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ITERATIVE MODELLING IN H, FRAMEWORK

F. Szigeti and A. Rios-Bolivar
(Mérida, Venezuela)

Abstract. We show an iterative, model based identification scheme
with convergence criteria in the Ho, framework. The robustness of the
controller design respectively to the successive approximation of the plant
is considered jointly with the point wise measurements and the Nevanlinna-
Pick interpolation of the error transfer function.

1. Introduction

In this paper we will show an iterative, model based method with the
measurement and the interpolation of the output error transfer function. The
error is caused by the modelling, the error of the interpolation of the error
transfer function and of course, by the measurement error. In this paper
this latter is not considered, hence out method is a deterministic identification
technics in the H, framework. We will start from the practical requirement
that one has to control and identify the plant, simultaneously. Hence, we
design a model based controller for an initial model, then the output errors
are measured under certain condition for the robustness of the controller which
stabilizes the initial model and that also stabilizes the new, computed model.
The mentioned condition is, simply, that the error transfer function obtained
by interpolation over the measured data, belongs to the open unit ball of Hy,.

Hence the existence of such interpolating transfer function can be char-
acterized by the positive semidefiniteness of the Nevanlinna-Pick matrix. If
there does not exist interpolating transfer function for the measurements in
the unit ball of Hy, then we compute a new controller by the standard He,
optimization. Hence, the computed model and its robust controller can be
considered as the initial model and controller. Then the same interative step
can be repeated.
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In Theorems 1,2,3 and 4 the convergence of the algorithm is proven under
different hypothesis.

2. The iterative approximation

The proposed iteration is based on the simplified diagram shown at the
Figure 1.

Well, at the diagram the feedback actuates for the model, while the plant
is controlled by open loop which can be unfeasible for certain applications. To
solve that difficulty, we can define a discrete feedback control in a general sense:
updating the model and its controller iteratively by using the proposed hybrid
scheme (see Figure 2).

From Figure 1 and of the closed loop of the controller and the model

e i
[

™

Figure 1. Diagram of the modified model based control

ym =T+ MC)"'MCr=MC(I+MC) ' =r—(I4+MC) ' r

Therefore, the common control u for the plant and the model is u = C(I +
MC)~'r, hence
yp = PC(I+ MC)'r.

The error of the output is
e=yp—ym = (P—-M)C(I+MC) 'r = Er,
where the error transfer function F is given by

(1) E=(P-M)C(I+MC)? =(P-M)(I+CM)'C.
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If C is invertible or it has a quasi-inverse, for example, C*(CC*)~1, then
P can be expressed from (1) in terms of the error transfer function £

(2) P=(I+EM+EC!,

(3) P=(1+E)M+EC*(CC")™?},
respectively. In the general case we can capture only product PC by
(4) PC=(I+EYMC+E.

Now, suppose that starting from an initial model My and the initial
controller Cy, the error transfer function Eg is measured and interpolated,
hence, instead of using an exact transfer function Eg, we compute the plant
by (2), (3) and (4) with error, respectively. Hence the computed plant this is
different from the exact one. Next, we will consider that this is the subsequent
model M;. Then a new controller C is given, computed, etc.

After measurement and interpolation, a new error transfer function F; is

obtained. Hence we obtain a sequence of models Mgy, My, ..., the corresponding
controllers Cq,C4,... . The error transfer functions Ejy, Ey, ..., satisfy the
1teration

(5) Mis1Cr = (I + E¢)MiCr + Ey.

If Cy is invertible or it has the quasi inverse C;(CxC})™!, then

(6) Miy1 = (I + Ex)My + ExCy Y,

(7) Miy1 = (I + Ex)My + ExCr(CkC)7Y,

corresponding to the equations (2) and (3), respectively. If in (5) we use the
same controller C = Cy = C; = ..., then (5) can be considered as an explicit
iteration, similar to (6) and (7) with X, = M C:

(8) Xe1 = (I + Ex)Xe + Ex.

Hence (6), (7) and (8) has the same form. Their solutions can be computed
explicitly:

0 k-1 1

9) M= [[ U+E)Xo+Cs")+Y, T U+E)(CT -Ch) -y,

i=k-1 i=1 j=k-1
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(10)

0 k-1 ¢
My= J[ (I+E)(Xo+C3(CoCE) ™) + (I+E;) [CH(C:CY) ™~
i=k—~1 i=1 j=k-1

—

"C;—l(ci—lci*—l)_l] - CI:—l(Ck—ICI:q)_ )

(11) MC= [ U+E)XC+D) -1,

i=k-1
respectively.

o0 [e ]
Lemma 1. If 3 [|Eile < o0 and 3 ||C7' = C7 A |leo < 00 then the
i=0 1=0

solution (9) of the difference equation converges at k — +oo.
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Figure 2. Hibrid closed loop controller
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Proof. First we shall prove that the infinite product

0

(12) H(I+E)_khr2°HI+E

1=00

converges in the space Ho,. However, it is a consequence of the inequality

¢ +E)-J[a+Ey
i=k e

if k > 1, and the well-known fact that the scalar infinite product

k i
< IO +1Bileo) =TT+ 1Billo)

d k
TI+1E) = Jim TT0 + 12:]e)

oo
converges if and only if ) ||Eillec < 00.
1=0

On the other hand, if £ > [, then

k i—1
HXk - XIHOO S “C):_l1 - 1—_.11”00 + I Z H (I+ Ej)(ci-l - Ci__ll +
i=l41j=k~1 .
1 i—-1 i—1
+I TT u+En - JTa+Ep €7 -Ch)| <
i=l \j=k-1 j=1-1 oo

k -1
< (H(1+ 1 Eilloo) —H(H-llEilloo)> X

=0

X (HXo +Ci oo + ) _IICT - C:_lllloo) +

(an- ci 1noo) T10+15;ll-)

which tends to zero.

Remarks. 1. The solution (10) of difference equation (7) can be estimate
similarly. However the corresponding conditions are

oo
Z HE1H°° <00,
i=0
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(13) dolcicic)™ = G (CieaCry) 7Y, < 0.
i=1

2. The solution (11) of the difference equation (5) converges, because the

o0
infinite product (12) is convergent if Y || Esl|ec < 0.
1=0

3. Of course, the limit, in general, is not the plant P and PC, respectively.
For this, we have to put further conditions.

4. If after a finite number of iteration the same controller is used, because
the modeling error permits the use of the same robustly stabilizing controller,
the second condition is obvious, the series is reduced to a finite sum.

Now, we consider the same iterative scheme, with further information.
We have mentioned that the error transfer functions E} are interpolated with
a certain error AF}. Therefore

(14) Miy = P+ AE(My + C7Y),
(15) M1 = P+ AEL (M + Ci(CkCr)™Y)
(16) My 41C = PC + AEy(M,C + I),

respectively. From these relations the following convergence theorem can be
proven easily.

Theorem 1. Suppose that

a) the measured error transfer functions Fy, k =0,1,..., satisfy that

o0
> I Ex]] < oo;
k=0

b) the controllers Cx, k = 0,1, ..., satisfy that

dolcE! = Citillee < 00
k-1
c) the errors AE) of the transfer functions Ex, k = 0,1,..., satisfy that
NAE(Mi + C7 )l — 0,
then klir& M, = P.

The proof is the combination of the formula (14) and Lemma 1.
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We notice, that if instead of (14) we suppose as the condition ¢) of Theorem
1, (15) and (16), then the klim My = P and klim MiC = PC are obtained,
— 00 — 0

respectively.
3. Robustness of the stabilizing controllers

Now, we consider only stabilizing controllers for the sequence of models.
We are interesting to design robustly stabilizing controllers in two senses.

a) The controller which stabilizes the model, it also stabilizes the plant.

b) The same controller C stabilizes the successively computed models

My, My, . ... Hence the unpleasant conditions
o
-1 -1
Z Cy - Ck—llloo < 00,

k=1

Z |Ci(CrCi)" — Cior(Crm1Ciy) ™Ml < 00

will be fulfilled automatically.

Theorem 2. Suppose that the controller Cy stabilizes the model M.
Then, if the estimated error transfer function Ey satisfies the inequality

then Cy also stabilizes My41.

Proof. We have to show that (I + Mj4+1Cx)~! is stable and proper (i.e.
belongs to He). However, by the small gain theorem (I + Ei)™! exists, it is
stable and proper. On the other hand

I+ Mgy1Cr = (I + Ex)MyC+ 1+ Er =
= (I—+— Ek)(I—{r-MkC),

hence (I + Mg4+1Cx)~! exists and
(17) (I+ M1 C)™h = (I + My C) ™ (I + i)™,

therefore it belongs to Heo.
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Remarks. 1) We notice, that if Cx(I + M;Cr)™! belongs to He, then
Cx(I + My4+1Cx)~! also belongs to He. Indeed, by (17)

Ce(7 + My Cr) ™ = [Ce(I + Mk Ci) ™ (I + Ex) ™"

2) Now, suppose that the exact error transfer function E} + AE} also
satisfies the corresponding inequality

(18) |Er + AEg]|o < 1.
Then, the iterative step results the exact plant hence, by
(I+ PCy)™' = (I+ MyCh)™ Y (I + Ex + AEy)™Y,
it is immediate that Cy also stabilizes the plant. Analogously, if (18) holds and
Cr(I 4+ MyCx)™' € Heo,

then also
Ce(I+ PCy) ' € Heo.
Now, combine the obtained condition with Theorem 1.

Theorem 3. Consider the algorithm (6) with C = Cy = Cy = ... . If
C stabilizes the initial model My, and the interpolated error transfer functions
Ly, Eq, ..., satisfy that

o0
D Bl < 00, Bl <1
k=0

and the error AEy of the error transfer functions satisfy that
IAE (M + C™1)||eo — 0.

Then, klim My = P, and C stabilizes the models Mo, My, ... . If ||Ex +
—OQ
+APF|lw < 1 are also satisfied, then C also stabilizes the plant.

Proof. We have to agree to the proof of Theorem 1 only the proof of the
robustness. However, this can be proven by induction. The inductive step is
Theorem 2. The statement that the plant is also stabilized by C, follows from
Remark 2 of this section.
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4. The Nevanlinna-Pick interpolation of the error transfer function

Now, we turn to the problem of the measurement and the interpolation of
the error transfer function. In the practice one can measure the output errors
for a given reference signal r, at certain frequencies s,,s3,...,sp € C. For
simplicity we suppose that Res; > 0, 1 = 1,2,..., M. Hence we have the
equations

(19) E(s))r(si)=e(s;), i=1,2,...,M.

We will suppose that the measurement is exact. Therefore e(s;) €
€ C™, r(s;) € C¥, i = 1,2,..., M are the measured data, and we have to
compute an interpolating transfer function E(s) satisfying (19). If we consider
the interpolation problem jointly with the robustness of the controller with
respect to the iteration, then the condition ||F|lc < 1 is the well-known
Nevanlinna-Pick’s interpolation, associated to the data (19).

Therefore, the existence of the interpolating error transfer function F such
that the robustness condition is also satisfied, can be related to the well-known
condition that the Nevanlinna-Pick matrix

My_p = ((r(s,-),r(sj)) _ (e(si)»e(sj))>k

s; +5;

1,j=1

is positive semidefinite. On the other hand, if My_p is not positive semidef-
inite, then we have to compute an interplating error transfer function and a
new stabilizing controller for the new plant, computed from the iteration. In
this case, instead of the original data (19) we interpolate for the equations

(20) E(s)r(s) = ZB(si)r(s) = ~e(s), =12,k

where « is large enough, such that the corresponding Nevanlinna-Pick matrix
vy = A= s = (L)) L ()
- 72 8i + 55 72 8i +5j
restricted to the image of A is positive definite. If the matrix A is positive
definite, then there exists the square root A/2 which is also positive definite.
Then it is obvious that A — — B is positive definite if and only if
Y

A1/2 (A— '1—2.B> A1/2 =] - LZA—l/ZBA—l/2
Y Y
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is positive definite.
Therefore, if v > (max /\i)l/z, then the Nevanlinna-Pick matrix is positive
definite, hence there exists a matrix-valued function E(s) such that || £]|e < 1,

and E(s,-)r(s,-) = —c;(:%).

Therefore E = vE interpolates the original data, satisfying the inequality
(21) 1]l < 7,

where 42 is greater than the maximal eigenvalue of the matrix A~1/2BA~1/2,
If A is only positive semidefinite, we need an additional property

ImA D ImB.

Then the same reasoning can be repeated for the matrices A= Alima, B =

Blima : ImA — ImA : Ais positive difinite, then A- :713]; is positive definite
if and only if I — 7%/1“1/25’14"1/2 is positive definite. Therefore, if 42 is greater
than the maximum of the eigenvalues of the matrix A~}/2BA~1/2 then A~ %B
is positive definite, that is A — 7—12-B is positive semidefinite.

Hence there exists a matrix-valued function E(s) such that ||£]|e < 1 and
E(s;)r(si) = QQ. Therefore E = yE interpolates the original data satisfying
v
the inequality (21).

Remarks. 1) Which points s;,...,s; have we to interpolate E(s) at?
Considering further conditions, for example, the condition ¢) of Theorem 1, it
is convenient to choose the poles s;,...,s, of the respective multipliers M, +

C~1, M + C*(CC*)™! and I + M;C. Therefore in these points AEj(s;) = 0
holds automatically, hence the poles of these multipliers will be canceled by
the roots of AE}.

2) Other advice is to choose the reference signal r to be exciting. Then we
can choose other points s,11, ..., 5, such that the vectors r(s;), ..., r(s,) form
a ”complete” system for the Nevanlinna-Pick interpolation.

3) If the robustness condition does not hold for Ex, My, Ci then Ci4y will
be given by optimization. The stabilizing controllers for the model My;; =
= D;+11Nk+1 = Nk+1D,:i1 is represented as fractions by coprimes in the
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module of stable and proper fractional matices. If X and Y solve the Bezout
equation
Net1Xes1 + D1 Yer1 = 1,

then the Youla-Bongiorno-Jarb parametrization of the stabilizing controllers is

Ciyr1 = (Xk+1 + Dk+1Q> (Yk+1 - 1\7Ic+1Q)—1 ,

where Q) is arbitrary parameter in the module of the stable and proper fractional
matrices of appropiate size. Then, the stability margin can be optimized by
the corresponding model matching

min ”Xk+1[)k+1 + Dk+1QDk+1“ )
Q ! 00

see in [4] and [6].

Let P = D=! N = ND~! be coprime factorizations of the plant. If X, Y
solve the Bezout equation NX + DY = I, then for the model My satisfying
the inequality

1

(22) 1Mo = Plles < _ =«
XD + DQD”oo

min
Q

there exists a stabilizing controller C of P, which is also a stabilizing one for
M.

Theorem 4. Let My an init:al model for the plant P, satisfying the
inequality (22). Suppose that the error AEy of the measurement and the
interpolation of the error transfer functions Ey satisfy the inequalities

1
1) 18Edllos < 3,

2) |AER(P + C™ oo < atk <

1

2"

then C is a robustly stabilizing controller for the plant and the recursively
computed models Mo, My, ... . If, moreover lima; = 0, then lim My = P.

Proof. We will prove the statement by induction
“J\lo - PHOO < «o.

Suppose that the inequality

k-1
1 1
“Mo - P“oc < E)—k—a + E ————Qk_i_lai
i=0
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is proven. Then

[Mic+1 = Plloo = |AE(CT" + M)lloo < [JAEL(M — P)lloo <

k-1 k
1{1 a; 1 a;
Soaptg (5}?“ + ; 2k—i—1> = gt ; oFF1—i-1°

However
1 Bl 1 Bl
I3
FETD T St Y =
1=0 =0
hence C stabilizes the model My, £ = 0.1i,... . If by our hypothesis o — 0,
then
o Bl o,
A =5+ ) 5t 0
1=0
which can be proven elementarily.
5. Examples
1. Consider the unstable plant P(s) 2= nd the initial
. a 5) = —————— a e ia
onsider the unstable plant P( EEBED) 1
1 . :
model My(s) = 55 In this case the proportional controller C' = —6 stabi-
— 55

lizes simultaneously the model and the plant. After 2 steps an approximating
model of order 7 was obtained. The Figure 3 (a) and (b) show the Bode
diagram of the models and the plant. The phase curve of the initial model
is rather different from one of the plant, however the second iteration of the
model is quite closed to the plant in both diagrams.

2. Now, consider the stable plant P(s) = —2_° _ and the initial model
52435+ 2
1
Mo(s) = 1;:_*_ T It is easy to see that the proportional controller C(s) = 1

stabilizes the model My(s), however, it does not stabilize the plant. At the
first iterative step the new model
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is obtained. Nevertheless neither the plant nor the new model is stabilized by
the controller C(s) = 1. Hence we also have to compute a new controller. The

controller

Cl(s)

3 +522 48544

stabilizes both the plant and the model M (s).

T 1.0953 + 3.775° + 8.255 + 16.83
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The second iteration generates a model sufficiently closed to the plant with
the same robust controller Ci(s), see the Bode diagrams in the Figure 4 (a)
and (b).

6. Conclusion

We have given an iterative, model based algorithm which under reasonable
conditions converges to the plant in A, . The algorithin is robust with respect
to the measurement and the interpolation errors, which can be corrected at
the following iteration with a correct estimate and interpolation of the error
transfer function. The unique price which we have to pay that the robustness
of the controller can be lost, hence we have to design a new controller. Our
numerical experiences confirm the theoretical results.
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