to step 4, else go to step 3.

Step 3. If @ > «p, then we put
(50) So (Ab,c) =0 and Py =0,

and after that go to step 8.

Step 4. Let k := k+ 1. We denote optimal basis with By, optimal solution
with 2* and optimal value with z.

Step 5. We determine the value of apy.x with formulas:
Case I.If z} <0 for all i € I, then

(51) Omax = 1.

Case II. If there exists some p € I such that xllj > 0, then

20 20
gt lglag)— min (=] ], if min (=) <g(ao),
ielxl >0 \ T; ielxl>0 \ T;

z9
1, if min (= | > g(a).
ielx}>0 \ T;

(52) Qmax =

Let ay, := aumax. We calculate components of vector y := B, 1d and after that
we determine the optimal solution with the formula

(53) zp (a) = 2" + (9 (a) — g (a0)) y;
and optimal value with the formula
(54) z(a) =z + (9 (a) — g (a0)) ey,

when «a € [ag_1, ).

Step 6. If amax = 1, then go to step 8. Else we determine

(55) bi:= 7} + (9 (Qmax) — 9 (a0)) Yi,
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when i € I,

(56) 2 = 2 (Omax)
and

(57) a0 = Oma-

We decide which of cases A) or B) is occurred. Using the correspondent method
we decide if exist or not a new optimal basis.

Step 7. If the optimal basis exists, then go to step 4, else go to step 3.

Step 8. We determine the membership function of optimal value with
formula
(58)
sup {a/ t=z(a)}, if Ja €][0,1] such that t = z (a),
par (t) = { a€l0,1]

0, else.

5. Example

Consider the function ¢ : [0,1] — R4, g(x) = 1 — 22 Assume that
B; = (6,2), Bo = (10,3), Bs = (10,3) are quasi-triangular fuzzy numbers.
Then we wish to solve the following problem

z = 2x1 + o + 203 — max
1 + 22 + 23 < By,

(59) 1 + 22 + 223 = Bo,
2x1 + x2 + 23 = Bs,
T1,T2,T3 Z 0.

We solve this problem using the algorithm described in the previous section.
We write the problem in the following form

z = —2x1 — X9 — 23 — min
21+ 22+ 23 <6429 (),
1+ 29 + 223 <104 3¢9 (),
(60) i) +I2+2f£3 Z 1073‘9 (Oé),

211 +x2+x3§10+39(a),
2x1 + x2 + 23 > 10 — 3¢9 (o) ,
T1,T2,T3 ZO
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After that we transform all inequalities of the problem in equations

z=—=2x1 — Ty — 2z3 — min

T+ To+z3+z4=6+29(a),

z, + T3+ 223+ z5 = 10 + 3g (a),
(61) -z — T3 —2z3+ 26 = —10+ 3g (),

21+ 294+ z3+ 7 =10+ 39 (),

—2z; —z9—x3+ T8 = —10+ 3g(a),

T,,T9,T3,T4,Ts,Ts,T7.28 > 0.

Step 1. Let ag := 0 and k := 0.

Step 2. Using dual-primal method we solve the problem (61) if ag = 0.
We insert the components of d into the last column of simplex table.
The first simplex table if ag = 0 1s

X Ty Xe Iy bl d
1q 1 | | 812
xTs 1 1 20 1313
o | [-1] -1 =2]-7]3
€Ty 2 | 1 1313
TR —2 -1 -1 —713

c -2 -1 =2 0

After four iterations we get the following simplex table

X | xa 22 i bl d

Tg 3 1 =1 416

Iy -3 —1 l 2 0

x| —1 0 | hll

T3 2 1 -1 311

g 0 1 6|6
c| -2 -1 —0 —16

This simplex table is optimal.

Step 4. Let k := 1. The optimal basis is Bj, the optimal solution is z! =
=(5,0,3,0,2,4,0,6 ), and the optimal value is z; = —16.
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Step 5. We find the values of vectors z° = B }(b+ ¢ (0)d) and y = By 'd
in the columns b and d of the simplex table. Thus I = {6,5,1,3,8} and

. z? 2
min § — » = =. Consequently,
yi>0i€l { Y 3

0
26 B | _ . 11.- _ 2 ~
(62) Omax = g (9 (o) y.%l.?el{—yi }) = \/; ~ 0.8165.

Therefore S, (A,I_), c) # 0 for any o € (0, % , because

(63) z(@)=(5—-a% 0, 3—a?) €Sa(4,bc)
and
(64) z(a) = —16 + 40*.

Step 6. Since amax < 1, using formula (55) we replace the column b of
the simplex table with

(65) b; = x,l + (9 (@mix) — g(@0))y; Vi€l
We put
(66) z =z (amax)
and
2
(67) &g = max = |/ 3

Thus, we get the following simplex table

X | xy Iy T bl d

X 3 1 [-1] 016

xry | -3 =1 1 210

x| -1 0 1 21

x| 2 1 -1 i

g 0 0 1 216
cl| -2 -1 o} -2

0 0

. . . z; z 2
Since we have only one index [ := 6 such that min -+ = _11 = -,
z1>0, i€/ \ T; T, 3

we will study the simplex table using the method of the case A). We remark
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that gsv = —1. Thus the basis transformation is possible and we obtain the
following simplex table

X 24 a2 10 b d

x| =3 -1 -1 0 -6

s 0 0 1 2 6

x| 21 I BT

xy | —1 0 -1 3| -5

s 3 1 | 2| 12
c| -2 -1 0] -2

This simplex table is optimal.

Step 4'. Let k := 2. The optimal basis is Ba, the optimal solution is
z? = (177, 0, %,0,2,0,0,2), and the optimal value is 25 = —%.

Step 5'. We find the values of vectors z” = By (b+g¢(0)d) and y = B; 'd
in the columns b and d of the simplex table. Thus I = {7,5,1,3,8} and

) z? 1
min -+ > = —. Consequently,
y.>0,€l | y; 6

.O 5_
68 max = g1 —  mi Lil) = \/_ ~ 0 .
(68) ! g (g(ao) y.’ﬂm‘,?ez{yi }) &~ 0.91287

Therefore S, (A,b,¢) # 0 for any & € (\/% \/%—_ , because

(69) z(a)=(9-7a% 0, -1+30a%) €Ss(4,bd,c),
and

(70) 2(a) = —16 + 4a’,

Step 6'. Since amax < 1, using formula (55) we replace the column of b of
the simplex table with

(71) bi =z} + (9 (@max) — g (a0))y:, Viel

We put

(72) QQ = Gmax = \/g'
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0 0
. . . z; z 1
Since we have only one index [ = 8 such that min = —‘1 = —, then
z!1>0, i€l \ I; z; 6

we will study simplex table using the method of the case A). We remark that
gij > 0 for all j = 4,2,6. Thus it 15 not possible to make a new optimal basis.

Consequently, for any o > \/2— the problem (61) has not an optimal solution.

Step 3. For a € (\/g, 1] we have
(73) So (A bc) =0
and
(74) I,=0.

Step 8. The membership funciion of the fuzzy optimal value is

16—t 38
20w D<t<16,
(75)  pm ()= sup {a/t=z(a)} = g 0 " 3s
a€[0,1]
0, else.

021 \

041

021

The fuzzy optimal value of the problem (49)
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