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LOCATION AND NUMBER OF
PERIODIC ELEMENTS IN Q(

√
2)

G. Farkas (Budapest, Hungary)

Abstract. In this paper we deal with a quadratic extension of the field

of rational numbers. We prove some assertions in connection with the

location and quantity of the periodic elements of coefficient systems given

in Q
(√

2
)
.

1. Introduction

1.1. Number systems in quadratic extension fields

It is a well-known fact in number theory that every quadratic algebraic

extension field of the rational numbers is one of Q
(√

D
)
, where D is a square-

free integer. Let I be the set of algebraic integers in Q
(√

D
)
. For some

β = c+ d
√
D ∈ Q(

√
D) let β = c− d

√
D be the algebraic conjugate of β, and

r(β) = c the rational, i(β) = d the irrational part of β, where c, d ∈ Q.

Definition. Let α ∈ I and Eα (⊆ I) be a complete residue system mod α
containing 0, i.e. such a collection of f0 = 0, f1, ..., ft−1 ∈ I for which for every
γ ∈ I there exists a unique f ∈ Eα such that

(1) γ = αγ1 + f

with a suitable γ1 ∈ I. Then we can say that (α,Eα) is a coefficient system.
From now on we call the elements of Eα digits or coefficients, and α is the base
number of (α,Eα) .
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Definition. We say that (α,Eα) is a number system in I if each γ ∈ I can
be written as a finite sum

(2) γ = e0 + e1α+ ...+ ekα
k,

where ei ∈ Eα, i = 0, 1, ..., k.

Naturally, in this case α is the base of the number system (α,Eα) . The
uniqueness of representation (2) follows from the fact that Eα is a complete
residue system mod α. Before examining an arbitrary (α,Eα) , we have to
introduce certain concepts.

Definition. Let the J : I −→ I function be defined in the following way:
if the equation (1) holds, then J(γ) = γ1. Then we can speak about transition

γ
f−→ γ1. J

k denotes the k − fold iterate of J.

Definition. An arbitrary π ∈ I is a periodic element if there exists a
positive integer k such that Jk(π) = π. Let P be the set of periodic elements,
and G(P ) the directed graph to be obtained by directing an edge from π to
J(π) for every π ∈ P.

Our long-term objective is to give for an arbitrary α ∈ I, if any, such an
Eα digit set that (α,Eα) will constitute a number system. The investigation
of graph G(P ) and set P is indispensible in finding the appropriate digit set,
because, as we will see later, (α,Eα) is a NS if and only if P = {0}. In

this paper we focus our attention on Q
(√

2
)
, and we prove some statements

connected with the position, quantity and the modulus of elements of P to an
arbitrary α ∈ I.

1.2. Previous achievements in this field

The research in this field has two main directions:

(*) For a given α find such a digit system Eα, if any, for which (α,Eα) is a
number system.

(**) For a given α and digit set Ec = {0, 1, ..., |N (α) |−1} decide whether Ec is
a complete residue system mod α, and whether (α,Ec) is a number system
or not.

(∗∗) was solved for quadratic extension fields in I. Kátai-J. Szabó [1] and
in I. Kátai-B. Kovács [2-3], see also W. Gilbert [4]. It was shown that only very
special numbers α can serve as bases with such special digit set. In [5], [6] the
size, location and stuctural properties of periodic elements were fully described
in imaginary quadratic fields.
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With respect to problem (∗), G. Steidl observed in [7] that in the case of
Gaussian integers a good strategy for the choice of an appropriate digit set is to
take one for which max

f∈Eα

|f | is close to the minimum. Later I. Kátai [8] proved

that if I is the set of integers in some imaginary quadratic extension field, then
α ∈ I is a base of a number system with an appropriate digit set if and only if
α ̸= 0, |α| ̸= 1, |1− α| ̸= 1.

It has been shown in [9] that if |α| ≥ 2, |α| ≥ 2, then there always exists an
Eα for which (α,Eα) is a number system. The digit set was explicitly computed.
It has been proved in [10] that we can find an Eα coefficient system for which

G(P ) has a simple structure. In detail: for an arbitrary integer α ∈ Q(
√
D),

where α, α − 1 is not a unit, 1 < min (|α|, |α|) < 2 and D > 1 is a square-free
integer, there exists such an Eα coefficient system for which G (P ) is the disjoint
union of loops, if either |α| > 2 > |α|, α > 0 or |α| > 2 > |α|, α > 0, and beside
the loop 0 −→ 0 it contains only circles of order two of type π −→ (−π) −→ π,
if either |α| > 2 > |α|, α < 0 or |α| > 2 > |α|, α < 0 holds.

2. The presentation of our assertions

2.1. Observations

One can easily observe that if α ∈ I is a base of a number system in

Q(
√
D) with a suitable digit set then the following assertions are valid:

1. α ̸= 0,

2. α ̸= unit,

3. 1− α ̸= unit,

4. |α| > 1, |α| > 1.

5. if |α|, |α| > 1, then for each γ ∈ I the path γ, J(γ), J2(γ), ... is ultimately
periodic,

6. G(P ) is a disjoint union of directed circles,

7. (α,Eα) is a number system if and only if P = {0}.
The assertions 1. and 2. are obvious. Assume that 1 − α = ε = unit and

(α,Eα) is a number system. Let f ∈ Eα, f ̸= 0, γ = fεδ, where δ = εε. Then
γ = f +αγ and γ ̸= 0, consequently γ cannot be expanded as (2). Assume that
|α| < 1 and (α,Eα) is a number system. Then the set of γ having the finite
representation (2) is bounded, while the whole set I is not bounded, which is
a contradiction. Let us observe finally that (α,Eα) is a number system if and
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only if
(
α,Eα

)
is a number system, where Eα consists of the set of the algebraic

conjugates of the elements of Eα. This implies that |α| > 1 is also necessary.

2.2. K-type digit sets

Let us consider now Q(
√
2). It is known that {1,

√
2} is an integral basis

in I. Let ε = ±1, δ = ±1 and for some α ∈ Q(
√
2) let d = N (α) = αα.

Let α = a+ b
√
2 and E

(ε,δ)
α be the sets of those f = k + l

√
2, k, l ∈ Z for

which fᾱ = (k + l
√
2)(a− b

√
2) = (ka− bl2) + (la− kb)

√
2 = r + s

√
2 satisfy

the following conditions:

- if (ε, δ) = (1, 1), then r, s ∈
(

−|d|
2 , |d|

2

]
,

- if (ε, δ) = (−1,−1), then r, s ∈
[
−|d|
2 , |d|

2

)
,

- if (ε, δ) = (−1, 1), then r ∈
[
−|d|
2 , |d|

2

)
, s ∈

[
−|d|
2 , |d|

2

)
,

- if (ε, δ) = (1,−1), then r ∈
(

−|d|
2 , |d|

2

]
, s ∈

[
−|d|
2 , |d|

2

)
.

It is known from number theory that E
(ε,δ)
α is a complete residue system

mod α. From now on we call the above constructed coefficient sets K-type digit
sets.

2.3. The formulation of our Theorem

Theorem. Let α = a + b
√
2 be an arbitrary algebraic integer in Q(

√
2),

for which
α ̸= 0,

α, α± 1 is not a unit ,

1 < min (|α| , |α|) < 2 are valid .

Let, in addition, Eα be an arbitrary K-type digit set. Then the following
assertions hold

I. |a|, |b|
√
2 < |d|

2 .

II. For each π ∈ P we have that |π| < 1 if |α| ≥
√
2+1
2 and sgn(a) = sgn(b),

and |π| < 1 if |α| ≥
√
2+1
2 and sgn(a) ̸= sgn(b).

III. If there exists such an f ∈ Eα for which either 0 ̸= π = πα+f, or 0 ̸= π =

= (−π)α + f holds, i.e. π = p + q
√
D ∈ P\ {0}and |π| > 1 if sgn(a) =

= sgn(b) or |π| > 1 if sgn(a) ̸= sgn(b), then there must exist such an
f ′ ∈ Eα for which we can find such a π′ which satisfies either π′ = π′α+f ′,
or π′ = (−π′)α+ f ′, and i(π) = i(π′).
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Note. In fact the Assertion III states that ”beside” the periodic elements
with large modulus there should be another one on the integer lattice.

2.4. Preparing the proof

Remark 1. Since during the proof we never specify the value of (ε, δ),

therefore our proof will hold true for each E
(ε,δ)
α . Observe that if d is an odd

number, then we get the same digit set for arbitrary value of (ε, δ). If d is an
even number addition we can say that

E
(ε,δ)
−α = E

(−ε,−δ)
α , because f (−ᾱ) = −r − s

√
2, and

E
(ε,δ)
α = E

(ε,−δ)
α , because fα = r − s

√
2.

Thus, if we have proved our assertions in case |α| > |α|, we get the
theorem in case |α| < |α| simply by reversing the roles of |α|, |α| and those

of E
(ε,δ)
α , E

(ε,−δ)
α . Further we assume that |α| > 2 and 1 < |α| < 2 and an

arbitrary element of the set {E(1,1)
α , E

(1,−1)
α , E

(−1,1)
α , E

(−1,−1)
α } will be denoted

by Eα.

Remark 2. In [10] we delt with the case |α|, |α| ≥ 2 and now we observe

that if |α|, |α| < 2, then α = −α =
√
2 and

√
2 − 1 is a unit, therefore we

do not need to investigate these two cases. Thus we further assume that
min (|α|, |α|) < 2 and max (|α|, |α|) > 2.

Remark 3. In [10] we proved that for each π =
(
p+ q

√
2
)
∈ P |π| <

√
2

is true. This implies that sgn(p) ̸= sgn(q), otherwise |π| ≥
√
2 + 1 would

be valid. Since the proofs of cases p > 0 and p < 0 are the same, we can
avoid the proof of case p > 0 and in what follows we assume that for arbitrary

π =
(
p+ q

√
2
)
∈ P\ {0} p < 0 holds. Then, naturally, the inequalities q > 0

and π < 0 are always maintained.

Remark 4. We would point out that in [10] we gave the number systems

in the case of |α| , |α| ≤ 6+3
√
2 for each possible α ∈ I. It can be easily checked

that our theorem obviously holds for the values α, α, thus in the following we

can assume, without losing generality that |α| > 6 + 3
√
2.

Definition. x =
|d|
2

−max
(
|a| , |b|

√
2
)
.

The number x plays important role in the estimating of the modulus of the
periodic elements. Let us now examine the connection between x and α. |α| =
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= |a| + |b|
√
2 = |d|

2 + |d|
2 − 2x − |α| , from which |d| = |α| |α| = |α| (|d| − 2x−

− |α|) = |α| |d| − 2x |α| − |α|2 , thus

(3) x =
(|α| − 1) |d| − |α|2

2 |α|
.

3. The proof of our Theorem

3.1. The proof of Assertion I

In order to prove the first part of our theorem we have to investigate two
cases.

Case 1. Let sgn(α) = sgn(α), i. e. sgn(a + b
√
2) = sgn(a − b

√
2). This

implies that d > 0 and |a| > |b|
√
2, thus |α| = |a| − |b|

√
2. We have got two

cases to examine:

Case 1/a. We assume that α, α > 0. In this case a, b > 0 and we can put
forward the following relation

0 < (α− 1) (α− 1) = d− 2a+ 1,

because α− 1, α− 1 are two positive numbers. Let us realise that

(α− 1) (α− 1) ≥ 2,

because (α− 1) (α− 1) = 1 would imply that α − 1 is a unit. We get that

d− 2a+ 1 ≥ 2, from which d
2 ≥ a+ 1

2 > b
√
2 follows.

Case 1/b. We assume now that α, α < 0. In this case a, b < 0 and we
can observe the following relation

0 < (α+ 1) (α+ 1) = d+ 2a+ 1,

because α+1, α+1 are two negative numbers. Observe that (α+ 1) (α+ 1) ≥ 2,
because (α+ 1) (α+ 1) = 1 would imply that α + 1 is a unit. We get that

d+ 2a+ 1 ≥ 2, from which d
2 ≥ −a+ 1

2 > −b
√
2 follows. Thus we have proved

that |d|
2 > |a| , |b|

√
2 in case sgn(α) = sgn(α).

Case 2. Let sgn(α) ̸= sgn(α) hold true, i. e. sgn(a + b
√
2) ̸=

̸= sgn(a − b
√
2). This implies that d < 0, |a| < |b|

√
2, thus |α| = |b|

√
2 − |a|.
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Then sgn(α) = sgn(a) = sgn(b) ̸= sgn(α) holds, which implies that |α| =
=
∣∣a+ b

√
2
∣∣ = |2a− α| = 2 |a| + |α| . From this we get |d| = |α| |α| > |α| >

> 2 |a| + 1, thus |d|
2 > |a| . On the other hand, |α| = |b|

√
2 − |a| < 2, i.e.

|b|
√
2 < |a|+2. This implies that if |d| ≥ 2 |a|+4 then |d|

2 ≥ |a|+2 > |b|
√
2. We

have to investigate just two cases, namely, either |d| = 2 |a|+2 or |d| = 2 |a|+3.

Case 2/a. We assume first that |d| = 2 |a|+2. If a > 0, that is d = −2a−2,
then (α+ 1) (α+ 1) = d + 2a + 1 = −1. If a < 0, that is d = 2a − 2, then
(α− 1) (α− 1) = d − 2a + 1 = −1. We have arrived at the conclusion that in
this case α− 1, or α+ 1 is a unit, thus |d| = 2 |a|+ 2 never holds.

Case 2/b. Let us assume now that |d| = 2 |a| + 3. Let us observe that

if |α| = |b|
√
2 − |a| < 3

2 , then
|d|
2 = 2|a|+3

2 = |a| + 3
2 > |b|

√
2, thus we have

completed the proof. In the opposite case, if |α| = |b|
√
2 − |a| ≥ 3

2 , then we

can write that (|α|+ 1) (|α| − 1) = |d| + |α| − |α| − 1 = |d| + |b|
√
2 − |a| −

− |b|
√
2− |a| − 1 = |d| − 2 |a| − 1 = 2 |a|+ 3− 2 |a| − 1 = 2. From this we get

that |α| + 1 = 2
|α|−1 . Naturally, this is impossible because |α| > 10. We have

finished the Assertion I.

Corollary 1. ±1 ∈ Eα. Let us assume that f = 1. From this we get that

fα = α = a− b
√
2 = r + s

√
2. Thus |r| = |a| < |d|

2 , and |s| = |b| < |d|
2 . We can

obtain the same result for f = −1.

3.2. The proof of Assertion II

We assume now that |α| ≥
√
2+1
2 and let π = p + q

√
2 be an arbitrary

periodic number. Then in according to [10]

(4) either π = πα+ f, or π = −πα+ f

holds for an f ∈ Eα. From (4) we get that

either f = π (1− α) , or f = π (1 + α) .

Thus
|f | ≥ |π| (|α| − 1) ,

from which it follows that

|π| ≤ |f |
|α| − 1

=
|fα|

|d| − |α|
.
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In a similar way, we get for π:

|π| ≤
∣∣fα∣∣

|d| − |α|
.

Now we can estimate the value of q:

(5) |π − π| = 2 |q|
√
2 ≤ |fα|

|d| − |α|
+

∣∣fα∣∣
|d| − |α|

.

We have to examine two cases.

Case 1. Let |fα| = |r|+ |s|
√
2 hold true. Then

∣∣fα∣∣ = ∣∣∣|r| − |s|
√
2
∣∣∣ ≤ |d|

2

√
2

follows. From this we get that

|fα|
|d| − |α|

≤
√
2 + 1

2

|d|
|d| − |α|

=

√
2 + 1

2

|α|
|α| − 1

<
√
2,

and ∣∣fα∣∣
|d| − |α|

≤
√
2

2

|d|
|d| − |α|

=

√
2

2

|α|
|α| − 1

,

because of the condition of Assertion II, we get that

√
2

2

|α|
|α| − 1

≤
√
2

2

√
2+1
2√

2+1
2 − 1

=
3

2

√
2 + 2.

If we substitute this value to (5), we can see that

2 |q|
√
2 ≤

√
2 +

3

2

√
2 + 2 =

5

2

√
2 + 2,

and this implies
|q| < 2.

Let us observe that if q = 0 were valid, we would get that either |π| >
√
2 or

π ∈ Eα, because ±1 is a digit, which follows from Corollary 1. Thus exclusively

the |q| = 1 statement can be true. Then |p| < 3 must hold, since |π| <
√
2. We

can check easily that in this case |π| < 1.
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Case 2. Now we assume that |fα| =
∣∣|r| − |s|

√
2
∣∣ . Since |α| > 10, we get

that

|π| = |fα|
|d| − |α|

=

∣∣|r| − |s|
√
2
∣∣

|d| − |α|
≤

√
2

2

|d|
|d| − |α|

=

√
2

2

|α|
|α| − 1

< 1.

We have completed the proof of Assertion II.

3.3. The proof of Assertion III

Lemma 1. In P there are at most two periodic numbers with identical

irrational parts. If there exist π = p + q
√
D ∈ P , π′ = p′ + q

√
D ∈ P and

π ̸= π′, then for n = π′ − π:

(i) |n| = |p− p′| = 1,

(ii) sgn(r′) ̸= sgn(r).

Proof. Case 1. We assume that G (P ) is the disjoint union of loops.

Then we know from [10] that for an arbitrary π ∈ Q
(√

2
)
, π ∈ P means that

π = πα+f, where f ∈ Eα. In addition we assume that there exists π′ = π′α+f ′

such that q = q′ and p′ ̸= p. Then p′ = p+ n for some n ∈ Z. We can write:

f ′ = π′ (1− α) = (π + n) (1− α) = f + n− nα.

From this we get

f ′α = r′ + s′
√
2 = fα+ nα− nd,

which implies that
r′ = r + n (a− d) ,

s′ = s+ nb.

Let us observe that |d|
2 > |a| implies that |a − d| > |d|

2 . Now we assume that

sgn (r) = sgn
(
r
′
)
. Then |r − r

′ | = ||r| − |r′ || > |n| |d|2 which implies that

n = 0. This is a contradiction, thus we reached that sgn (r) ̸= sgn
(
r
′
)
. Then

|d| ≥ |r − r
′ | = |r| + |r′ | > |n| |d|2 . From this we can see that |n| = 1. We have

finished the proof of Lemma 1 in the Case 1.

Case 2. In this case P\{0} contains exclusively such elements π for which

π = (−π)α+ f.
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Here α < 0 holds, therefore sgn(a) ̸= sgn(d), thus we get that

r′ = r + n (a+ d) ,

s′ = s− nb.

The proof is the same as the above one, therefore we will not go into further
details. We have finished the proof of Lemma 1.

In the rest of this paper we limit our discussion to the case α, α > 0. The
proofs of the other cases can be completed in a similar way, therefore, we do
not present them here, and from now on we assume that α, α > 0. In addition,

let us assume that there exists such a π = p+ q
√
D ∈ P\ {0} for which |π| > 1.

We have to examine two cases.

Case 1. Let π < 0 hold true. We can write the following relations

f = π (1− α) > 0,

f = π (1− α) > 0,

from which
fα = r + s

√
2 > 0,

fα = r − s
√
2 > 0

follows. Thus we can see that r > 0 és |r| > |s|
√
2. We have two cases to

examine:

If s > 0, then

|fα| = |π| (|d| − |α|) = |r| − |s|
√
2 <

|d|
2

holds and from this we get that

|π| < |d|
2 (|d| − |α|)

< 1.

If s < 0, then ∣∣fα∣∣ = |π| (|d| − |α|) = |π| (2x+ |α|) = |r| − |s|
√
2,

thus
|s|

√
2 = |r| − |π| (2x+ |α|) .
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We know that

|fα| = |π| (|d| − |α|) = |r|+ |s|
√
2 = 2|r| − |π| (2x+ |α|) ,

therefore we get for π that

|π| ≤ |d| − |π| (2x+ |α|)
|d| − |α|

< 1,

because in this case |π| ≥
√
2 + 1. It is obvious that π < −1 never holds, thus

we proved Assertion III in case 1.

Case 2. Now let us assume that π > 0. Then the following inequalities
are valid:

f = π (1− α) < 0,

f = π (1− α) > 0,

from which
fα = r + s

√
2 < 0,

fα = r − s
√
2 > 0

follows. Thus we can observe easily that

(6) r, s < 0 and |r| < |s|
√
2.

Let us write f in the form f = k+ l
√
2. In [9] we proved that sgn(k) = sgn(l),

from which

(7) |l|
√
2 > |k| and k, l < 0

follows.

What can we say about the modulus of k and l? Since |π| > 1 holds,
therefore

(8) |f | = |k|+ |l|
√
2 > |1− α| = |α| − 1

is also true. The question is whether the following inequalities hold true:

(9) |k| > |a| − 1 and |l| > |b| .

The answer is yes, since if we assume indirectly that |l| ≤ |b| , we get the relation

|k| > |a| − 1
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because of (8). But then

|k| > |a| − 1 > |b|
√
2 ≥ |l|

√
2.

This contradicts (7), thus |l| > |b| must be true.

On the other hand l, b are rational integers, therefore

(10) |l|
√
2 ≥ |b|

√
2 +

√
2.

We can write from (6) that∣∣fα∣∣ = |π| (|d| − |α|) = |s|
√
2− |r| ,

from which

∣∣f ∣∣ = |π| (|d| − |α|)
|α|

= |π| (|α| − 1) =
|s|

√
2− |r|
|α|

≤
|d|
2

√
2

|α|
≤

√
2

2
|α|

is obtained, and because of Assertion II |α| <
√
2+1
2 holds true. Thus

[11]
∣∣f ∣∣ = |l|

√
2− |k| ≤

√
2

2
|α| <

√
2

2

√
2 + 1

2
=

2 +
√
2

4
.

(10) and (11) impliy the next relation for k:

|k| = |l|
√
2−

∣∣f ∣∣ > |b|
√
2 +

√
2− 2 +

√
2

4
= |a| − |α|+

√
2− 2 +

√
2

4
.

We get with substitution that

|k| > |a| −
√
2 + 1

2
+
√
2− 2 +

√
2

4
,

from which we can compute easily that

|k| > |a| − 1.

Why do the inequalities (9) play very important role in the proof? It will be

clear if we consider the f ′ = k′ + l′
√
2 integer for which f ′ = f +α− 1 is valid.

It is sure that f ′ exists and because of (9)

|k′| = |k| − |a|+ 1,

|l′| = |l| − |b|.
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Let us consider the following product

f ′α =
(
k + l

√
2 + a+ b

√
2− 1

)(
a− b

√
2
)
=

= ak + al
√
2 + a2 + ab

√
2− a− bk

√
2− 2bl − ab

√
2− 2b2 + b

√
2.

We should recall that d = αα = a2 − 2b2, and r = ak − 2bl, s = al − bk, thus

r′ = ak − 2bl + a2 − 2b2 − a = r + d− a,(12)

s′ = al − bk + b = s+ b.

It is clear that r′ > 0, and we know from (6) that s, r < 0. It is true in addition

that |r| > x, because |f ′α| = |π| (|d| − |α|) = |r|+ |s|
√
2 and from this

min(|r|) ≥ 2x+ |α| − |d|
2

√
2 > 2x+

|d|
√
2+1
2

− |d|
2

√
2 > 2x

follows. We have got that

|r′| < |d|
2
,

|s′| < |d|
2
,

because of (12). What does it mean? This means that f ′ ∈ Eα, therefore the
existence of f implies the existence of f ′. It means that if f exists, then there
exists an f ′ digit in Eα, for which

f ′ = f + α− 1.

But then

f ′ = π (1− α) + α− 1 = (π − 1) (1− α) = π′ (1− α) ,

i. e. π′ ∈ P. Thus we have finished the proof of Assertion III and the Theorem.
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