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GENERALIZED BINARY NUMBER SYSTEMS

A. Kovécs (Budapest, Hungary)

Abstract. The object of this note is to analyse canonical radix expansions
in algebraic number fields, especially using 0 and 1 as digits. We shall prove
that infinitely many such binary number systems exist and we enumerate
all of them up to degree 8, where degree means the degree of the defining
polynomial. In general, we prove that there are infinitely many canonical
number systems in each dimension even if the number of digits is “small”.

1. Introduction

A lattice in R¥ is the set of all integer combinations of k linearly indepen-
dent vectors. Let A be a lattice. This can be viewed as a set of points in a
Euclidean space, a Z-module or as a finitely generated free Abelian group. Let
M : A — A be a group endomorphism such that det(M) # 0 and let D be a
finite subset of A containing 0.

Definition. The triple (A, M, D) is called a number system (or having
the unique representation property) if every element n of A has a unique finite
l .
representation of the form n = Y M'a;, where a; € D and [ is a non-negative
i=0
integer. The endomorphism M is called the base or radiz, D is the digit set.
Clearly, both A and M A are Abelian groups under addition. The order
of the factor group A/MA is t = |det M|. Let A; (j = 1,...,t) denote the
cosets of this group. If two elements are in the same residue class A;, then we
say that they are congruent modulo M. Necessary conditions for the number
system property are as follows: D must be a full residue system modulo M,
all eigenvalues of M have modulus greater than one and det(I — M) # £1 (see

e.g. [8]).
Let A be spanned by k linearly independent vectors. The following
question arises naturally. For an arbitrary M : A — A satisfying the previously

The research was supported by OTKA-T031877 and Ericsson-ELTE CN
Laboratory.



196 A. Kovécs

mentioned necessary conditions is there any digit set D for which (A, M, D)
has the unique representation property? In many cases the answer is positive.
If |[M~Yy < 1/(1+ k) then there always exists a digit set D for which
(A, M, D) is a number system [8]. Here || - ||2 means the operator norm induced
by the Euclidean vector norm of R¥.

It is well-known that a basis transformation in A does not change the
number system property, hence, number expansions can be examined without
loss of generality on the cubic lattice Z*. Furthermore, it was proved in [7] that
for an arbitrary z € A the path z, ®(z), ®?(2),... is ultimately periodic, where

d:A—= A ®(z)=M'z—d), deD, z=dmod M.

Via these periods a classification can be made for the points of A and the
radix system (A, M, D) is a number system iff the only period is 0 — 0. We
denote the set of periodic points by P. If 7 € P then the length of period
of 7 is the smallest positive integer | for which 7 = ®!(r). Moreover, in [8]
a CLASSIFICATION ALGORITHM was presented and it was noted that the
time and space complexity of the algorithm depends strongly on the chosen
basis of the lattice determined by the radix M.

Let A = Z*. Now, we examine special kinds of digit sets. A set of vectors
DE\? C ZF is called j-canonical with respect to the matrix M (1 < j < k)
if all the elements have the form ve;, where e; denotes the j-th unit vector,
v=20,...,t —1. If the set DE\? forms a complete residue system modulo M

then we call it a j-canonical digit set and denote it by D). If there exists
a j for which (Z*, M, DY) is a number system then it is called j-canonical
number system. If M is Jordan-diagonizable, i.e. it is similar to the companion
matrix of a monic univariate polynomial, then 1-canonical digit sets are called
simply canonical. Unfortunately, j-canonical complete residue systems do not
always exist, necessary and sufficient conditions for that were given in [7].
Furthermore, 1-canonical digit sets are called simply canonical.

2. CNS-polynomials

2.1. Construction

The following construction provides an expansive M and a canonical digit
set modulo M. Consider the polynomial

(1) f@)=caa"+e 1"+ Feo=(@—0)...(x—0), cp=1
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over Z[z]. Let us denote the quotient ring Z[z|/(f) by Ay. Let B = z + (f)
denote the image of x in Ay. Then Ay has the structure of a free Abelian
group with basis {1,3,8%,...,8*71}. Hence, Ay is a lattice, addition and
multiplication of lattice points is just addition and multiplication in the ring
Z[z]/(f). To be more precise consider the polynomial f(z) in (1) and assume
that |6;| > 1 (i =1,...,k). where 6; denotes the roots of f(z) over C. Observe
that Ay is the set of elements of form ug + w18 + ... + ug—18*71 (u; € Z).
Then Ay is a ring. For the addition it is isomorphic with the additive group 7k,
Clearly, I = {80 : 0 € A;} is an ideal in Ay, the number of residue classes in
the factor ring Ay /Ig ist =| 6, ...60 |. Choosing an element from each residue
class the digit set can be defined as Dg = {agp = 0,a1,...,a,—1} C Ay. Let
a € Ay. Then there exists a unique a € Dg and a unique o; € Ay for which
a = a+ Bay. The function ® : Ay — Ay is defined as ®(a) = a1. Observe
that the map o — S« can be formulated as a linear transformation, which has

a simple form in the basis {1, 3, 82,..., 37!}, namely the Frobenius matrix
0 0 ... 0 —Cp
10 ... 0 0

(2) M; = o1 ... 0 0
0O 0 ... 1 —Cl—1

Hence, all the problems regarding number expansions can be formulated in
ZF instead of making it in Ay. The digit set has |(—1)"co| elements. Since
Mik, 1] = (—1)**+1 therefore by [7, Theorem 8] the canonical digit set always
exists. Here M™* means the adjoint of M, i.e. the elements are the adjoints of
the appropriate sub-determinants. In the special case, when f(z) is irreducible
over Z[z] then Ay = Z[z]/(f) is isomorphic with Z[f], where 6 is any root of
f(z) in an appropriate extension field of the rationals. Hence, we may replace
B to 6 in the above reasoning. The next lemma provides a sufficient condition
for Z[x]/(f) being isomorphic with Z[6].

Lemma 1. Consider the polynomial f(x) in (1) and assume that |0;| > 1
(1 <i<k). If f(0) = co is prime then f(x) is irreducible.

Proof. Suppose indirectly that f(z) = u(x)v(z), u,v € Z[z], deg(u) >
> 1,deg(v) > 1 and both w and v are monic. Since ¢ = f(0) = u(0)v(0) is
prime, therefore either «(0) is £1 or v(0) is £1. Assume that «(0) is £1. Since
the constant term of u(z) is the product of some roots of f in module, this is
impossible.
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Consider the canonical radix system (Ag, My, D). Computing the Smith
normal form of M; by UMV = G it is easy to see that

0 1 ... 0

U— : S
0 0 ... 1

—sgn(cg) 0 ... 0O

and G = diag(1,...,1,|co|). Hence, by [7, Theorem 4] the function ® can be
given as

() = O([er,. . m]") =
(3)

T

*
C1 C2 Ck—1

=|—-——a" +z9,——2" +x3,...,—  +xg,——|

Co Co €o €o

where x* =21 —d, 0<d < |cg] and ¢y | z*. Using the notation y = |z1/¢o]
in (3) the function ® can also be written as

(4) P(z) = [—cry + T2, —Coy + T3, ..., —Ch1Y + Tk, —Y]” -

If the system (Aj, My, D) is a canonical number system then we call the
polynomial f(x) as a cns-polynomial, or we say that the polynomial f(x) has

the cns-property. In this case for every x € ZF there is a j € Ny for which
®J(x) = 0.

2.2. Necessary conditions for the cns-property

Now we give some necessary conditions for constructing canonical number
systems via cns-polynomials. These conditions are quite obvious, most of them
were used in different research papers by W.Gilbert, I.Kdtai and A.Pethé. We
prove it for the sake of completeness.

Lemma 2. If (Ay, My, D) is a canonical number system defined by the
ens-polynomial (1), then
(a) co > 2;
(b) if =1 <r eR then f(r) >0, if =1 <z € Z then f(z) > 1;
(¢) f(1) = co;
(d) if k is even then f(—co) > 1, if k is odd then f(—co) < —1;

Lk/2]
(e) 2220 cai > [(co+1)/2].
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Proof. (a) It is obvious that every real root of f(x) (if exist) must be
less then —1. Hence, co = (—1)¥0;...6; > 1. Concerning (b) the previous
idea can also be applied. (c¢) It is known that the only periodic element in the
number system (Ay, My, D) is the null vector. Now we analyse how can we
avoid the loops ®(x) = z different from 0 — 0. Suppose that there is a loop.
Using (4) the following system of equations can be set up: {z1 = x9 —c1y, 9 =
=I3—CaY,...,Tp—1 = Tk — Cp—1Y, Tt = —y}. From these equations it is easy
to deduce that xg(1+cx—1+...+¢co) =d € D. If & = 0 then = 0 which is a
known case. If x5, # 0 then applying (a) the number of loops is [ (co—1)/f(1)].
Hence, if ¢y < f(1) then there does not exist any loop. Concerning (d) if
0; € C\R for all 0 < i < k, then the assertion is obvious. On the other hand
observe that there does not exist any real 6; for which 6; < —cg, otherwise there
would be a 6; for which |#;] < 1. Hence —cy < 6; < —1 for all real roots of
f(x). Tt means that if k is even then f(—cg) > 1, if k is odd then f(—¢) < —1.
(e) is immediately follows from (a) and (b) by z = —1.

Let ¢g > 2 and k be fixed. Since all roots of the polynomial f(z) has
moduli greater then one - we also say that the polynomial satisfies the root-
condition -, therefore the number of cns-polynomials is finite. Next, we provide
upper bounds for the absolute value of the coefficients ¢;,1 <i < k —1 in (1).

Lemma 3. Let f(x) be the cns-polynomial defined by (1) and let 2 < k <
< 9. Then the coefficients of f(x) can be bounded as

|MSdew+%©)—L
lex—3l < (o — 1)(1 — [1/4]) -+m( )
<

anere s = | (S) ki | <5< w2,

Proof. We use the relationship between roots and coefficients of polyno-
mials and the inequalities

1 1 1
5 <1 d —+-=-<1+—
(5) a+f<l+af an a+ﬁ +aﬁ,

where o, 8 > 1. For brevity let z; =| 6; |. To have a better view into the
formulas let us consider the special case k = 7,j = 2. Then

E Zig Zig <

1<i1<ip <7
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< 2122 2425 2627 + 2123 2925 2427 + 2124 2226 2327 + 2125 2224 2326+
+2126 2923 2527 + 2127 2324 Z5%6 + 2227 2325 2426 + 27 < Tco + 14.

In the given range 2 < k < 9 such a sort is always possible. Hence,

lek—j| = Z Ziy - 2i; < sco+s(|k/j] —1) and

1<i1<...<i;<k

1 1 s .

Glma ¥ i< <CO+8(U<3/JJ —1))7
1§’Ll<...<2j§k J

from which the lemma follows.

Remarks. (1) These estimates are good enough for searching canonical
number systems algorithmically.

(2) By using these formulas we got the following estimations (¢, = 1):

s el < eo;

k=3, |c1] <2c,]|ca] <o+ 1;

k=4, |e1] < 3eo,|ea] <3co+2,|es3] <o+ 2

k=5, |e1] <4dco,|ea] < 5eg+4,|es] < 5co+ 4, |es| < co+3;

k=6, |c1] <beo,|ea] < 10co+4,|e3] < 10e¢g + 9, |cs] < Beg + 9,
les| < co + 4

k=17, |c1]| <6co,|ca| < 1dco+ 6, |es| < 18¢o + 16, |ca| < 18¢ + 16,
les| < Teg + 13, |es] < o + 55

k=38, |c1]| <7co,|ca] < 21co+ 6, |es| < 28co + 27, |ca| < 35ep + 34,
les| < 28cq + 27, |es| < Teg + 20, |er] < ¢ + 6;

k=9, |e1] <8co,l|ea] < 27co+ 8, |es| < 56¢o + 27, |ca| < 63¢o + 62,

les| < 63co + 62, |c| < 28cq + 55, |er] < 9eg + 26, |cs| < o+ 7.

2.3. Some results

The systematic research of canonical number systems in algebraic number
fields was initiated by I.Ké&tai and J.Szabd [6]. I.K4tai published many papers
with different co-authors in this area. W.Gilbert, B.Kovéacs and A.Pethd have
also dealt with these systems. The concept of canonical number systems
generated by arbitrary square-free polynomials was introduced by A.Pethé [11].
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Further we mention some important results. It was observed that a wide
class of polynomials can serve for constructing canonical number systems.
B.Kovécs [9] proved that if f(z) € Z[z] is irreducible, its zeroes have moduli
greater than one and if ¢ < ¢p_1 < ... < ¢g, ¢ > 2, then f(z) is a
cns-polynomial. His proof can be applied for reducible polynomials as well.
Moreover, if ¢y is “big enough” then S.Akiyama and A.Pethd [1] gave a method

determining the cns-property of arbitrary polynomials. They also proved that
k k

if co,...,c5-1, >, ¢; > 0and ¢g > 2> |¢;| then f(z) is a cns-polynomial and
i=1 i=1

k
the last inequality can be replaced by ¢y > 2 > |¢;| when all ¢; # 0.
i=1

Recently, H.Brunotte [2] provided an algorithm, which attempts to prove
the cns-property for a given irreducible monic polynomial f(x) € Z[x] satisfying
the root-condition. His algorithm works for arbitrary monic polynomials in
Z[x] as well. His method differs essentially from the method of S.Akiyama and
A.Pethé. Instead of using power basis he chose a different one. In H.Brunotte’s
basis the function ® : Z¥ — Z* has the form

k—1
> CTj + T
— i—=1

@([xl,...,mk}T) = | —sgn(cp) S L1y, T

|col

His algorithm based on the following theorem. Suppose that the set E C ZF
has the recursive definition (i) [0,...,0]%,[-1,0,...,0]7,[0,...,0,-1T € E,
(ii) for every [z1,...,z)T € Eand d € D = {0,1,...,|co| — 1} the element

O([z1,. .., 21,7, +d]T) belongs to E. If for every e € E there exists a j. € Ny
such that &’ (e) = 0 then the polynomial f(z) has the cns-property.

Let us see some examples. Let kK = 2. Then by Lemma 2 and Lemma 3
we get that —1 < ¢; < ¢p. It is easy to see that in these cases the roots of f(z)
are outside the complex unit disc. Using the previous algorithm of H.Brunotte
it is also not hard to see that E C {[z1,z2]", 21,22 € {—1,0,1}} and applying
the function ® we have that the cns-property always holds. In fact, we got a
kind of generalization of the result of I.Katai, B.Kovécs [4,5] and of W.Gilbert
3].

If £ = 3 then we are only able to write a set of inequalities between the
coefficients of f(z) (see also [1,2]). Nevertheless, the following assertion holds.

Assertion. The following polynomials are cns-polynomials in Z[x]:
(i) 2% +cix +co for every k>3 iff —1<c1 <cop—2, co>2,
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(ii) o8 +pa* =t +paF=2 4 .+ pr+p forall 2<peN,
(i) a* + 2"+ 224 4z +p forall 2<peEN,
(iv) %+ pah=1 4 p2ak=2 4 . pFla+pF forall 2<peN.

Proof. The case (i) was proved in [2]. In order to check that the roots of
the polynomials (ii) and (iii) are outside the complex unit disc one can use the
method of Lehmer-Schur [10]. The proof is easy, we leave it to the reader. It
is also obvious that the moduli of the roots of polynomial (iv) are equal and
greater than one. Since the coefficients of the polynomials (ii)-(iv) are positive
and monotonically increasing, the theorem of B.Kovacs can be applied. The
proof is finished.

Remarks. (1) We proved that there are infinitely many cns-polynomials
(therefore canonical number systems) in each dimension k even if the constant
term of the polynomial is “small”.

(2) The polynomials (iv) and (i) for ¢; = 0 show that for every e > 1
there is a base M such that (A, M, D) is a canonical number system and the
moduli of each eigenvalues of M are smaller than or equal to e. This shows
that the second necessary condition mentioned in the first section for satisfying
the unique representation property is sharp.

2.4. Searching for cns-polynomials

Now we provide an algorithm for searching canonical number systems by
computer. To decide whether the polynomial f(z) has a root inside the complex
unit disc the method of Lehmer-Schur can be used. To analyse the possible
roots in the unit circle we have the following well-known lemma.

Lemma 4. Let Q(x) = qo + qu@ + ... + qxa® € Z[a], Q(vi) = 0, |y > 1.
Then |vi| > 1 if and only if ged(Q(z), x*Q(1/z)) is a constant polynomial.

Algorithm: CNS-Sieve. Searching candidates for cns-polynomials. The
inputs are the constant term ¢y and the degree k of the monic polynomial
f(z) € Z[z].

1. Let S be the finite set of polynomials determined by Lemma 3;
2. if S # () then p :=get-a-new-candidate(S); S := S\ {p};
else goto step 5;

3. if Lemma 2 (e), (b) with z = —1, (c) and (d) hold for the polynomial p
then goto step 4; else goto step 2;

4. Apply Lehmer-Schur and Lemma 4 for the polynomial p;
if all roots of p have moduli greater than one then print(p);
goto step 2;

5. STOP;
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The algorithm terminates since S is a finite set. Observe that the CNS-
SIEVE algorithm contains computationally easy-to-check methods. Moreover,
if Lemma 2 fails for the polynomial p then possibly more than one polynomials
can be deleted from the set S, depending on which part of Lemma 2 does not
hold. Clearly, the CNS-SIEVE algorithm can also be applied for &£ > 9 but in
this case bounds for the coefficients of f(z) must be determined.

2.5. CNS-polynomials with constant term cy = 2

Now we turn our attention to generalized binary number expansions, i.e.
co = 2. The case £k = 1 is well-known, and the case k¥ = 2 was analyzed in
Section 2.3. Let & > 3. Suppose that the polynomial f(z) is obtained by the
CNS-SIEVE ALGORITHM for some k. Then, a periodic element 0 # = € P
would be a test proving that f(z) is not a cns-polynomial. If one does not
find such a 7 by searching a small finite portion of the space systematically
or randomly then one can use the CLASSIFICATION ALGORITHM (8] or
H.Brunotte’s algorithm [2] to prove that f(z) is really a cns-polynomial. If
f(z) is not a cns-polynomial then these algorithms serve also the test.

The author implemented the CNS-SIEVE ALGORITHM in C language.
The following table shows the results up to degree 8.

Output of
Degree (k) | CNS-SIEVE ALGORITHM Number of
(number of polynomials) | cns-polynomials
3 5 4
4 22 12
) 13 7
6 73 25
7 62 12
8 215 20
Table 1.

Further, we enumerate the computed cns-polynomials. & = 3, 2 — z +
23,2423 24+ 22+ 232+ 22 + 222 4 5.

k=42—-z+z*2+2% 22242 2422+ 2% 242224 2% 242+ 23+
04+l +2d+2t 242+ 22+ 284202424+ 22% + 23 424 24 22 +
22+ 23+ 24,2+ 22 + 222 + 223 + 2%, 2 + 3z + 322 + 223 + 24,
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k=52—z+2%2+252—z4+22+2%2+22+22+ 252+ 2+ 2% +
2524+ 2+ 22+ 2% + 2t + 25,2 4 22 + 22% + 223 4 2z + 25,

k=6, 2-z+2% 2—22+2% 2—23+2°% 2425 242342 24223425, 2+ 22—
23 +zi+28 242+t +28 2422 +23 42t 428, 24222+ 224+ 28 2422?23+
2°5+28 2+z—d 425428 2+ x4z +28 2+ e +al+ 23ttt +28, 24 20+ 2%+
342425428 24204222+ 23+t + 2%+ 2% 2+ 2+ 22+ 223+ 2t + 2 + 28, 2+
20 +9z2+2x3+zi+25+28, 24+ 222 + 234 220 + 25+ 2% 242242224223 422 +
25425, 242z +327+ 223+ 22 + 2%+ 2%, 2+ 22+ 2274203+ 224 + 225 +2°, 24 3z +
322432343244+ 225428 243z + 42244234+ 3244+ 225+ 28 24 s+ 2?4 2t + 25 4 26

k=T72—2+2",2-2c+222 — 23 4+ 2% 242" 2—z 422+t 4272+
24zt+z?, 242+ 25427, 24z +28 427 2442l + 23 bt b 427 24
2r+222 4+ 3+t 2P+ 28+ 27,2422+ 202 + 223 + 2t + 20+ 28 + 27 24
2r+ 202+ 223 + 201+ 225+ 225 + 27, 24 3r + 4x? + 423 + 424 + 325 + 228 + 27,

k=82—z4+282-22+28 2—2%4+23 2428 2424 +28 24224+ 25 2+
425428 2422+ 28428 242242t 4 20+ 28 24202 42t 4 28 428 2422+
224+ 28+ 28,2420+ 22 + 1S+ 28 24 202 4 23 4 2t 20 4 26 4 28 24+ 202 4+
2244228+ 28 2+ 322+ 32t + 228+ 28 24+ 2+ 428 24+ttt 428 427 +
824+’ +23+ 28+ 2"+ 28 24w+t 2342+ 2 2+ 2" 28,24
2r+zl+rd+at+ 5428427428, 2422+ 228 1 208 42t S 4 28 2T+ 28 24
204222+ 223+ 2 + S + 28+ 27+ 28 24 224+ 222+ 203+ 22 4+ 228 + 228 4 27+
28 2420 +222+ 223 + 204+ 2254+ 228 420" + 28 24 24 2+ 234 220 + 25 + 26 +
27 +28 24z +202 4228+ 21+ 228+ 28+ 27428 24+ 24+ 202+ 28+ 22 + 2%+ 226+
27 +28 242 +322 4+ 223 + 320+ 225 + 228 + 27 + 28,24 20+ 322+ 323 + 324 +
205+ 225 427+ 28 2432+ 322+ 3234+ 324 + 325 + 326+ 227 + 28 24+ 32 + 4%+
5234524 4+425 + 325+ 227+ 28,2 + 4o+ 522 + 53 + 5ot + 425 4+ 325 + 227 4 28,

The output of the CNS-SIEVE ALGORITHM shows that the estimates in
Lemma 2 and Lemma 3 may be complemented and improved. It is also clear
that the time complexity of the algorithm is exponential in k. Moreover, in
higher dimensions proving that a given polynomial obtained by the CNS-SIEVE
ALGORITHM is really a cns-polynomial is hard. The following conjecture
would help, but the author was unable to prove this.

Conjecture. Suppose that the laltice A is generated with the power basis
and the polynomial f(z) is obtained by the CNS-SIEVE ALGORITHM. If there
does not exist any periodic element w for which ||7|lec =1 then f(z) is a cns-
polynomaial.

Obviously, if such a 7 exists then the polynomial is not a cns-polynomial.
We used this idea to test the output of the CNS-SIEVE ALGORITHM.

Remarks. (1) The case ¥ = 3 in Table 1 was known to A. Jarai
(unpublished).
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(2) Suppose that the polynomial f(x) is obtained by the CNS-SIEVE
ALGORITHM and it is not a cns-polynomial. Then, the CLASSIFICATION
ALGORITHM provides more than one periods. The following questions are
quite interesting: how many such periods exist and what are the length of
them? The general characterization seems to be hard. The following table
shows some computational results.

' the polynomial : TeP the length of
f(z) | 7o = 1 period of 7
2+z+ 2242t [-1,1,0,0]T 11
24z +222 4223 2+ 2% [~1,-1,-1,0,0]7 21
2+z+2+ 2t 4+ 2% +2° ~1,-1,-1,0,0,0}T 33
24z +2 4+ 2 28427 {-1,-1,1,-1,0,1,0]7 47
242 + a2+ 284207 +2% | [-1,-1,0,0,0,0,0,0]7 64
Table 2.

(3) In order to decide the cns-property of a given polynomial the algo-
rithm of H.Brunotte is preferable. The author is grateful to J.Sziliczi who
programmed this algorithm in C4+— in a very fine way. This shows among
others that for the cns-polynomial 241+ 222423+ 224+ 25 + 226 + 27 + 28 the
algorithm uses 344 iteration steps, the number of integer vectors in the set E is
143123, while for the cns-polynomial 2+3z+3z%+32°%+324+ 325+ 3254+ 227+ 28
the algorithm uses 253 iteration steps and number of integer vectors in the set
E is 241719.
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