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ON THE CONVERGENCE OF
STEFFENSEN–GALERKIN METHODS

I.K. Argyros (Lawton, OK, USA)

Abstract. In this study we prove the asymptotic mesh-independence

principle for Steffensen-Galerkin methods. This principle asserts that when

Steffensen’s method is applied to a nonlinear equation between some Banach

spaces, as well as to some finite-dimensional discretization of that equation,

then the behavior of the discretized process is the same as that for the

original iteration. Local and semilocal convergence results as well as an

error analysis for Steffensen’s method are also provided.

I. Introduction

In this study we are concerned with the problem of approximating a locally
unique solution x∗ of the equation

(1) f(x) = 0,

where f is a nonlinear operator defined on an open convex subset D of a Banach
space E with values in E.

Steffensen’s method given by

(2) xn+1 = xn − [xn, g(xn)]−1f(xn) (n ≥ 0)

has been used [5], [6], [7] generates a sequence which converges quadratically
to x∗. Here g : D → E is a continuous operator. [x, y] denotes a divided
difference of order one of f on D, satisfying

(3) [x, y](y − x) = f(y)− f(x) for all x, y ∈ D with x 6= y
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and

(4) [x, x] = f ′(x) (x ∈ D)

if f is Fréchlet-differentiable on D.

Several authors have used various conditions to show convergence [5], [7],
[8]. In the first part of this study we use a new affine invariant Mysovskii-type
hypotheses [6] to provide semilocal-local convergence results as well as an error
analysis for Steffensen’s method given by (2). In the second part we consider
discretized versions of (1) and (2) and try to relate the solution x∗ with the
solutions obtained through the discretized equations. This is important because
in infinite dimensional spaces it is very difficult or even impossible to compute
iterates given by (2). This leads to an asymptotic mesh-independence principle
for Steffensen’s method. Mesh independence of Steffensen’s method means that
Steffensen’s method applied to a family of finite-dimensional discretizations
of an operator equation behaves essentially the same for all sufficiently fine
discretizations.

We also show that for special choices of the operator g our results reduce
to the ones obtained in [6] for Newton’s method. Another choice of g leads to
the secant method. Many other choices are also possible. We denote by U(x, r)
the set {y ∈ E | ‖x−y‖ ≤ r}, whereas U0(x0, r) is the set {y ∈ E/‖x−y‖ < r}.

II. Convergence analysis

We show the following semilocal result:

Theorem 1. Let f, g be continuous operators defined on an open convex
subset D of a Banach space E with values in E. Consider numbers a, b >
> 0, c ∈ [0, 1] and a point x0 ∈ D.

Moreover, assume:

(a) operators f, g satisfy:

(5) ‖[y, g(y)]−1([x, y]− [z, w])(y − x)‖ ≤ a(‖x− z‖+ ‖y − w‖)‖y − x‖,

(6) ‖x− g(x)‖ ≤ b‖[x, g(x)]−1f(x)‖,

and

(7) ‖g(x)− g(y)‖ ≤ c‖x− y‖
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for all x, y, v, w ∈ D.

(b) The Newton-Kantorovich-type hypothesis

(8) h = dη ≤ 1

is true, where

(9) d = 4amax{b, 2c}

and

(10) ‖[x0, g(x0)]−1f(x0)‖ ≤ η.

(c) The smallest solution r∗ of the scalar equation

(11) f(r) =
d

4
r2 − r + η = 0,

and number R satisfy

(12) r∗ ≤ R, U(x0, R) ⊆ D,

(13) r∗ ≥ ‖x0 − g(x0)‖
1− c

and

(14) a[(2 + c)r∗ + R + ‖x0 − g(x0)‖] < 1.

Then

(i) scalar iteration {tn} (n ≥ 0) generated by

(15) tn+2 − tn+1 =
ac

1− ab(tn+1 − tn)
(tn+1 − tn)2 (n ≥ 0)

with t0 = 0 and t1 = η is monotonically increasing, bounded above by r∗ and
lim

n→∞
tn = r∗.

(ii) Steffensen’s iteration {xn} (n ≥ 0) generated by (2) is well defined,
remains in U(x0, r

∗) for all n ≥ 0 and converges to a solution x∗ of equation
f(x) = 0, which is unique in U(x0, R).
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Moreover the following estimates are true for all n ≥ 0

(16) ‖xn+2 − xn−1‖ ≤ ac

1− ab‖xn+1 − xn‖‖xn+1 − xn‖2 ≤ tn+2 − tn+1

and

(17) ‖xn − x∗‖ ≤ r∗ − tn.

Proof. (i) Using the initial conditions we get t1 ≥ t0 ≥ 0, and tn+2 ≥ tn+1

if tn+1 ≥ tn ≥ 0 (n ≥ 0) (by (15)). Hence {tn} (n ≥ 0) is monotonically increas-
ing and nonnegative. Moreover from the initial conditions and the definition of
r∗ we have t0 ≤ t1 ≤ r∗. Let us assume that tk ≤ r∗, k = 0, 1, 2, . . . , n. Then
from (15) we obtain in turn

tk+2 = tk+1 +
ac

1− ab(tk+1 − tk)
(tk+1 − tk)2 ≤

≤ tk+1 +
acr∗

1− abr∗
(tk+1 − tk) ≤

≤ . . . ≤ t1 +
acr∗

1− abr∗
(tk+1 − t0) ≤

≤ η + 2ac(r∗)2 = r∗

by the choice of r∗ and (8). That is {tn} (n ≥ 0) is bounded above by r∗. Since
r∗ is the minimum number satisfying (11) it follows that lim

n→∞
tn = r∗.

(ii) By hypotheses (7) and (13) it follows x1, g(x0), g(x1) ∈ U(x0, r
∗). Let

us assume xk, g(xk) ∈ U(x0, r
∗), k = 0, 1, 2, . . . , n + 1. We first show that

g(xk+1) ∈ U(x0, r
∗). Indeed from (7) and (13) we get

‖g(xk+1)− x0‖ ≤ ‖g(xk+1)− g(x0)‖+ ‖g(x0)− x0‖ ≤
≤ c‖xk+1 − x0‖+ ‖g(x0)− x0‖ ≤ cr∗ + ‖x0 − g(x0)‖ ≤ r∗.

That is g(xk+1) ∈ U(x0, r
∗).

Using induction on n ≥ 0 we will show

(18) ‖xn+1 − xn‖ ≤ tn+1 − tn (n ≥ 0).

Estimate (18) is true for n = 0 by the initial conditions. Suppose (18) is true
for k = 0, 1, 2, . . . , n + 1. Starting from the approximation

f(xk+1) = f(xk+1)− f(xk)− [xk, g(xk)](xk+1 − xk) =

= ([xk, xk+1]− [xk, g(xk)])(xk+1 − xk),
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hypotheses (5), (6) and (7) give in turn

(19) ‖[xk+1, g(xk+1)]−1f(xk+1)‖ ≤ a‖xk+1 − g(xk)‖ ‖xk+1 − xk‖,

but

(20)
‖xk+1 − g(xk)‖ ≤ ‖xk+1 − g(xk+1)‖+ ‖g(xk+1)− g(xk)‖ ≤

≤ b‖[xk+1, g(xk+1)]−1f(xk+1)‖+ c‖xk+1 − xk‖.

Hence from (19) and (20) we get
(21)

‖[xk+1, g(xk+1)]−1f(xk+1)‖ ≤ ac

1− ab‖xk+1 − xk‖‖xk+1 − xk‖2 ≤

≤ ac

1− ab(tk+1 − tk)
(tk+1 − tk)2 = tk+2 − tk+1

which shows (16) for all n ≥ 0. Estimate (16) shows that iteration {xn} (n ≥ 0)
is Cauchy in a Banach space E and as such it converges to some x∗ ∈ U(x0, r

∗)
(since U(x0, r

∗) is a closed set). By letting k →∞ in (21) we deduce f(x∗) =
= 0. That is the point x∗ is a solution of equation (1). Estimate (17) follows
immediately from (16) by using standard majorization techniques [1], [5].

To show uniqueness of the solution x∗ ∈ U(x0, R), let us assume that there
exists a solution y∗ ∈ U(x0, R). From the approximation

xn+1 − y∗ = −[xn, g(xn)]−1([y∗, xn]− [xn, g(xn)])(xn − y∗),

we get

(22) ‖xn+1 − y∗‖ ≤ a(‖xn − y∗‖+ ‖xn − g(xn)‖)‖xn − y∗‖.

But we also have

‖xn − y∗‖ ≤ ‖xn − x0‖+ ‖x0 − y∗‖ ≤ r∗ + R

and

‖xn − g(xn)‖ ≤ ‖xn − x0‖+ ‖x0 − g(x0)‖+ ‖g(x0)− g(xn)‖ ≤
≤ r∗ + ‖x0 − g(x0)‖+ cr∗ = (1 + c)r∗ + ‖x0 − g(x0)‖.

Estimate (22) now gives

(23) ‖xn+1 − y∗‖ ≤ ε0‖xn − y∗‖ ≤ . . . ≤ εn+1
0 ‖x0 − y∗‖ ≤ Rεn+1

0 ,
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where
ε0 = a[(2 + c)r∗ + R + ‖x0 − g(x0)‖].

But from (14) we have 0 ≤ ε0 < 1. Letting n →∞ in (23) we get lim
n→∞

xn = y∗.

We have already showed lim
n→∞

xn = x∗. Hence, we deduce x∗ = y∗. That

completes the proof of the theorem.

Remark 1. (a) Condition (8) and the choice of r∗ given by (11) can
be replaced by the following weaker hypothesis: there exists a minimum
nonnegative number r∗1 satisfying

T (r∗1) ≤ r∗1 ,

and the number r∗1 must also satisfy

abr∗1 < 1.

This follows immediately from part (i).
(b) Moreover the condition on uniqueness (14) can be replaced by the

hypothesis
0 ≤ ε1 < 1, r∗1 ≤ R,

where
ε1 = a[(1 + 2b)r∗1 + R].

Indeed this follows from (22) and the estimate

‖xn − g(xn)‖ ≤ b‖[xn, g(xn)]−1f(xn)‖ ≤ b‖xn+1 − xn‖ ≤
≤ b(‖xn+1 − x0‖+ ‖x0 − xn‖) ≤ b(r∗1 + r∗1) = 2br∗1 .

(c) If f is Fréchet-differentiable on D and we choose g(x) = x (x ∈ D),
then iteration (2) reduces to Newton’s method. In this case (6), (7) are satisfied
for b = 0 and c = 1, whereas by (9) d = 8a, and by (5) 4a = `, where ` denotes
the usual Lipschitz constant in (5). Hence (8) becomes

2`η ≤ 1,

which is the Newton-Kantorovich hypothesis for Newton’s method [5]. If oper-
ator g is chosen so that g(xn) = xn−1 (n ≥ 0), then iteration (2) reduces to the
secant method. Another common choice is given by g(x) = x− f(x) (x ∈ D).
Many other choices for g are also possible.

(d) Condition (13) can be replaced by the stronger ‖x0−g(x0)‖ ≤ (1−c)η,
since r∗ ≥ η.
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(e) It can easily be seen by (6) that condition (13) is satisfied if b + c ≤ 1
for r∗ 6= 0.

We will also need the following

Theorem 2. Let f, g be continuous operators defined on an open convex
subset D of a Banach space E with values in E, and numbers a, b > 0, c ∈ [0, 1],
and a point x∗ ∈ D such that conditions (5)-(7) are satisfied and f(x∗) = 0.
Let x0 ∈ D be such that

(24) U(x∗, ‖x0 − x∗‖) ⊆ D,

and

(25) x0 ∈ U0(x∗, r∗2), ‖x0 − x∗‖ ≤ r∗2 ,

where

(26) 0 ≤ r∗2 <
1

a(2 + c)
.

Then Steffensen’s iteration {xn} (n ≥ 0) generated by (2) is well defined,
remains in U(x∗, ‖x0 − x∗‖), and converges to x∗ which is the unique solution
of equation (1) in U0(x∗, r∗2) with

(27) ‖xn+1 − x∗‖ ≤ a(2 + c)‖xn − x∗‖2 (n ≥ 0).

Proof. We first show that all iterates xn ∈ U(x∗, ‖x0 − x∗‖). From the
approximation

xn+1 − y∗ = xn − x∗ − [xn, g(xn)]−1(f(xn)− f(x∗)) =

= −[xn, g(xn)]−1([x∗, xn]− [xn, g(xn)])(xn − x∗),

hypotheses (5), (6), (7) and (26) we obtain, if xn ∈ U(x∗, ‖x0 − x∗‖)

‖xn+1 − x∗‖ ≤ a(‖x∗ − xn‖+ ‖xn − g(xn)‖)‖xn − x∗‖ ≤
≤ a(‖x∗ − xn‖+ ‖xn − x∗‖+ ‖g(x∗)− g(xn)‖)‖xn − x∗‖ ≤
≤ a(2 + c)‖xn − x∗‖2 ≤ a(2 + c)‖x0 − x∗‖2 < ‖x0 − x∗‖,

which shows xn+1 ∈ U0(x∗, ‖x0 − x∗‖).
To show uniqueness let y∗ 6= x∗, f(y∗) = 0 and y∗ ∈ U0(x∗, r∗2). Set

x0 = x∗ in (2), then x1 = x∗ also. Hence, the above inequality gives

‖y∗ − x∗‖ ≤ a(2 + c)‖y∗ − x∗‖ < ‖y∗ − x∗‖,



10 I.K. Argyros

which contradicts the hypothesis x∗ 6= y∗. That completes the proof of the
Theorem.

We show uniqueness of the solution x∗ inside a special set by the following

Theorem 3. Assume that hypotheses of Theorem 1 are satisfied: for d0

replacing d, given by

(28) d0 = 2amax{2b, 4c, a(2 + c)},

r∗ denoted by δ∗ in this case, and (8) being true as a strict inequality. Define
the set

(29) D∗ =
∞⋃

n=0

U0(xn, δ∗) ∩D.

Then the following are true:

(i) xn+1 ∈ U0(xn, δ∗) and x∗ ∈ U0(x0, δ
∗);

(ii) D∗ is a connected set;
and

(iii) x∗ is the unique solution of equation (1) in D∗.

Proof. (i) Since the iteration {xn} (n ≥ 0) converges, we have

‖xn+1 − xn‖ ≤ ‖x1 − x0‖ ≤ η < δ∗ (n ≥ 0).

Hence we deduce xn+1 ∈ U0(xn, δ∗) (n ≥ 0). Moreover we have

‖x∗ − x0‖ < δ∗.

That is x∗ ∈ U0(x0, δ
∗).

(ii) It follows immediately from part (i).

(iii) Let y∗ ∈ D with f(y∗) = 0, and choose x0 ∈ U0(y∗, δ∗), which implies
y∗ ∈ U0(x0, δ

∗). By Theorem 2 y∗ is unique in U0(y∗, δ∗). Assume there exists
another solution z∗ ∈ U0(x0, δ

∗)\U0(y∗, δ∗). It follows that z∗ is the unique
solution in U0(z∗, δ∗). Moreover the Steffensen’s iteration initiating at x0 must
converge to z∗, which contradicts the uniqueness of the iteration. That is y∗

is unique in U0(x0, δ
∗). The same argument applies to all iterates xn(n ≥ 0),

which leads to the definition of D∗ given by (29). That completes the proof of
the Theorem.

In the following section we follow the formulation first introduced in the
elegant study [6].
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III. The asymptotic mesh independence for Steffensen-Galerkin
methods

Iteration {xn} (n ≥ 0) can rarely be computed for infinite dimensional
space E. That is why in practice equation (1) is replaced by a family of
discretized equations of the form

(31) fi(xi) = 0 (i ≥ 0),

where fi : Di ⊆ Ei → Ei is a nonlinear operator defined on a convex domain
Di of a finite dimensional subspace Ei ⊆ E with values in itself. Let x∗i be a
solution of (31). Then fi must be chosen so that

(32) lim
i→∞

x∗i = x∗.

To achieve this we introduce a disretized Steffensen’s method of the form

(33) xn+1
i = xn

i − [xn
i , gi(xn

i )]−1
i fi(xn

i ) (n ≥ 0),

where [, ]i denotes divided difference of order one on the space Ei and gi : Di ⊆
⊆ Ei → Ei is a given family of continuous nonlinear operators.

Assume:

(I1): there exists a family {pi} (i ≥ 0) with pi : E → Ei of linear projection
operators and a scalar sequence {di} (i ≥ 0) such that

(34) ‖pi(x)‖ ≤ di‖x‖, x ∈ E, di ≤ e < ∞ (i ≥ 0);

(I2): there exists a scalar sequence {ei} (i ≥ 0) such that

(35) ‖x− pi(x) ≤ ei‖x‖, x ∈ E(i ≥ 0),

(36) ei+1 ≤ ei (i ≥ 0)

and

(37) lim
i→∞

ei = 0.

The discretization method is described by a family

(38) {fi, pi, gi, ei} (i ≥ 0)
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(39) (I3) : U0
i (pi(x∗), δ) ⊆ Di ⊆ D (i ≥ 0).

(I4) : If ui ∈ Ei and u ∈ E are solutions of the linear equations

[pi(x), gi(pi(x))]iui = fi(pi(x)),

[x, g(x)]u = f(x),

where x ∈ E, pi(x) ∈ Di, then there exists a positive constant c0 such that

(40) ‖ui − pi(u)‖ ≤ c0ei (i ≥ 0).

(I5): If wi ∈ Ei and w ∈ E are solutions of the linear equations

[zi, gi(zi)]iwi = ([xi, xi + vi]i − [zi, wi]i)vi,

[zi, g(zi)]w = ([xi, xi + vi]− [zi, wi])vi,

where xi, zi, zi, wi ∈ Di, vi ∈ span(zi−xi), then there exists a positive constant
c1 such that

(41) ‖wi − pi(w)‖ ≤ c1ei(‖xi − zi‖+ ‖xi + vi − wi‖)‖vi‖ (i ≥ 0).

(I6): If wi ∈ Ei and w ∈ E are solutions of the linear equations

[xi, gi(xi)]i(wi − gi(wi)) = fi(xi),

[xi, g(xi)](w − g(w)) = f(xi),

where xi ∈ Di, then there exists a scalar sequence {bi} (i ≥ 0) satisfying

(42) lim
i→∞

bi = b

and

(43) ‖(wi−gi(wi))−pi(w−g(w))‖ ≤ bi‖[xi, gi(xi)]−1
i fi(xi)‖−‖pi(w−g(w))‖.

Note that from the triangle inequality it follows that

(44)
‖wi − gi(wi)‖ ≤ ‖(wi − gi(wi))− pi(w − g(w))‖+ ‖pi(w − g(w))‖ ≤

≤ bi‖[xi, gi(xi)]−1
i fi(xi)‖ (i ≥ 0).

(I7): Assume that there exists a scalar sequence {hi} (i ≥ 0) such that

(45) lim
i→∞

hi = c
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and
‖gi(vi)− gi(wi)‖ ≤ hi‖vi − wi‖

for all vi, wi ∈ Ei (i ≥ 0).

In this next result we examine the relationship between the constant a
appearing in (5) for the operator equation (1) and the associated ai for the
finite-dimensional equation (31).

Lemma. Let f, g : D ⊆ E → E be nonlinear operators. Assume:

(a) condition (5) is satisfied;
(b) the discretization method (38) satisfies (34), (35), (36), (39) and (I5).

Then for all i ≥ 0

(46) ‖[zi, gi(zi)]−1
i ([xi, xi+vi]i−[zi, wi]i)vi‖ ≤ ai(‖xi−zi‖+‖xi+vi−wi‖)‖vi‖,

where

(47) ai = c1ei + adi (i ≥ 0).

Moreover if conditions (37) and di ≤ 1 + ei (i ≥ 0) are satisfied, then

lim
i→∞

ai = a.

Proof. Using (I5), (5) we can write

‖wi‖ ≤ ai(‖xi − zi‖+ ‖xi + vi − wi‖)‖vi‖,
‖w‖ ≤ a(‖xi − zi‖+ ‖xi + vi − wi‖)‖vi‖,

and by (34) and (41) we get

‖wi‖ ≤ ‖wi − pi(w)‖+ ‖pi(w)‖ ≤ (c1ei + adi)(‖xi − zi‖+ ‖xi + vi − wi‖)‖vi‖

which shows (47).
The projection property p2

i = pi (i ≥ 0) and (34) imply di ≥ 1, and by the
hypothesis we deduce lim

i→∞
di = 1. The first result follows by letting i →∞ in

(47). That completes the proof of the Lemma.

We can now prove the first part of the asymptotic mesh-independence
principle for Steffensen-Galerkin methods.

Theorem 4. Assume:

(a) hypotheses of Theorems 1,2 and 3 are satisfied;
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(b) conditions (I1)− (I7) are satisfied.

Then

(i) there exist an integer i∗ ∈ N such that for any i ≥ i∗ equation (31) has
a solution x∗i satisfying

(48) ‖x∗i − pi(x∗)‖ ≤ 2c0ei (i ≥ 0).

(ii) Moreover x∗i is the unique solution of equation (31) in

(49) U0
i (pi(x∗), δ∗i ) ∩Di.

Proof. We will make use of Theorem 1. Define x0
i = pi(x∗) (i ≥ 0).

Denote
u∗i = [pi(x∗), gh(pi(x∗))]−1fi(pi(x∗)), α∗i = ‖u∗i ‖.

Since x∗ is a solution of equation (1), we get

u∗ := [x∗, g(x∗)]−1f(x∗) = 0,

and by condition (I4) we get

(50) α∗i = ‖u∗i ‖ = ‖u∗i − pi(u∗)‖ ≤ c0ei (i ≥ 0).

By (8) we can set

(51) h∗i = d0
i α
∗
i (i ≥ 0),

where

(52) d0
i = 2ai max{2bi, 4ci, ai(2 + ci)}.

By (42), (45), (47) and (51) we see that the Newton-Kantorovich sequence {h∗i }
is null. Hence there exists i∗ > 0 such that

(53) h∗i ≤ 1 for i ≥ i∗.

By the definition of δ∗i we obtain

(54) δ∗i ≤ 2α∗i .
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By Theorem 1 Steffensen’s method (33) starting at x0
i converges to a

solution x∗i ∈ U0
i (pi(x∗), δ∗i ) which is unique in

D∗
i =

∞⋃
n=0

U0
i (xn

i , α∗i ) ∩D

and in the set given by (49). That completes the proof of the Theorem.

As in [6] choose x0
i ∈ Di and define

(55) αi(x0
i ) = ‖[x0

i , gi(x0
i )]
−1fi(x0

i )].

If

(56) hi(x0
i ) = d0

i αi(x0
i ) ≤ 1,

then choose

(57) δi(x0
i ) ∈ [αi(x0

i ), δ
∗
i ).

Moreover if we also have

(58) U0
i (x0

i , δi(x0
i )) ⊆ Di,

it follows from Theorem 1, 4 and the Lemma that iteration {xn
i }∞n=0 (i ≥ 0)

generated by (33) converges to a solution x∗j provided that

(59) ‖x0
i − x∗i ‖ < λ0

i with λ0
i =

1
d0

i

(i ≥ 0).

Furthermore, whenever the Steffensen iterates (33) remain in Di and
converge to x∗i the following are true

(60) ‖xn
i − xn+1

i ‖ ≤ aici

1− aibi‖xn+1
i − xn

i ‖
‖xn+1

i − xn
i ‖2 (n ≥ 0, i ≥ 0)

and

(61) ‖xn
i − x∗i ‖ ≤ ai(2 + ci)‖xn−1

i − x∗i ‖2 (n ≥ 1, i ≥ 0).

We want to find integers βi = βi(x0
i , ε), β = β(x0, ε) for ε > 0 such that

(62) ‖xn
i − x∗i ‖ ≤ ε, n ≥ βi
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and

(63) ‖xn − x∗‖ ≤ ε, n ≥ β,

provided that

(64) ‖x0 − x∗‖ < λ0 with λ0 =
1
d0

.

It can easily be seen from (27), (61), (62) and (63) that βi, β can be chosen
to be

(65) βi =
]
log2

(
ln(ai(2 + ci)ε)

ln(‖x0
i − x∗i ‖ai(2 + ci))

)[

and

(66) β =
]
log2

(
ln(a(2 + c)ε)

ln(‖x0 − x∗‖a(2 + c))

)[
.

It follows that since βi and β are integer valued, they will differ by at most one
whenever ‖x0

i − x∗i ‖di is close enough to ‖x0 − x∗‖d. This is the case when

(67) lim
i→∞

d0
i = d0 (i ≥ 0),

and

(68) x0
i = pi(x0) (i ≥ 0)

are true. Hence we arrived at the second part of the asymptotic mesh-
independence principle for Steffensen-Galerkin methods.

Theorem 5. Assume:

(a) the hypotheses of Theorem 4 are true;
(b) condition (67) is satisfied;
(c) moreover the following is true

(69) h0 = d0η < 1.

Then

(i) there exists i1 ≥ i∗ such that Steffensen’s iteration generated by (33)
with starting point x0

i given by (68) converges to x0
i .
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(ii) Estimates (59) and (64) are satisfied and

(70) |β − βi| ≤ 1 for all i ≥ i1.

Proof. (i) By Theorems 1,2 and (25) we obtain

‖x0 − x∗‖ ≤ δ∗ < λ0,

which shows (64). Using (67), (68), Theorem 4 and the estimate

|‖pi(x0 − x∗)‖ − ‖pi(x∗)− x∗i ‖| ≤ ‖x0
i − x∗i ‖ ≤ ‖pi(x0 − x∗)‖+ ‖pi(x∗)− x∗i ‖,

we deduce

(71) lim
i→∞

‖x0
i − x∗i ‖ = ‖x0 − x∗‖.

Moreover from (67) and (64) we get

(72) lim
i→∞

d0
i ‖x0

i − x∗i ‖ = d0‖x0 − x∗‖ < 1.

It follows from (71) and (72) that (59) and (70) are satisfied. That completes
the proof of the Theorem.

Remark 2. For g(x) = x (x ∈ D), b = 0, c = 1, bi = 0 and hi = 1 (i ≥ 0)
our results reduce to the ones obtained in [6] for Newton’s method.
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d’analyse numérique et de théorie de l’approximation, 21 (1) (1992), 59-65.

(Received October 30, 1996)

I.K. Argyros
Department of Mathematics
Cameron University
Lawton, OK 73505, USA




