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AN OPTIMIZATION BASED ALGORITHM
FOR DETERMINING EIGENPAIRS
OF LARGE REAL PAIRS

A. Kocsor, J. Dombi and 1. B4lint
(Szeged, Hungary)

Abstract. The determination of the eigenpairs of real matrices is ascribed
to a local optimization problem providing primarily the eigenvectors of the
matrix. Suitable non-negative functions are constructed with coinciding
local and global minima, which are located at the eigenvectors of the
underlying matrix. Somec properties of these eiegenvector-functions are
investigated and proved.

1. Introduction

'The detemination of the eigenvectors and eigenvalues of large real matrices
1s of considerable inportance in various fields of science and technology. The
machinery for the solution of the problem is worked out quite well, and we
do not attempt to give an overview of the referred literature. Generally the
methods are devised either for determining all eingenvectors of the matrix
simultaneously or only one-by-one succesively. Some problems provide large
matrices the sizes of which are beyond the possibilities of simultaneous deter-
mination of all eigenvectors and eigenvalues, the more the nature of the problem
often requires only a part of the eigenpairs.

The proposed novel algorithm belongs to the iterative class. Non-negative,
homogeneous functions have been established with coinciding local and global
optima, which are located exactly at the eigenvectors of the underlying matrix.
Therefore the eigenvectors of the matrix can be found by well behaving
optimization algorithms, as the minima of the associated ’eigenvector-function’.
There is a unique property of the algorithm that the convergence to a selected
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eigenvector is not guided by the magnitude of the associated eigenvalue as
generally is the case among the iterative methods [1,2,4].

The paper consists of four sections and an Appendix: the subsequent one
deals with the specification and some propertics of the eigenvector-function,
the third section is devoted to the optimization problems, numerical results
and an example for the optimization with closely packed eigenvalues and the
last one contains the conclusions, while the Appendix collects technical results.
In this report the discussion is restricted to real eigenvectors of real matrices,
although the algorithm can be applied to complex cases, as well. It is stressed
that non-symmetrical matrices with complex eigenpairs are not excluded from
the investigation, only the scope of the present paper is restricted to the
determination of the real eigenpairs and a separate report will be dealing with
the complex cases. In the whole paper, the || :| notation will be used for the
Euclidean norm, V f denotes the gradient of a function f : R® — R and H(f)
denotes its Hessian.

2. The eigenvector-functions

Let us consider the function f4(x) : R® —» R generated by matrix A =
= [ay],

(2.1) Fa(x) = xTx(4%) T (Ax) - (x Ax)?,

where f4(x) is an n-variable, 4-degree polynomial over the reals (R) with
variables z1,...,z, and coefficients a;; (¢,j € {1,...,n}).
Proposition 2.1. Function fa(x) ezhibits the properties:
(i) By construction consists exclusively of 4-degree terms.
fa(x) = Z CijkIT;TjTET],
1<i<j<k<I<n
where the real coefficients cijri are determined by matriz A.

(1) fa(x) can be differentiated 4-times continuously.
(ii1) fa(x) ts a 4-degree homogeneous function, i.e.

fa(kx) = k*fa(x), keR.

Proof. The proof is quite trivial.
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Another eigenvector-function (among the many possible) is
(2.2) ga(x) = VxTx\/(Ax)T (Ax) + xT Ax,

where =+ accounts for the sign of the eigenvalue selecting the negative for
positive eigenvalues and the positive for the negative ones. For both of the
functions, the normalized versions will also be applied.

Definition 2.2. For any real number 0 < w <1

) ﬁ{i‘% 0<w<l,
(2.3) fa (%) =
Ja(x), w=0,

ga(x)
(w) \ .— Hx”zu:l 0 < w S 1)
(2.4) g4 (%)=

gA(x)a w=0

with x # 0 for 0 < w < 1. In the forthcoming discussion eigenvector-functions
(2.2) and (2.3) will be dealt with For illustration, the graphs of (2.2) and (2.3)
relating tc the 2 x 2 symmetric 4; and non-symmetric A; matrices

3 ! 3 1
2 : 2
Ao=( ), A1=( )
_1 3 3
2 2/ 2

are displayed on Figure 2.1. The following statement is directly formulated for
(2.3), but can be formulated for (2.2), too.

wi

N

Lemma 2.3. Function ffw)’x), 0 < w < 1 ezhibits the following
properties:

(i) fﬁw (x) >0 and f(w)(x) =0, if and only if x is a (real) eigenvector of
matriz A, or x = 0 with w = 0.

(i1) VO (x) = 0= £37(x) =
(iii) V) (x) = 0 < f('”)(x) = 0.

Proof. (z) If applying the Cauchy-Schwartz inequality for the vectors x
and Ax,

VaTxy/(Ax)T (4%) > (x7 4x)
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which results in

fgo)(x) = x"x(Ax)T (Ax) — (xT Ax)2 > 0.
The equality occurs, if and only if the vectors x and Ax are linearly dependent.
This statement is valid also for (2.3).
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Fig.2.1. The graphs f)(x), ga,(x), f(x), f0(x)

(72) Since fgw)(x) is a homogeneous function of degree 4 — 4w, Euler’s
theorem ensures that

Ty rw)
X"V (x) = (4 — 4w) f§ (x), => "———(Zf A4w()") = 18 (x).
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In case of 4 —4w # 0 the statement follows immediately, for w = 1 L’Hospital’s
rule is Lo be applied.

(#¢¢) This implication follows from the nonnegative and continuous nature
of fgw)(x) (x # 0 in case of 0 < w < 1).

2.1. Error bounds

By approximating the true eigenpairs (u, A) of the considered matrices with
(x,0), various measures can be used for the pairwise distances of the true and
approximate eigenvalues, as well as those of true and approximate eigenvectors.
It will be shown that the widely used norm [8, 9], ||[Ax — xa||/||x]|, is closely

relating to fl(qw)(x) and the subsequent three propositions.

Proposition 2.4. For any non-zero x € R™ and for any considered matriz
A,

[ #(w)
X lAx — T
(2.5) 4 (%) |l Ax = xal| s=X Ax

P T T X

where o is the Rayleigh-quotient.

Proof. Since fgw)(x) = 122(x)/||z||*“, it is enough to show that

\/B\O)(x) [|[Ax — xo||

Iz [l

Direct computation yields the following sequence of equalities, which prove the
statement

xT Ax

2
1A% — xo|P(xTx)? = | 2 Ty =

|

= xTx((xTx)(Ax)T(Ax) - (xTATx)(xTAx)) = xTxff‘o)(x).

Ax — x

Proposition 2.5. By Wilkinson’s result, for any non-zero x € R™ and
associated o, there is an eigenvalue ) of a symmetric matriz A, which satisfies
the inequality

[|Ax — xa||

(2.6) Aol < FE



242 A. Kocsor, J. Dombi and I. Bélint

Proof. The proof is Wilkinson’s result [9].

As a corollary of the previous propositions, for symmetric matrices the
value of (2.3) provides a suitable bound for the possible difference of a true
eigenvalue and the Rayleigh-quotient.

Corollary 2.1. For any non-zero x € R" and symmetric matric A, if

(2.7) W <

then an eigenvalue X ezists, which satisfies |\ —o| < €, where o is the Rayleigh-
quotient and € is a suitable bound.

The forthcoming theorem refer to bound for the approximation of the
eigenvectors. Let be denoted the eigenvalues of the symmetric matrix A as
A1, A2, ..., An, the associated normalized eigenvectors as uj, ug, ..., u, and the
angles between the eigenvectors and vector x as a1, ag, ..., an. The least upper
bound of the angle between the eigenvector u,,, which is associated with the
best approximated eigenvalue A,, (by Corollary 2.1) and x provides a measure
for the accuracy of approximation.

Proposition 2.6. For arbitrary non-zero x € R™ and real, symmetric
matriz A,

(2.8) VD )/ IIxl22 < e = [sinam| < \/)lAml (1 : liwl)l’

Y

where A, # 0 is the eigenvalue nearest to o (Rayleigh quotient) and 2D g the
convez linear combination of the complementer part of the spectrum

Came? A
A = 2jj#m A cos” o
cos? o

(2.9) e
1) Fm

Proof. Taking into account |A,, —o| = min; [A;—c/|, the bound |\, —0| <€

’II I’

and cosa; = u’

(2.10)

P et= - ( () 2 J‘T“f?‘ -

= [Am — Ap cOS? a,n—A(l) Z cos a,i = ‘(,\m—:\(l)) sinzaml <e.
Jj#Em !
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The relation
(2.11) llx\m[ - ij\(l)l'sin2 e < '/\m - :\(1)\sin2 am <c¢

provides a little sharpening of the statement.

The essences of the proposition is that the accuracy of the approximation
of an eignvector depends on the bound ¢, on the magnitude of the associated
eigenvalue A, but also on the position-dependent ’effective degeneracy’ of the
spectrum encoded in the convex linear combination A1) of the complementer
part of the spectrum. This entanglement makes the error estimation for the
eigenvectors basically different from the error estimation of the approximation
of eigenvalues. If the spectrum is near-degenerate, or the position vector z
(and consequently cos?(a;)) make it effectively near-degenerate, the bound

loses its power. If an estimation for |A()|/|A;,| and A, is available from some
independent information on the spectrum, the relation offers a powerful bound
for the accuracy of actual calculations.

3. The optimization of eigenvector-functions

As discussed previously, the non-negative eigenvector-function (2.2) and
(2.3) have their zeros at the (real) eigenvectors of matrix A. These local
optimum points are simultaneously global optima of these eigenvector-functions
and determining the eigenvectors goes back to determining the optimum points
of (2.2) or (2.3). At the local optima of the eigenvector-functions the function
value is 0 (Lemma 2.3.11) and a zero function value implies a zero-vector gradient
(Lemma 2.3.1i1). Since the normalization restricts the function to the unit
sphere, it is of importance to investigate the properties of local minima on the
unit sphere. The propositions will be stated only for (2.3) with w = 0, but
analogous statements refer also to other w’s and (2.2).

Proposition 3.1. For non-singular, symmetrical matriz A with non-

degenerate spectrum, Vfgo)(x) and x are linearly dependent if x is in the linear
space of two eigenvectors,

xE{clui:thuj Cl,CQE]R, 1SZ,_}S1’I.}
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Proof. By Lemma 5.1.ii in the Appendix the gradient is in the subspace
of three vectors x, Ax, A?x, therefore Rank(x, Ax, A%x) < 3. In the space of
eigenvectors this is of the form

C1 /\161 Af(.‘l
(3.1) Rank : < 3.

2
Cn  AnCn )‘n Cn

Proceeding indirectly, let us assume that cicjex # 0 for a triplet of indices
providing x = cju;y +. ..+ cpu, with at least three non-zero components. This
leads however to a contradiction, because

C; /\,-c,- /\?Ci

det | ¢; Xjej Afej | = cicier(Ae = M)Ak = A7)(A; = i) # 0
Ck /\kck /\ick

and the rank is 3.

Theorem 3.2. For the symmetric, non-singular matric A with a non-
degenerate spectrum Vfgo)(x) and x are linearly dependent, if and only if (i)
or (i) is valid.

(i) x is in the linear space of an eigenvector: x € {cu; : c€R, 1 <i<

(i1) x is the bisectriz of two eigenvectors: x € {c(u; +u;) ceR, 1<
ij<n}
Proof. Without restricting the generality it can be assumed by Proposi-

tion 3.1 that x = cyu; +cauy. An orthogonal vector d is of the form +(—cou;+
+ciuz+dsug+...+dpu,), where ds, ..., d, are free parameters. It is enough

to check the fulfilment of equality dTVfE‘O’(x) = 0. By 5.1.iii in the Appendix

2 2
dTvFV(x) =247 DY (5 = X wicic? = 2erea(cd — (A — M)

i=1j=1

Since A; # A2, if ¢; = 0 or ¢ = 0, the point is at an eigenvector (i), if
¢? = c3, the bisectrix of two eigenvectors is obtained (ii). (The (i) part of the
proof could be reached also by Lemma 2.3.)

Theorem 3.3. If matriz A is non-singular, symmetric with ¢ non-
degenerate spectrum, then:

(i) dTH( go)(x))d > 0 if dlx and x is in the linear space of an
etgenvector.
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(ii) dTH(fgo)(x))d <0 ¢f x 15 the bisectriz of two eigenvectors, dLx and
d 15 in the linear space of the same two eigenvectors.

(i) dTH( J(“o)(x))d < 0 of x 25 the bisectriz of two eigenvectors, d Lx and
d does not contain components in the linear space of the same two eitgenvectors.

(tv) xTH(f,&o)(x))x =0 ¢f x is in the linear space of an eigenvector.

v) xTH(FO (x))x > 0 if x us not in the linear space of an eigenvector.
A

SYMMETRIC 107 | 10° ] 10° | 107 | 10° | 10° | 107
n=25 5 27 37 39 40 41 42
n=50 7 53 77 83 85 85 86
n=100 18 102 | 141 | 162 | 163 | 163 | 164
n=200 33 140 | 209 | 222 | 227 | 230 | 232

Table 1. Convergence data for fgw)(x), w=0

Proof. (i — 1) It is assumed again that x = ¢cju; + couy and d = dju;+
+dyuz+dsuz+...+dpu,. Taking into account Lemma 5.1.v in the Appendix,

(3.2) dTH(f{"(x))d = d"x

4()\1 it /\2)261(:2 (ulu; + UQUF) + }: 2((/\1 - /\1)ZC§ + (/\z - /\2)2c§)uiu§ d

1:=1

= 4(A\1 = Ag) creadidy + Y 247 ((Ai — Ar)2ed + (\i — Aa)%cd).
i=1
If considering the statements under points (i — 7ii), the special cases of
(3.2) imply

(i) ATH(FP(x)d >0 if (c1dy=0) or (cady = 0).

61:—C2=—d1=d2, d3...dn=0,
() ATHFOx)A<0 if {ci=co=—dy =dy, d3...dn =0,
cp=cp=dy =—ds, d3...d, =0.

(iii) ATH(fPx)d >0 if (2 =cl, didy = 0).
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(iv — v) Notice that by points ¢. and v. of Lemma 5.1 in the Appendix

H(fY x))x—GZE (A = A)2ede? = 60 (x),

i=1j=1

which together with point 7 of Lemma 2.3 provides the proof.

By Propositions 3.2 and 3.3 on the unit sphere no other local minima
occur than those associated with eigenvectors. The ridges, which separate the
valleys of eigenvectors are at the bisectrices, the quadratics are negative in the
direction othogonal to the bisectrix, but positive in such directions, which have
only non-zero components in the (n — 2)-dimensional complementary subspace.

3.1. Results

The results refer to numerical perforinance tests computed on symmetric
and non-symmetric matrices of various sizes with uniformly distributed random
elements in the interval [—1, 1]. For optimization of the eigenvector functions
the BFGS [3,5,7] algorithm was used, which was started with a random trial
vector and it was terminated (by Corollary 2.1) if condition

V)

[c[[2=2

(3.3)

was met.

3.1.1. Numerical result for the symmetric case. The lines of the tables
are arranged by the sizes of matrices, the colurnns by the referred accuracies of
approximation. The data are the average numbers of iteration steps necessary
to reach the displayed accuracies obtained by averaging over 100 random
matrices. Tables 1 (w = 0), 2 (w = 0.25), 3 (w = 0.5) and 4 (w = 0.75)

refer to f(w)(x) (2.3), Table 5 refers to ga(x) (2.2).

SYMMETRIC 107 | 10° [ 107 [ 10° [ 10° T 10° [ 107
n=25 5 21 34 39 41 43 43
n=50 13 45 58 62 65 67 68
n=100 24 80 119 132 138 141 143
n=200 41 131 220 249 261 268 269

Table 2. Convergence data for f;w)(x), w=0.25
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SYMMETRIC 107 10° ] 107 [ 10° [ 10° | 10° | 107
n=25 4 17 25 28 29 30 31
n=50 7 30 50 52 54 55 56

n=100 10 46 92 100 103 104 105
n=200 13 69 171 196 200 203 204

Table 3. Convergence data for f;w)(x), w=05

SYMMETRIC 10™ 021 10° ] 100 [ 10° | 10° | 10"
n=25 4 16 25 28 30 31 32
n=50 5 27 a7 52 55 57 59
n=100 7 42 94 105 110 112 114
n=200 10 66 171 197 203 207 210

Table 4. Convergence data for f&w)(x), w=0.75

SYMMETRIC 10™ 10 | 10° | 107 10° | 10° 107
n=25 3 17 25 27 29 30 30
n=50 5 31 47 52 54 55 56

n=100 8 55 93 102 105 107 107
n=200 12 92 181 200 | 206 | 208 | 209

Table 5. Convergence data for g4(x)

3.1.2. Numerical results for the non-symmetric case. As mentioned

previously, because of the homogencity of f‘go), the zero-vector is an optimum
point. Although in case of symmetric matrices eigenvector-function (2.1)
converges only rarely to the zero-vector, this occurs more frequently with
non-symmetric matrices. To avoid these pitfalls, for searching non-symmetric
matrices the normalized eignvector-function (2.3) should be used. Tables 6
(w = 025), 7T (w = 0.5), 8 (w = (.75) display the formerly specified data
obtained with non-symmetric matrices. However the unnormalized eigenvector-
function (2.2) proved to be generally zero-vector safe’ and highly effective also
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in non-symmetric cases. Table 9 contains the referred data obtained with g 4(x)
(2.2).

8.1.3. Discussion of the results. As the tables show, increasing the size of
the matrix the convergence speeds up in both of symmetric and non-symmetric
cases. Also the degree of homogeneity affects the convergence speed and
w = 0.5 proved to be the best parameter. In both cases the average numbers
of BFGS iteration steps were quite low and it was close to n for symmetric
matrices, while about 1.5n for non-symmetric matrices (n is the dimension). If
using eigenvector-function (2.2) for symmetric matrices the results were similar,

NONSYMMETRIC] 10T [ 10% [ 10” [ 10™ | 10° | 10® | 10
n=25 3 31 64 71 72 74 74
n=50 12 57 108 113 116 118 119
n=100 15 71 168 186 192 196 198
n=200 25 110 274 318 322 324 325

Table 6. Convergence data for fflw)(x:), w=0.25

NONSYMMETRIC] 107" | 10 | 10° | 10° | 10° | 10° | 107
n=25 3 20 48 57 59 60 61
n=50 4 34 82 112 115 117 119
n=100 6 52 136 172 172 173 173
n=200 9 83 224 289 293 294 295

Table 7. Convergence data for f*)(x), w=0.5

NONSYMMETRIC| 107 | 10 | 10° | 10° | 10° | 10° [ 107
n=25 3 20 42 48 51 52 53
n=50 4 33 69 80 81 84 85
n=100 6 52 128 147 150 154 154
n=200 9 83 238 288 300 305 307

Table 8. Convergence data for fgw)(x), w=0.75
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NONSYMMETRIC| 107 | 10° | 10° [ 10° | 10° | 10° | 10"
n=25 3 18 39 40 42 43 44
n=50 4 32 61 67 68 68 69
n=100 7 52 114 128 130 131 132
n=200 10 80 207 228 235 238 239

Table 9. Convergence data for g4(x)

however for non-symmetric matrices (2.2) proved to be significantly better
and no clear tendency appeared for converging to the zero-vector. Since the
structure of (2.2) is also simpler than that of (2.3), evaluation of the function
value, as well as the gradient required less operations and (2.2) seemed to be
the most efficient for the selective determination of eigenvectors.

3.1.4. An ezample for closcly packed eigenvalues. Closely packed eigenval-
ues provide hardly surmountable problems for most of the iterative methods.
The example of a 3 x 3 symmetric matrix illustrates the power of the algorithm
in determining eigenvectors belonging to closely packed eigenvalues. The target
matrix is constructed in factorized form with eigenvalues 1.002, 1.001, 1, and

(3.4) Az = 1.002uju] + 1.001ugu] + luzuj,
e : s By
: X0 A steps | accurancy( ) |
T e i SRR = l
il 2 3 _a : ' -11
i i m . m ) m ] 1 l 7 | 10 __]I
e T R
: 2 3 4 | -11
& %] oo, 7 o
-— _; —_— ———— e - _.__.__:t__.___,_..,_:_ — _:_.. - PG _1
| 2 3 __4 - i ; -9
L [

Table 10. Convergence data for the approximation of eigenvectors
belonging to closecly packed eigenvalues
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the convergence data for the optimization of (2.2) are listed in Table 10. The
first column dispalys the various starting vectors, the second the eigenvalues,
the third the necessary steps to reach the required accuracy in the approxi-
mation of the eigenvalue, the fourth displays the accuracy of approximation
of the eigenvalue. As the table shows, the closely packed eigenvalues did not
provide any problem for the searching procedure, which is a valuable property
of the method especially, because it is known that the convergence speed of
methods based on the QR transformation break down if the ratio of eigenvalues
[A:]/]Ai=1] is close to 1.

4. Conclusions

This short paper presents a novel algorithin for determining eigenvectors
and eigenvalues of large real matrices. Although complex matrices and vectors
are not discussed here but will be dealt with separately, the method can be
applied to complex matrices or complex eigenpairs of non-symmetric matrices,
as well. Eigenvector-functions have been established with various degree of ho-
mogeneity. It was shown that the local optima of these functions are also global
optima, which coincide with the eigenvectors of the underlying matrix. Since
the eigenvector-functions are well-behaving, the known optimization procedures
[3,5,6,7] can efficiently determine their minima, as the numerical investigation
with the BFGS algorithm shows. The selection of the approximated eigenvector
is independent of the distribution of the =igenvalues. The algorithm behaves
well also in the case of closely packed eigenvalues, which is generally a hard nut
for most of the methods. The procedure does not assume the storage of the
whole matrix in the core and requires only one matrix-vector, vector-vector and
some scalar multiplications per step. The presented statements deliver bounds
for the accuracies of the obtained approximate eigenvalues and eigenvectors.
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5. Appendix

Some technical points are collected into the following lemma, which are
referred in the text. The eigenvalues of the real symmetric matrix A are denoted
A1, ..., A, the corresponding, orthonormal eigenvectors, uy, ..., u,.

Lemma 5.1. For the symmetric mairiz A and X = ciuy + ... + CcaUy,

(i) ) = ZZ*-\ cc?,

i=1j=1
(i) V(O (x)) = 2(xTxA*x + x(Ax)T Ax - 2xT Ax(Ax)),
(iid) (rQx) = QZZ(A — N uieicd,
i=1j=1
(iv) H( [(10)(x)) = 2x"xA? + 4xxT A% + A%xx" 4 2I(Ax)T Ax—
— 4xT AxA - 8Ax(Ax)T,
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n n

v. HEQ ) =33 (= )2 (2c2um] +deicjusu]).

i=1j=1

Proof. (i) The statement follows by a dircct evaluation and subsequent
rearrangement of the terms,

(0)(x)—x x(Ax) T (Ax)—(x" Ax)? (Lc) (ZA?C?)—(Z)\iC?) =
i=1 i=1

=Y > (- )
i=1j=1
(1) By a direct evaluation the terms arc
(0)(x) V[x x(Ax)T (Ax)] - V(xT Ax)?,
V[x x(Ax)T (Ax)] = 2(x"xA (Ax) 4+ x(Ax) T (Ax)),
V(x" Ax)? = 2(x " Ax)(A " x + Ax).

(7i7) The statement follows by a direct evaluation and subsequent rear-
rangement of the terms,

1/2V(fV(x)) = (xTx)(A%x) + (x)((Ax) T Ax) — 2(x T Ax)(Ax) =

-2 (i Ajc]?) (Zn: /\,-c,-u,-) = zn:i(/\j - /\,')Quic;c?.
j=1 i=1

i=1j=1

(iv) To avoid unnecessary technicalities, only two steps of the evaluation
are presented,

H(x"x(Ax)T Ax) = 2x"xA? + dxx " A? + 4A%xx" + 21(Ax)T Ax,
H((x" Ax)?) = 4x T AxA + 8Ax(Ax)".

(v) The proof is obtained by simple algebraic rearrangements.
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