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TRANSFORMATION OF
THE CANONICAL DISJUNCTIVE NORMAL FORM

OF A BOOLEAN FUNCTION
TO ITS ZHEGALKIN–POLYNOMIAL AND BACK

J. Gonda (Budapest, Hungary)

Abstract. A Boolean function can be given in several forms. One of

these forms is the canonical disjunctive normal form and another one the

Zhegalkin-polynomial. These forms - apart from the order of the terms

occurring in them - are uniquely determined by the function. In this article

we give a linear algebraic aspect of the connection between these two forms.

In this article disjunction and logical sum, conjunction and logical product,
exclusive or and modulo two sum, as well as complementation and negation
are used in the same sense and they are denoted respectively by +, · (or
simply without any operation sign), ⊕ and −. The elements of the field with
two elements and the elements of the Boolean algebra with two elements are
denoted by the same signs, namely by 0 and 1; N0 denotes the non-negative
integers, and N the positive ones.

It is well known that an arbitrary two-valued logical function of n variables
can be written in the uniquelydetermined canonical disjunctive normal form
(hereafter abbreviated as CDNF), i.e. as a logical sum whose members are
pairwise distinct logical products of n factors, where all of such logical products
contain every logical variable exactly once, either negated or not negated
exclusively. Clearly, there exist exactly 2n such products. Supposing that
the variables are indexed by the integers 0 ≤ j < n, these products can be
numbered by the numbers 0 ≤ i < 2n in such a way that we consider the
non-negative integer containing 0 in the j-th position of its binary expansion if
the j-th variable of the given product is negated, and 1 in the other case. Of
course, this is a one-to-one correspondence between the 2n distinct products
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and the integers of the interval [0, .., 2n − 1], and if i =
n−1∑
j=0

a
(i)
j 2j , where a

(i)
j is

either 0 or 1, then the product m
(n)
i belonging to it is

(1) m
(n)
i =

n−1∏
j=0

(
a
(i)
j ⊕Xj

)
.

Such a product is called minterm (with n variables).

With the numbering given above we numbered the Boolean functions of
n variables, too. A Boolean function is uniquely determined by the minterms
contained in its CDNF, so a Boolean function is uniquely determined by a 2n

long series of 0-s and 1-s, where a 0 in the j-th position (now 0 ≤ j < 2n)

means that m
(n)
j does not occur in that function, and 1 means, that the CDNF

of the function contains the minterm with the index j, i.e. for 0 ≤ k < 22
n

(2) f
(n)
k =

2n−1∑
i=0

α
(k)
i m

(n)
i ,

where k =
2n−1∑
i=0

α
(k)
i 2i, and f

(n)
k denotes the k-th Boolean function of n

variables.

Another possibility for giving a Boolean function is the so-called Zhegalkin-

polynomial. Let S
(n)
i =

n−1∏
j=0

(
a
(i)
j +Xj

)
, where i =

n−1∑
j=0

a
(i)
j 2j . This product

contains only non-negated variables, and the j-th variable is contained in it if
and only if the j-th digit is 1 in the binary expansion of i. There exist exactly
2n such products which are pairwise distinct. Now any Boolean function of n
variables can be written as a modulo two sum of such terms, and the members
occurring in the sum are uniquely determined by the function. That means,
that we can give the function by a 2n-long 0 − 1 series, and if the i-th member
of such a series is ki then

(3) f (n) =
2n−1
⊕
i=0

kiS
(n)
i .

Now let us consider the 0 − 1 series determining a canonical disjunctive
normal form of a Zhegalkin polynomial of a Boolean function as elements of
the 2n-dimensional linear space T (n) over the field with two elements. T (n)
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contains 22
n

vectors. Let α(r), where 0 ≤ r =
2n−1∑
i=0

α
(r)
i 2i < 22

n

, denote the

vector whose i-th component is α
(r)
i . Each element of the space determines

one and only one logical function in the canonical disjunctive normal form
and exactly one Zhegalkin polynomial of a logical function, so we can give
a bijection φ : T (n) → T (n) in such a way, that the vectors corresponding
to each other determine the same Boolean function. A given correspondence
α 7→ k, where α and k determine the CDNF and the Zhegalkin-polynomial

respectively can be computed by m
(n)
i + m

(n)
j = m

(n)
i ⊕ m

(n)
j and u = 1 ⊕ u,

and by S
(n)
i ⊕ S

(n)
j = S

(n)
i S

(n)

j + S
(n)

i S
(n)
j in the other direction, but this is a

rather long and badly algorithmisable procedure. It is more straightforward to
give an easily treatable trasformation rule manipulating directly the vectors.

Let us see an example. If n = 2 and k = 2 then

f
(2)
2 = 0 ·m(2)

0 + 1 ·m(2)
1 + 0 ·m(2)

2 + 0 ·m(2)
3 = m

(2)
1 =

=
(
0⊕X1

) (
1⊕X0

)
= X1X0 =

= (1⊕X1)X0 = X0 ⊕X1X0 =

=
(
0 +X1

) (
1 +X0

)
⊕
(
1 +X1

) (
1 +X0

)
=

= 0 · S(2)
0 ⊕ 1 · S(2)

1 ⊕ 0 · S(2)
2 ⊕ 1 · S(2)

3 ,

so φ((0, 1, 0, 0)) = (0, 1, 0, 1). If n = 2 and k = 8 then

f
(2)
8 = m

(2)
3 = X1X0 = S

(2)
3 ,

that is φ((0, 0, 0, 1)) = (0, 0, 0, 1). Finally

f
(2)
2 ⊕ f

(2)
8 = m

(2)
1 ⊕m

(2)
3 = m

(2)
1 +m

(2)
3 = X1X0 +X1X0 = X0 =

= S
(2)
1 =

(
S
(2)
1 ⊕ S

(2)
3

)
⊕ S

(2)
3

that means that

φ((0, 1, 0, 0) +T (0, 0, 0, 1)) = (0, 1, 0, 0) =

=(0, 1, 0, 1) +T (0, 0, 0, 1) = φ((0, 1, 0, 0)) +T φ((0, 0, 0, 1)),

where +T denotes the addition on T (n).

From the last result we get the following
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Theorem 1. The mapping φ : T (n) → T (n), where
2n−1∑
i=0

αim
(n)
i =

=
2n−1
⊕
i=0

(φ(α))iS
(n)
i , is a homomorphism.

Proof. As T (n) is a linear space over the field of two elements, we only
have to show that the mapping is sum preserving. Let +T denote the addition
on T (n). If α and β belong to T (n), then (α+T β)i = αi ⊕ βi for 2

n > i ∈ N0,
so

2n−1
⊕
i=0

(φ(α+T β))iS
(n)
i =

2n−1∑
i=0

(α+T β)im
(n)
i =

2n−1∑
i=0

(αi ⊕ βi)m
(n)
i =

=
2n−1
⊕
i=0

(αi⊕βi)m
(n)
i =

2n−1
⊕
i=0

αim
(n)
i ⊕

2n−1
⊕
i=0

βim
(n)
i =

2n−1∑
i=0

αim
(n)
i ⊕

2n−1∑
i=0

βim
(n)
i =

=
2n−1
⊕
i=0

(φ(α))iS
(n)
i ⊕

2n−1
⊕
i=0

(φ(β))iS
(n)
i =

=
2n−1
⊕
i=0

((φ(α))i ⊕ (φ(β))i)S
(n)
i =

2n−1
⊕
i=0

(φ(α) +T φ(β))iS
(n)
i .

This means that φ(α+T β) = φ(α) +T φ(β), so φ preserves the sums.

From Theorem 1 and from the fact that φ is bijective follows that φ is an
automorphism, so choosing a basis, the mapping can be given by a matrix. Let

b
(i)
j = δi,j for the j-th component of the i-th vector of a basis, where δi,j is the

Kronecker symbol and let A(n) denote the matrix of the transformation of the
Boolean functions of n variables and 0(n) the zero matrix of order 2n.

The vectors of the basis given above belong to the minterms, so the i-th

column of A(n) gives the Zhegalkin-polynomial of m
(n)
i . For instance if n = 2

than
m

(2)
0 = X1X0 =

= 1⊕X0 ⊕X1 ⊕X1X0 =

= 1 · S(2)
0 ⊕ 1 · S(2)

1 ⊕ 1 · S(2)
2 ⊕ 1 · S(2)

3 ,

m
(2)
1 = X1X0 =

= X0 ⊕X1X0 =

= 0 · S(2)
0 ⊕ 1 · S(2)

1 ⊕ 0 · S(2)
2 ⊕ 1 · S(2)

3 ,
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m
(2)
2 = X1X0 =

= X1 ⊕X1X0 =

= 0 · S(2)
0 ⊕ 0 · S(2)

1 ⊕ 1 · S(2)
2 ⊕ 1 · S(2)

3 ,

m
(2)
3 = X1X0 =

= 0 · S(2)
0 ⊕ 0 · S(2)

1 ⊕ 0 · S(2)
2 ⊕ 1 · S(2)

3

and in a concise form

φ
(
m

(2)
0

)
φ
(
m

(2)
1

)
φ
(
m

(2)
2

)
φ
(
m

(2)
3

)
↓ ↓ ↓ ↓

S
(2)
0 → 1 0 0 0

S
(2)
1 → 1 1 0 0

S
(2)
2 → 1 0 1 0

S
(2)
3 → 1 1 1 1

The structure of A(n) is very simple.

Theorem 2.

(4) A(n) =


(1), if n = 0,(
A(n−1) 0(n−1)

A(n−1) A(n−1)

)
, if n ∈ N.

Proof. As the empty product is 1 and 20 = 1, so m
(0)
0 = 1 = S

(0)
0 . Then

0
⊕
i=0

(φ(α))iS
(0)
i =

0∑
i=0

αim
(0)
i = α0 · 1 =

0
⊕
i=0

α0S
(0)
i .

That means, that α = φ(α) = A(0)α, i.e. A(0) = I(0), where I(n) denotes the
unit matrix of order 2n for any non-negative integer n.

Now let f (n+1) =
2n+1∑
i=0

αim
(n+1)
i =

2n+1

⊕
i=0

kiS
(n+1)
i be a Boolean function

of n + 1 variables, where k = φ(α) = A(n+1)α. Then both α and k are

vectors of dimension 2n+1. Let α[0] and α[1] denote the first 2n and the last 2n

components of α respectively, and let A(n+1) =

(
P Q
R T

)
, where the subma-

trices are of order 2n. With these notations A(n+1)α =

(
Pα[0] + Qα[1]

Rα[0] + Tα[1]

)
,
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so
(
A(n+1)α

)
i
=

(
Pα[0] +Qα[1]

)
i
, when 0 ≤ i < 2n, and

(
A(n+1)α

)
i
=

=
(
Rα[0] + Tα[1]

)
i−2n

, when 2n ≤ i < 2n+1. On the other hand

2n+1−1
⊕
i=0

(
A(n+1)α

)
i
S
(n+1)
i =

2n+1−1∑
i=0

αim
(n+1)
i =

2n+1−1
⊕
i=0

αim
(n+1)
i =

=
2n−1
⊕
i=0

αi

(
m

(n)
i Xn+1

)
⊕

2n+1−1
⊕

i=2n
αi

(
m

(n)
i−2nXn+1

)
=

= (1⊕Xn+1)
2n−1
⊕
i=0

αim
(n)
i ⊕Xn+1

2n−1
⊕
i=0

α2n+im
(n)
i =

=
2n−1
⊕
i=0

αim
(n)
i ⊕Xn+1

2n−1
⊕
i=0

(αi ⊕ α2n+i)m
(n)
i =

=
2n−1
⊕
i=0

(
A(n)α[0]

)
i
S
(n)
i ⊕

2n−1
⊕
i=0

(
A(n)

(
α[0] + α[i]

))
i

(
S
(n)
i Xn+1

)
=

=
2n−1
⊕
i=0

(
A(n)α[0] + 0(n)α[1]

)
i
S
(n+1)
i ⊕

2n+1−1
⊕

i=2n

(
A(n)α[0] +A(n)α[1]

)
i−2n

S
(n+1)
i

and with the previous result for A(n+1)α we can see, that

A(n+1) =

(
A(n) 0(n)

A(n) A(n)

)
.

As the mapping detemined by A(n) is an automorphism, it has an inverse.
Now we give the inverse of A(n). First of all we consider again the case of
n = 2:

S
(2)
0 = 1 =

= X1X0 +X1X0 +X1X0 +X1X0 =

= 1 ·m(2)
0 + 1 ·m(2)

1 + 1 ·m(2)
2 + 1 ·m(2)

3 ,

S
(2)
1 = X0 =

= X1X0 +X1X0 =

= 0 ·m(2)
0 + 1 ·m(2)

1 + 0 ·m(2)
2 + 1 ·m(2)

3 ,

S
(2)
2 = X1 =

= X1X0 +X1X0 =

= 0 ·m(2)
0 + 0 ·m(2)

1 + 1 ·m(2)
2 + 1 ·m(2)

3 ,
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S
(2)
3 = X1X0 =

= 0 ·m(2)
0 + 0 ·m(2)

1 + 0 ·m(2)
2 + 1 ·m(2)

3

and then

φ−1
(
S
(2)
0

)
φ−1

(
S
(2)
1

)
φ−1

(
S
(2)
2

)
φ−1

(
S
(2)
3

)
↓ ↓ ↓ ↓

m
(2)
0 → 1 0 0 0

m
(2)
1 → 1 1 0 0

m
(2)
2 → 1 0 1 0

m
(2)
3 → 1 1 1 1

Comparing this table with the one on page 151 we see that in that special case
the inverse of the matrix of the transformation is the same as the matrix of the
original mapping. This is no accident:

Theorem 3. For any non-negative integer n the inverse of A(n) is itself,
that is

(5) A(n)−1

= A(n),

Proof. A(0)−1

= I(0)
−1

= I(0) = A(0); if n ∈ N0, and A(k)A(k) = I(k) for
any non-negative integer k less than or equal to n then

A(n+1)A(n+1) =

(
A(n) 0(n)

A(n) A(n)

)(
A(n) 0(n)

A(n) A(n)

)
=

(
I(n) 0(n)

0(n) I(n)

)
= I(n+1),

because A(n)A(n) +A(n)A(n) = 0(n), so the proposition is true for any n ∈ N0.

A(n) is a 2n × 2n matrix, and 2n × 2n = 22n is a big number even if n is
relatively small. That fact can cause problems in storing the matrix. However,
the elements of A(n) can be calculated directly from the indices.

Theorem 4. A
(n)
i,k =

n−1∏
j=0

(
a
(i)
j + a

(k)
j

)
, where a

(s)
r is the r-th digit in the

binary expansion of the non-negative integer s, and + denotes the logical sum.
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Proof.

2n−1
⊕
i=0

(
2n−1
⊕
k=0

A
(n)
i,k αk

)
S
(n)
i =

2n−1
⊕
i=0

kiS
(n)
i =

2n−1∑
k=0

αkm
(n)
k =

2n−1
⊕
k=0

αkm
(n)
k =

=
2n−1
⊕
k=0

αk

n−1∏
j=0

(
a
(k)
j ⊕Xj

) =

=
2n−1
⊕
k=0

αk

2n−1
⊕
i=0

n−1∏
j=0

((
a
(i)
j + a

(k)
j

)(
a
(i)
j +Xj

)) =

=
2n−1
⊕
i=0

2n−1
⊕
k=0

αk

n−1∏
j=0

(
a
(i)
j + a

(k)
j

) n−1∏
j=0

(
a
(i)
j +Xj

) =

=
2n−1
⊕
i=0

(
2n−1
⊕
k=0

ci,kαk

)
S
(n)
i ,

so
2n−1
⊕
i=0

(
2n−1
⊕
k=0

(
A

(n)
i,k − ci,k

)
αk

)
S
(n)
i = 0. In the Zhegalkin-polynomial of a

Boolean function the coefficients are uniquely determined, that means each

coefficient of S
(n)
i is 0 in the previous sum, so

2n−1
⊕
k=0

(
A

(n)
i,k − ci,k

)
αk = 0 for

every non-negative integer t less than 2n. Since that equality must be fulfilled
for every vector α, so for every non-negative integers i and k less than 2n

A
(n)
i,k = ci,k =

n−1∏
j=0

(
a
(i)
j + a

(k)
j

)
which is exactly the proposition formulated in the theorem.

Corollary. Let 0 ≤ 0 ≤ 1 ≤ 1 for the two elements of the field of two
elements, and α ≼ β for the vectors α and β of the n-dimensional linear space
over that field if and only if for every index i, where 0 ≤ i < n, αi ≤ βi. Then

A
(n)
i,k = 1 exactly in that case, when a(k) ≼ a(i), where t =

n−1∑
j=0

a
(t)
j 2j for every

non-negative integer t less than 2n.

Proof. A
(n)
i,k =

n−1∏
j=0

(
a
(i)
j + a

(k)
j

)
= 1 if and only if in the logical product

the value of each term is equal to 1. However a
(i)
j + a

(k)
j = 1 is true exactly

in that case, if in all cases when a
(k)
j = 0, i.e. when a

(k)
j = 1, a

(i)
j = 1 is



Transformation of the canonical disjunctive normal form 155

fulfilled, too. Considering that the value of every a
(v)
u is 0 or 1, this means that

a
(k)
j ≤ a

(i)
j for every index 0 ≤ j < n.

With the help of Theorem 4 and the subsequent corollary we can give an

algorithm generating the elements of A
(n)
i,k from the input data i, k and n.

procedure gener (i, k, n, t) [n ∈ N0, 2n > i ∈ N0, 2n > k ∈ N0, t ∈ {0, 1}]
t := 1

u := 2n−1

while u ≥ 1

if i < k then

t := 0

u := 0

elseif u ≤ i then

i := i− u

if u ≤ k then

k := k − u

end if

end if

u := u div 2

end while

end procedure

In that procedure div denotes the integer division, i.e. if u and v ̸= 0 are

integers, then u div v :=
⌊u
v

⌋
; t is the result of the procedure, and A

(n)
i,k = t.

Now we give some simple properties characterising the matrix A(n):

Theorem 5. A(n) has the following properties:

1. bottom triangle-matrix;

2. all elements in the main diagonal are 1;

3. the matrix is symmetrical for the subdiagonal;

4. the elements of the subdiagonal are 0 with the exception of the element
in the left bottom corner;

5. the elements of the 0. column are 1.

Proof. All of the above mentioned properties are true if n = 0, and taking

into consideration the structure of A(n), namely that A(n+1) =

(
A(n) 0(n)

A(n) A(n)

)
,

we get the proof by induction on n.
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