
Annales Univ. Sci. Budapest., Sect. Comp. 20 (2001) 107-131

STOCHASTIC QUERY OPTIMIZATION
IN DISTRIBUTED DATABASES USING SEMOJOINS

T. Márkus (Budapest, Hungary)
C. Moroşanu (Iaşi, Roumania)

V. Varga (Cluj-Napoca, Roumania)

Abstract. Many algorithms were elaborated for minimizing the costs nec-

essary to perform a single, isolated query in a distributed database system.

A distributed system can receive different types of queries and processes

them at the same time. In this case the determination of the optimal query

processing strategy is a stochastic optimization problem. Query processing

strategies may be distributed over the processors of a network as probability

distributions. The stochastic query optimization problem was solved for

a single-join and a multiple-join of three relations. Since in distributed

database systems the transmission costs are the dominant, strategies with

semijoins are important. There are presented strategies to perform a singe-

join and multiple-joins using semijoins. It is shown that the strategy for

a single-join leads to linear programming problem. It treats the case of

N queries, where one query is the join of two relations and the relations

involved in the query are stored in two sites. There is treated the sequential

appearance of queries and the parallel execution of them. Multiple-joins

lead to nonlinear programming, there is given the problem in the case of

the join of three relations. In the appendix we present an algorithm to solve

this special kind of nonlinear programming, which gives a global optimum.

We give the optimization problem for the case of full reducers, which leads

to a nonlinear programming problem and can be solved with the given

algorithm, too.

Introduction

The query optimization problem for a single query in a distributed
database system was treated in great detail in the literature. Most of the

108 T. Márkus, C. Moroşanu and V. Varga

articles search for a deterministic strategy assigning the component joins of
a relational query to the processors of a network, that can execute the join
efficiently, and determine an economic strategy for data transferring. For
each new type of query that arrives at the system, a new optimal strategy
is determined.

The capacity of distributed systems for concurrent processing motives the
distribution of a database in a network. There is a different approach to query
optimization if the system is viewed as one, which receives different types of
queries at different times and processes more than one query at the same
time. The multiple-query problem is not deterministic; the multiple-query
input stream constitutes a stochastic process. The strategy for executing the
multiple-query is distributed over the sites of the network as a probability
distribution. The ”decision variables” of the stochastic query optimization
problem are the probabilities that a component operator of the query is
executed at a particular site of the network.

In [4] the authors extend the state-transition model proposed by Lafortune
and Wong [5] and the original multiprocessing model of [3] and [2]. The main
objective of the model is to give query-processing strategies, which are globally
optimal.

In distributed environment, where transmission costs must be minimized,
it is efficient to work with semijoins. In this article we give strategies to perform
a single-join and multiple-joins using semijoins. In Section 1 it is described
the strategy for a single-join, which leads to linear programming problem. In
Section 2 we extend the model for N queries, where one query is the join of
two relations and the relations involved in the query are stored in two sites.
It is treated the sequential appearance of queries and the parallel execution
of them. Multiple joins lead to nonlinear programming, so in Section 3 we
formulate the optimization problem in the case of the join of three relations.
This is a special kind of nonlinear programming problem. In the Appendix we
present an algorithm to solve this problem and we prove, that the algorithm
gives the global optimum of the nonlinear problem. We illustrate by some
examples the solutions obtained applying the algorithm. If the corresponding
hypergraph of the query is acyclic, we can reduce the operand relations in order
to transmit only the essential part of the relation. Section 3 continues with the
stochastic optimization model for the full reducer program of three relations.
This optimization problem leads to a same kind of nonlinear programming
problem, which can be solved by the algorithm from the Appendix.

Stochastic query optimization in distributed databases 109

1. The single-join, single-query model

We will extend the single-join model from [4] for semijoins. Let Q1 denote
the single-query type consisting of the single-join

Q1 = A ◃▹ B,

where A∩B ̸= ∅ and at time t = 0 the relation A is stored at site 1 and relation
B at site 2. Thus, the ”initial state” of relations referenced by the query Q1 in
the two-site network is the next column vector

x0 =

(
A
B

)
,

where the i-th component of the vector x0 is the set of relations stored at site
i (i = 1, 2) at time t = 0. The initial state x0 is given with time-invariant
probability p0 = p(x0), i.e. p0 is the probability that relation A is available
at site 1 and relation B at site 2, and there are not locked for updating or
is unavailable for query processing for any other reason. We assume that the
input to the system consists of a single stream of type Q1.

In distributed databases the communication cost is the dominant factor
in calculating the join of two or more relations, stored at different sites.
The method using semijoins saves some communication costs. The queries
whose hypergraphs are acyclic have optimization algorithms that in general
are simpler and more efficient than in the general case, see [8], pp. 698-707. In
the case of two relations join the corresponding hypergraph is acyclic.

We can calculate A ◃▹ B by applying semijoins following the next steps:

1. Compute πA∩B(A) at site 1.

2. Ship πA∩B(A) to site 2.

3. Compute B ∝ A at site 2, using the fact that B ∝ A = B ◃▹ πA∩B(A) (∝
denotes the semijoin operation).

4. Ship B ∝ A to site 1.

5. Compute A ◃▹ B at site 1, using the fact that A ◃▹ B = A ◃▹ (B ◃▹ A).

This strategy is more efficient than calculating the join in the case of
distributed queries, if the following inequality holds:

c0 +min(T ′
Al

′
A + T ′′

Bl
′′
B , T ′

Bl
′
B + T ′′

Al
′′
A) < min(TAlA, TBlB),

where c0 - is a fixed overhead cost charged to each transmission;

110 T. Márkus, C. Moroşanu and V. Varga

TX - the number of tuples of relation X, where X can be A or B and
lX is the length of it in bytes;

T ′
A - the number of tuples of πA∩B(A) and l′A is the length of it in bytes;

T ′
B - the number of tuples of πA∩B and l′B is the length of it in bytes;

T ′′
A - the number of tuples of A ∝ B and l′′A is the length of it in bytes;

T ′′
B - is the number of tuples of B ∝ A and l′′B is the length of it in bytes.

In the case of the projection the tuples are shorter than in the case of the join
or the semijoin.

There are two possible strategies, one presented above, and the other
similar, by changing the relation A with relation B and site 1 with site 2.
We will associate a transition probability to each transition arc of the state-
transition model. Let pij denote the conditional, time-invariant probability
that the system undergoes transition from state xi to state xj . Given the initial
state x0, we can compute Q1 using the strategy presented above in detail, when
system undergoes transition from x0 to x13 through x11, x12 (see Fig. 1.1). The
system may choose another strategy, which is similar, by changing relation A
with relation B and site 1 with site 2. Thus, the system may choose between
these two strategies. We will associate probability p0,11 if it chooses the first
strategy, and p0,21 if it chooses the second strategy. In the case of transition to
state x11, the system has to follow through x12 and x13 to finish the calculation
of the semijoin. The same situation is true for x21, x22, x23. The notation for
states is: xij , where i is the number of the chosen strategy (in our example
i = 1, 2), and j is the number of states involved in computing of the semijoin.
For one state of the state-transition graph the i-th line contains the relations
stored at site i.

The other notations for Fig. 1.1 are:

PA
B = πA∩B(A), PB

A = πA∩B(B);

AB
s = A ∝ B, BA

s = B ∝ A;

AB
j = A ◃▹ B

x0 =

(
A
B

)
→

→


x11 =

(
A,PA

B

B

)
PA

B 1:2−→ x12 =

(
A,PA

B

B,BA
s

)
BA

s 2:1−→ x13 =

(
A,PA

B , AB
j

B,BA
s

)
x21 =

(
A

B,PB
A

)
PA

B 2:1−→ x22 =

(
A,AB

s

B,PB
A

)
AB

s 1:2−→ x23 =

(
A,AB

s

B,PB
A , AB

j

)

Fig.1.1.

Stochastic query optimization in distributed databases 111

The query-processing distribution {p0,11, p0,21} represents a family of
strategies for scheduling the processing of the query Q1. In order to determine
a best strategy we select as a performance criterion the system throughput.
We have to determine first the system’s mean processing time.

Theorem 1.1. The single-join stochastic query optimization model with
semijoins defines a linear programming problem, the solution of this linear
programming problem is an optimal one.

Proof. We will associate the projection-processing and the semijoin-
processing times with the nodes of the state-transition graph and communi-
cation times to the arcs of the graph. Let Ti(X) denote the total processing
time required for computing in state i. So we have

T11(P
A
B) = t1(πA∩B(A)),

T12(B
A
s) = t2(B ∝ A) + c12(P

A
B),

T13(A
B
j) = t1(A ◃▹ BA

s) + c21(B
A
s),

T21(P
B
A) = t2(πA∩B(B)),

T22(A
B
s) = t1(A ∝ B) + c21(P

B
A),

T23(A
B
j) = t2(A

B
s ◃▹ B) + c12(A ∝ B),

where ti(E) denotes the necessary time to calculate the expression E in site i
and cij(R) is the time of transmission the relation R from site i to site j. The
expected delay, due to computing the projection or semijoin, is the product of
the delay and the corresponding transition probability. The mean processing
time τi at site i can be obtained by summing for each state, for which there is
something to work in the site i, the product of the necessary time for processing
multiplied by the probability that the systems is in the corresponding state.

Let us suppose that input queries of typeQ1 arrive at the system at average
intervals of length δ and successive inputs are statistically independent. It is
reasonable to require that none of the processors in the network be allowed
to take longer on the average than the period δ to execute its task. If it did,
the cumulative delay at each site could increase indefinitely due to queuing,
requiring infinite buffer storage at each site. The system may be regarded as
overloaded if the mean processing time τi is permitted to exceed δ at any site.
Such overload can be avoided if the inequalities

τi ≤ ∆ < δ

are satisfied, where ∆ represents a common upperbound on τi, for each
processor i in the network. In order to maximize the system query-processing

112 T. Márkus, C. Moroşanu and V. Varga

capacity, or throughput ∆ = 1/δ, the systems’s mean interarrival time ∆ may
be minimized, where (δ−∆) > 0 is chosen sufficiently large to provide adequate
buffer storage requirements.

The stochastic query optimization problem for Q1 is given by

τ1 = T11(P
A
B)p0,11 + T13(A

B
j)p0,11 + T22(A

B
s)p0,21 ≤ ∆,

τ2 = T12(B
A
s)p0,11 + T21(P

B
A)p0,21 + T23(A

B
j)p0,21 ≤ ∆,

p0,11 + p0,21 = 1,

min ∆,

p0,11, p0,21 ≥ 0; ∆ > 0.

In the linear programming problem ∆, p0,11, p0,21 are the decision variables (i.e.

the unknowns) and T11(P
A
B), T12(B

A
s), T13(A

B
j), T21(P

B
A), T22(A

B
s), T23(A

B
j) are

assumed to be constants.

For solving this linear programming problem we will distinguish different
cases:

a)

t1(πA∩B(A)) + t1(A ◃▹ BA
s) + c21(B

A
s) > t1(A ∝ B) + c21(P

B
A),

t2(πA∩B(B)) + t2(A
B
s ◃▹ B) + c12(A

B
s) > t2(B ∝ A) + c12(P

A
B),

t2(πA∩B(B)) + t2(A
B
s ◃▹ B) + c12(A

B
s) > t1(A ∝ B) + c21(P

B
A),

this is the most frequent occurrence.

The solution in case a) is

p0,11 =
T21(P

B
A) + T23(A

B
j)− T22(A

B
s)

T11(PA
B) + T13(AB

j)− T22(AB
s)− T12(BA

s) + T21(PB
A) + T23(AB

j)
,

p0,21 =
T11(P

A
B) + T13(A

B
j)− T12(B

A
s)

T11(PA
B) + T13(AB

j)− T22(AB
s)− T12(BA

s) + T21(PB
A) + T23(AB

j)
,

∆ =
(T11(P

A
B) + T13(A

B
j))(T21(P

B
A) + T23(A

B
j))− T22(A

B
s)T12(B

A
s)

T11(PA
B) + T13(AB

j)− T22(AB
s)− T12(BA

s) + T21(PB
A) + T23(AB

j)
,

where Tij are defined above.

Stochastic query optimization in distributed databases 113

Because the probability p0,21 has to be positive, so the numerator has to
be positive, since the denominator is positive from the above preconditions. It
means that

t1(πA∩B(A)) + t1(A ◃▹ BA
s) + c21(B

A
s) > t2(B ∝ A) + c21(P

A
B),

which is true in most of the cases, because in the left-hand side of the inequality
is the sum of the necessary time to calculate the projection and the join while
in the right-hand side is only the necessary time to calculate the semijoin.

b)

t1(πA∩B(A)) + t1(A ◃▹ BA
s) + c21(B

A
s) > t1(A ∝ B) + c21(P

B
A),

t2(πA∩B(B)) + t2(A
B
s ◃▹ B) + c12(A

B
s) > t2(B ∝ A) + c12(P

A
B),

t2(πA∩B(B)) + t2(A
B
s ◃▹ B) + c12(A

B
s) < t1(A ∝ B) + c21(P

B
A).

In this case the solution is

P0,11 = 0, P0,21 = 1, ∆ = t1(A ∝ B) + c21(P
B
A).

c)

t1(πA∩B(A)) + t1(A ◃▹ BA
s) + c21(B

A
s) > t1(A ∝ B) + c21(P

B
A),

t2(πA∩B(B)) + t2(A
B
s ◃▹ B) + c12(A

B
s) < t2(B ∝ A) + c12(P

A
B),

t2(πA∩B(B)) + t2(A
B
s ◃▹ B) + c12(A

B
s) > t1(A ∝ B) + c21(P

B
A).

In this case the solution is

P0,11 = 0, P0,21 = 1, ∆ = t2 (πA∩B(B)) + t2(A
B
s ◃▹ B) + c12(A

B
s).

d)

t1(πA∩B(A)) + t1(A ◃▹ BA
s) + c21(B

A
s) > t1(A ∝ B) + c21(P

B
A),

t2(πA∩B(B)) + t2(A
B
s ◃▹ B) + c12(A

B
s) < t2(B ∝ A) + c12(P

A
B),

t2(πA∩B(B)) + t2(A
B
s ◃▹ B) + c12(A

B
s) < t1(A ∝ B) + c21(P

B
A).

In this case the solution is

P0,11 = 0, P0,21 = 1, ∆ = t1(A ∝ B) + c21(P
B
A).

114 T. Márkus, C. Moroşanu and V. Varga

e)

t1(πA∩B(A)) + t1(A ◃▹ BA
s) + c21(B

A
s) < t1(A ∝ B) + c21(P

B
A),

t2(πA∩B(B)) + t2(A
B
s ◃▹ B) + c12(A

B
s) > t2(B ∝ A) + c12(P

A
B),

t2(πA∩B(B)) + t2(A
B
s ◃▹ B) + c12(A

B
s) > t1(A ∝ B) + c21(P

B
A).

In this case the minimal value for ∆ is 0, which has no meaning.

f)

t1(πA∩B(A)) + t1(A ◃▹ BA
s) + c21(B

A
s) < t1(A ∝ B) + c21(P

B
A),

t2(πA∩B(B)) + t2(A
B
s ◃▹ B) + c12(A

B
s) > t2(B ∝ A) + c12(P

A
B),

t2(πA∩B(B)) + t2(A
B
s ◃▹ B) + c12(A

B
s) < t1(A ∝ B) + c21(P

B
A).

In this case the minimal value for ∆ is 0, which has no meaning.

g)

t1(πA∩B(A)) + t1(A ◃▹ BA
s) + c21(B

A
s) < t1(A ∝ B) + c21(P

B
A),

t2(πA∩B(B)) + t2(A
B
s ◃▹ B) + c12(A

B
s) < t2(B ∝ A) + c12(P

A
B),

t2(πA∩B(B)) + t2(A
B
s ◃▹ B) + c12(A

B
s) > t1(A ∝ B) + c21(P

B
A).

In this case the solution is

P0,11 = 0, P0,21 = 1, ∆ = t2 (πA∩B(B)) + t2(A
B
s ◃▹ B) + c12(A

B
s).

h)

t1(πA∩B(A)) + t1(A ◃▹ BA
s) + c21(B

A
s) < t1(A ∝ B) + c21(P

B
A),

t2(πA∩B(B)) + t2(A
B
s ◃▹ B) + c12(A

B
s) < t2(B ∝ A) + c12(P

A
B),

t2(πA∩B(B)) + t2(A
B
s ◃▹ B) + c12(A

B
s) < t1(A ∝ B) + c21(P

B
A).

In this case the solution is

p0,11 =
T22(A

B
s)− T21(P

B
A)− T23(A

B
j)

T22(AB
s)− T11(PA

B)− T13(AB
j) + T12(BA

s)− T21(PB
A)− T23(AB

j)
,

p0,21 =
T12(B

A
s)− T11(P

A
B)− T13(A

B
j)

T22(AB
s)− T11(PA

B)− T13(AB
j) + T12(BA

s)− T21(PB
A)− T23(AB

j)
,

∆ =
T22(A

B
s)T12(B

A
s)− (T11(P

A
B) + T13(A

B
j))(T21(P

B
A) + T23(A

B
j))

T22(AB
s)− T11(PA

B)− T13(AB
j) + T12(BA

s)− T21(PB
A)− T23(AB

j)
.

Stochastic query optimization in distributed databases 115

The probability p0,21 has to be positive, so there is another necessary condition

t1(πA∩B(A)) + t1(A ◃▹ BA
s) + c21(B

A
s) < t2(B ∝ A) + c21(P

A
B).

In the local area networks the cases b-g are only mathematical ones,
because the left-hand side of each inequality is always greater than the right-
hand side, so only the case a) appears.

In the wide area networks the communication times are dominant, we have
one communication time in the left-hand side and another communication cost
in the right-hand side, so any case of a)-h) can appear.

2. General single-join models

2.1. Sequential operation

In a distributed database system we can execute multiple queries. In this
section we will treat the sequential mode, in which queries arrive separately,
one after the other, with an average interarrival time of length δ.

Let
Qi = Ai ◃▹ Bi, i = 1, 2, . . . , N

denote N distinct query types (where relations Ai and Bi need not be distinct)
and two sites, where these relations are stored; Ai, i = 1, 2, . . . , N are stored
at site 1 and Bi, i = 1, 2, . . . , N are stored at site 2. So let the initial state be

x0 =

(
A1, A2, . . . , AN

B1, B2, . . . , BN

)
.

We will calculate these joins using semijoins. Let qi denote the probability that
a given query is of type Qi, where q1 + q2 + . . . + qN = 1; 0 ≤ qi ≤ 1. It will
be assumed that qi are known.

Theorem 2.1. The sequential single-join stochastic query optimization
model with semijoin for N queries and 2 sites defines a linear programming
problem that may be decomposed into N independent linear programming
subproblems.

116 T. Márkus, C. Moroşanu and V. Varga

Proof. Let τli be the mean processing time at site l for query i, in this
case l = 1, 2.

τ1i = (Ti11(P
Ai

Bi
) + Ti13(A

Bi
ij))p0,1i + Ti22(A

Bi
is)p0,i2,

τ2i = Ti12(B
Ai
is)p0,i1 + (Ti21(P

Bi

Ai
) + Ti23(A

Bi
ij))p0,i2,

where

Ti11(P
Ai

Bi
) = t1(πAi∩Bi(Ai)); PAi

Bi
= πAi∩Bi(Ai);

Ti12(B
Ai
is) = t2(Bi ∝ Ai) + c12(P

Ai

Bi
); BAi

is = B ∝ Ai;

Ti13(A
Bi
ij) = t1(Ai ◃▹ BAi

is) + c21(C
Ai
is); ABi

ij = Ai ◃▹ BAi
is ;

Ti21(P
Bi

Ai
) = t2(πA1∩Bi(Bi)); PBi

Ai
= πAi∩Bi(Bi);

Ti22(A
Bi
is) = t1(Ai ∝ Bi) + c21(P

Bi

Ai
); ABi

is = A ∝ Bi;

Ti23(A
Bi
ij) = t2(A

Bi
is ◃▹ Bi) + c12(A

Bi
is); ABi

ij = ABi
is = AB−I

is ◃▹ Bi;

and p0,ik is the network transition probability associated with a change of state
x0 to state xik1, where i is the index of the query Qi and k is the number of
the chosen strategy in the case k = 1, 2. τli is the mean processing time at site
l for query i, in this case l = 1, 2. The linear programming problem is obtained
by minimizing the mean interarrival time, subject to the system’s overload,
normalization and nonnegativity constraints, i.e.

min∆

subject to
N∑
i=1

qiτli ≥ ∆,

N∑
i=1

2∑
k=1

p0,ik = 1,

p0,ik ≥ 0, i = 1, 2, . . . , N, k = 1, 2,

∆ > 0.

But ∆ can always be written as the sum of conditional means

(2.1) ∆ =
N∑
i=1

qi∆i,

Stochastic query optimization in distributed databases 117

where ∆i is the mean interarrival time conditioned on query type Qi, ∆ is
separable in its conditional means ∆i. By the decomposition principle of linear
programming, the original problem may be divided into subproblems by query
type, for each i = 1, 2, . . . , N

min∆i

subject to
τki ≤ ∆i, k = 1, 2,

p0,i1 + p0,i2 = 1,

p0,ik ≥ 0

gives a linear programming subproblem in a set of decision variables disjoint
from the decision variables of the other subproblems. Thus each such subprob-
lem may be solved independently of the others, and the total mean can be
computed by (2.1).

Example 2.1. Let N = 2,

Q1 = A1 ◃▹ B1, Q2 = A2 ◃▹ B2

and the initial state

x0 =

(
A1, A2

B1, B2

)
.

The state-transition graph for this model is shown in Fig. 2.1. The indexes for
state xiks are: i is for the query i, i = 1, 2, k is for strategy, k = 1, 2 and s is
the number of state within one strategy.

For query Q1, the linear programming problem is

τ11 = (T111(P
A1

B1
) + T113(A

B1
1j))p0,11 + T122(A

B1
1s)p0,12 ≤ ∆1,

τ21 = T112(B
A1
1s)p0,11 + (T121(P

B1

A1
) + T123(A

B1
1j))p0,12 ≤ ∆1,

p0,11 + p0,12 = 1,

min∆1,

where
T111(P

A1

B1
) = t1(πA1∩B1(A1)),

T112(B
A1
1s) = t2(B1 ∝ A1) + c12(P

A1

B1
),

T113(A
B1
ij) = t1(A1 ◃▹ BA1

1s) + c21(C
A1
1s),

T121(P
B1

A1
) = t2(πA1∩B1(B1)),

T122(A
B1
1s) = t1(A1 ∝ B1) + c21(P

B1

A1
),

T123(A
B1
1j) = t2(A

B1
1s ◃▹ B1) + c12(A

B1
1s),

118 T. Márkus, C. Moroşanu and V. Varga

∆1 is the mean interarrival time conditioned on query type Q1.

For query Q2, the linear programming problem is

τ12 = (T211(P
A2

B2
) + T213(A

B2
2j))p0,21 + T222(A

B2
2s)p0,22 ≤ ∆2,

τ22 = T212(B
A2
2s)p0,21 + (T221(P

B2

A2
) + T223(A

B2
2j))p0,22 ≤ ∆2,

p0,21 + p0,22 = 1,

min∆2,

x0 =

(
A1, A2

B1, B2

)
→

→



x111 =

(
A1, A2, P

A1

B1

B1, B2

)
P

A1
B1

1:2

−→

P
A1
B1

1:2

−→ x112 =

(
A1, A2

B1, B2, B
A1
1s

)
B

A1
1s 2:1
−→ x113 =

(
A1, A2, A

B1
1j

B1, B2

)
Q1

x121 =

(
A1, A2

B1, B2, P
B1

A1

)
P

B1
A1

2:1

−→

P
B1
A1

2:1

−→ x122 =

(
A1, A2, A

B1
1s

B1, B2

)
A

B1
1s 1:2
−→ x123 =

(
A1, A2

B1, B2, A
B1
1j

)
x211 =

(
A1, A2, P

A2

B2
,

B1, B2

)
P

A2
B2

1:2

−→

P
A2
B2

1:2

−→ x212 =

(
A1, A2

B1, B2, B
A2
2s

)
B

A2
2s 2:1
−→ x213 =

(
A1, A2, A

B2
2j

B1, B2

)
Q2

x221 =

(
A1, A2

B1, B2, P
B2

A2

)
P

B2
A2

2:1

−→

P
B2
A2

2:1

−→ x222 =

(
A1, A2, A

B2
2s

B1, B2

)
A

B2
2s 1:2
−→ x223 =

(
A1, A2

B1, B2, A
B2
2j

)

Fig. 2.1.

where
T211(P

A2

B2
) = t1(πA2∩B2(A2)),

T212(B
A2
2s) = t2(B2 ∝ A2) + c12(P

A2

B2
),

T213(A
B2
2j) = t1(A2 ◃▹ BAs

2s) + c21(C
A2
2s),

Stochastic query optimization in distributed databases 119

T221(P
B2

A2
) = t2(πA2∩B2(B2)),

T222(A
B2
2s) = t1(A2 ∝ B2) + c21(P

B2

A2
),

T223(A
B2
2j) = t2(A

B2
2s ◃▹ B2) + c12(A

B2
2s),

∆2 is the mean interarrival time conditioned on query type Q2.

We can obtain the solution for the distinct problems similar to the
single-join, single-query case. The two optimization problems are completely
independent, their separate solutions may be combined by ∆∗ = q1∆

∗
1 + q2∆

∗
2.

2.2. Parallel operation

The previous section represents the sequential model, when queries arrive
one after the other, but not if they arrive at approximately the same time. Let
us consider that queries of types Q1 and Q2 are to be processed in parallel
(although not necessarily at the same time).

Let
Q1 = A1 ◃▹ B1, Q2 = A2 ◃▹ B2

and the initial state x0 be

x0 =

(
A1, A2

B1, B2

)
.

Let Q3 denote an aggregate query type, which occurs with probability q3, (q1+
+q2 + q3 = 1), thus the input stream consists of mixed arrival of types
Q1, Q2, Q3. The state-transition graph for the parallel network machine for
query Q3 is in Fig. 2.2. We construct the states for the parallel machine in
the following way: we unify one state from the processing of query Q1 with the
corresponding state from Q2’s processing, so that in the resulting state for the
parallel machine in one of the sites there is something to process for one of the
queries and in the other site is for the other query:

x1j = x11j ∪ x22j , j = 1, 2, 3,

x2j = x12j ∪ x21j , j = 1, 2, 3.

The stochastic query optimization problem for parallel processing of Q1

and Q2 is given by
min∆3

120 T. Márkus, C. Moroşanu and V. Varga

subject to

τ13 = (T11(P
A1

B1
) + T12(A

B2
2s) + T13(A

B1
1j))p0,11 + (T21(P

A2

B2
) + T22(A

B1
1s)+

+ T23(A
B2
2j))p0,21 ≤ ∆3,

τ23 = (T11(P
B2

A2
) + T12(B

A1
1s) + T13(A

B2
2j))p0,11 + (T21(P

B1

A1
) + T22(B

A2
2s)+

+ T23(A
B1
1j))p0,21 ≤ ∆3,

p0,11 + p0,21 = 1,

where

T11(P
A1

B1
) = t1(πA1∩B1(A1)); T11(P

B2

A2
) = t2(πA2∩B2(B2));

T12(B
A1
1s) = t2(B1 ∝ A1) + c12(P

A1

B1
);

T12(A
B2
2s) = t1(A2 ∝ B2) + c21(P

B2

A2
);

T13(A
B1
1j) = t1(A1 ◃▹ BA1

1s) + c21(B
A1
1s);

T13(A
B2
2j) = t2(A

B2
2s ◃▹ D) + c12(A

B2
2s);

T21(P
B1

A1
) = t2(πA1∩B1(B1)); T21(P

A2

B2
) = t1(πA2∩B2(A2));

T22(A
B1
1s) = t1(A1 ∝ B1) + c21(P

B1

A1
);

T22(B
A2
2s) = t2(B2 ∝ A2) + c12(P

A2

B2
);

T23(A
B1
1j) = t2(A

B1
1s ◃▹ B1) + c12(A

B1
1s);

T23(A
B2
2j) = t1(A2 ◃▹ BA2

2s) + c21(B
A2
2s).

x0 =

(
A1, A2

B1, B2

)
→

→



x11 =

(
A1, A2, P

A1

B1

B1, B2, P
B2

A2

)
P

A1
B1

1:2

−→
P

B2
A2

2:1

x12 =

(
A1, A2, A

B2
2s

B1, B2, B
A1
1s

)
B

A1
1s 2:1
−→

A
B2
2s 1:2

B
A1
1s 2:1
−→

A
B2
2s 1:2

x13 =

(
A1, A2, A

B1
1j

B1, B2, A
B2
2j

)
x21 =

(
A1, A2, P

A2

B2

B1, B2, P
B1

A1

)
P

A2
B2

1:2

−→
P

B1
A1

2:1

x22 =

(
A1, A2, A

B1
1s

B1, B2, B
A2
2s

)
A

B1
1s 1:2
−→

B
A2
2s 2:1

A
B1
1s 1:2
−→

B
A2
2s 2:1

x23 =

(
A1, A2, A

B2
2j

B1, B2, A
B1
1j

)

Fig. 2.2.

Stochastic query optimization in distributed databases 121

We can obtain the solution for the problem similar to the single-join, single-
query case, it is a linear programming problem.

3. Multiple join models

3.1. Join of three relations

In this section we extend the state-transition model for queries involving
more than one join.

Let the query be
Q3 = A ◃▹ B ◃▹ C

and the initial state is

x0 =

(
A,C
B

)
.

There are three different execution sequences, in which we can execute the
query Q3:

QS1 = (A ◃▹ B) ◃▹ C;

QS2 = A ◃▹ (B ◃▹ C);

QS3 = (A ◃▹ C) ◃▹ B.

We suppose, that relations A and C have no common attributes, so we will not
take it into account. For sequence 1 the state-transition graph is shown in Fig.
3.1. The state-transition graph for sequence 2 may be obtained in the same
manner.

Theorem 3.1. The stochastic query optimization model for the join of
three relations solved with semijoins defines a nonlinear programming problem.

Proof. In state x0 we can choose between two strategies for compute
A ◃▹ B with semijoins: in the case of the first strategy we compute B ∝ A in
site 2 (see state x12 with probability p0,11), in the case of the second strategy we
compute A ∝ B in site 1 (see state x22 with probability p0,21 (p0,11+p0,21 = 1)).
In state x13 we have AB = A ◃▹ B in site 1, relation C is located in site 1, too,
so the join AB ◃▹ C takes place locally, it is the only strategy with probability
1. In state x23 the relation AB is located in site 2 and relation C in site 1, so
we can choose between two strategies: to calculate AB ∝ C in site 2 (see state
x32 with probability p23,31) or to calculate C ∝ AB in site 1 (see state x42 with
probability p23,41 (p23,31 + p23,41 = 1)). The notation for state xik is: i is for
the strategy and k is the number of the state within one strategy.

122 T. Márkus, C. Moroşanu and V. Varga

The stochastic query optimization problem for QS1 is given by

τ1 = (T11(P
A
B) + T13(A

B
j) + T14(AB

C
j))p0,11 + T22(A

B
s)p0,21+

+ (T31(P
C
AB) + T33(AB

C
j))p0,21p23,31 + T42(C

AB
s)p0,21p23,41 ≤ ∆,

τ2 = T12(B
A
s)p0,11 + (T21(P

B
A) + T23(A

B
j))p0,21 + T32(AB

C
s)p0,21p23,31+

+ (T41(P
AB
C) + T43(AB

C
j))p0,21p23,41 ≤ ∆,

p0,11 + p0,21 = 1,

p23,31 + p23,41 = 1,

min∆,

where
T11(P

A
B) = t1(πA∩B(A));

T21(P
B
A) = t2(πA∩B(B));

T12(B
A
s) = t2(B ∝ A) + c12(P

A
B);

T22(A
B
s) = t1(A ∝ B) + c21(P

B
A);

T13(A
B
j) = t1(A ◃▹ BA

s) + c21(B
A
s);

T23(A
B
j) = t2(A

B
s ◃▹ B) + c12(A

B
s);

AB = A ◃▹ B;

T31(P
C
AB) = t1(πAB∩C(C));

T41(P
AB
C) = t2(πAB∩C(AB));

T32(AB
C
s) = t2(AB ∝ C) + c12(P

C
AB);

T42(C
AB
s) = t1(C ∝ AB) + c21(P

AB
C);

T33(AB
c
j) = t1(AB

C
s ◃▹ C) + c21(AB

C
s);

T43(ABC
j) = t2(AB ◃▹ CAB

s) + c12(C
AB
s).

This is a special kind of nonlinear programming problem. The problem has
five unknowns: p0,11, p0,21, p23,31, p23,41 and ∆ and its overload constraints are
multilinear of degree two.

We propose an algorithm for solving this nonlinear programming problem
in the Appendix. We illustrate the results obtained applying the algorithm
through some examples.

The strategy with semijoin is efficient in the case of wide area networks,
where the transmission cost is dominant, in the sense that the transmission
speed is much smaller, than the speed of local read/write. In the computation

Stochastic query optimization in distributed databases 123

of the results we omit the local costs. In communication networks, where the
transmission speed is appropriate to the speed of local read/write, the strategy
with simple join is better. We suppose a communication network with a speed
of 60Kbits/s. We propose three relations: A, B and C with different length in
bits. The strategy with semijoin is better than the strategy with join if the
operand relations have dangling tuples, so we suppose that the relations have
some dangling tuples.

For every case we estimate the length in bits of relations: πA∩B(A),
πA∩B(B), A ∝ B, B ∝ A, A ◃▹ B, πAB∩C(C), πAB∩C(AB), C ∝ AB, AB ∝
∝ C. A DBMS can take these values from the statistics tables of the database.
We calculate for these relations the necessary time to transmit them through
the communication network in seconds, so we obtain the value for ∆ in seconds,
too. The results obtained appear in the table from Fig. 3.3.

Let us analyze the results:

- in case a) the relations from site 1 are much larger than relation B
from site 2, even if they have some dangling tuples, so the chosen strategy
is: from state x0 the system undergoes transition in state x11, then in states
x12, x13, x14. The values for probabilities p23,31 and p23,41 are not interesting.
The necessary time to execute the query is 26, 77 seconds;

- case b) is the inverse of case a), the relation from site 2 is larger than the
two relations from site 1. The obtained result is the corresponding one, so the
chosen strategy is: from state x0 the system undergoes transition in state x21,
then in states x22, x23, where it is chosen state x41, because the result relation
AB = A ◃▹ B will be too much larger than relation C, the other operand in
the join operation;

- cases c), d) and e) give examples, when the strategy is not a ”pure”
one, so the strategies will be chosen with the given probabilities, because the
repartition of the date is uniform enough between the two sites.

To show the efficiency of the strategy with semijoin, when the number of
dangling tuples grows, we calculate for case c), f) and other cases, where the
sizes of relations are the same, only the number of dangling tuples grows, the
strategy with semijoin and the strategy with simple join. The strategy with
simple join is given in [4]. The sizes of relations are: A - 500.000 bits, B -
1.000.000 bits, C - 500.000 bits. In the table from Fig. 3.2 we give the results
for the strategies with semijoin and in the last row of the table are the results
for the strategy with join for this example. We can see in the table, if the
number of dangling tuples grows, the value for ∆ decreases in the case of the
strategy with semijoin. If we compare the value for ∆ obtained in the case of
strategy with join (8.33) and the lowest value for strategy with semijoin (3.32),

Stochastic query optimization in distributed databases 127

−→ x35 =

(
PB
A

)
−→ x36 =

(
AB

s

)
−→ x45 =

(
PB
A

)
−→ x46 =

(
AB

s

)
−→ x55 =

(
PB
C

)
−→ x56 =

(
CB

s

)
−→ x65 =

(
PB
C

)
−→ x66 =

(
CB

s

)

Fig. 3.4

If in the state x22 we choose B as ear, the corresponding full reducer
program is

B := B ∝ C,

A := A ∝ B,

B := B ∝ A,

C := C ∝ B.

In the case of every strategy the final state is(
AB

s , CB
s

BA
s , BC

s

)
.

The stochastic query optimization problem is

τ1 = T11(P
A
B)p0,11 + T21(P

C
B)p0,21 + (T32(C

B
s) + T33(A

B
s)+

T36(A
B
s))p0,11p12,31 + (T41(P

C
B) + T44(C

B
s) + T46(A

B
s))p0,11p12,41+

+ (T51(P
A
B) + T54(A

B
s) + T56(C

B
s))p0,21p22,51+

+ (T62(A
B
s) + T63(P

A
B) + T66(C

B
s))p0,21p22,61 ≤ ∆,

τ2 = T12(B
A
s)p0,11 + T22(B

C
s)p0,21 + (T31(P

B
C) + T34(B

C
s)+

+ T35(P
B
A))p0,11p12,31 + (T42(B

C
s) + T43(P

B
C) + T45(P

B
A))p0,11p12,41+

+ (T52(B
A
s) + T53(P

B
A) + T55(P

B
C))p0,21p22,51+

+ (T61(P
B
A) + T64(B

A
s) + T65(P

B
C))p0,21p22,61 ≤ ∆,

p0,11 + p0,21 = 1,

p12,31 + p12,41 = 1,

p22,51 + p22,61 = 1,

128 T. Márkus, C. Moroşanu and V. Varga

min∆,

where

T11(P
A
B) = t1(πA∩B(A)); T21(P

C
B) = t1(πB∩C(C));

T12(B
A
s) = t2(B ∝ A) + c12(P

A
B); T22(B

C
s) = t2(B ∝ C) + c21(P

C
B);

T31(P
B
C) = t2(πB∩C(B)); T41(P

C
B) = t1(πB∩C(C));

T51(P
A
B) = t1(πA∩B(A)); T61(P

B
A) = t2(πA∩B(B));

T32(C
B
s) = t1(C ∝ B) + c21(P

B
C); T42(B

C
s) = t2(B ∝ C) + c12(P

C
B);

T52(B
A
s) = t2(B ∝ A) + c12(P

A
B); T62(A

B
s) = t1(A ∝ B) + c21(P

B
A);

T33(P
C
B) = t1(πB∩C(C)); T43(P

B
C) = t2(πB∩C(B));

T53(P
B
A) = t2(πA∩B(B)); T63(P

A
B) = t1(πA∩B(A));

T34(B
C
s) = t2(B ∝ C) + c12(P

C
B); T44(C

B
s) = t1(C ∝ B) + c21(P

B
C);

T54(A
B
s) = t1(A ∝ B) + c21(P

B
A); T64(B

A
s) = t2(B ∝ A) + c12(P

A
B);

T35(P
B
A) = t2(πA∩B(B)); T45(P

B
A) = t2(πA∩B(B));

T55(P
B
C) = t2(πB∩C(B)); T65(P

B
C) = t2(πB∩C(B));

T36(A
B
s) = t1(A ∝ B) + c21(P

B
A); T46(A

B
s) = t1(A ∝ B) + c21(P

B
A);

T56(C
B
s) = t1(C ∝ B) + c21(P

B
C); T66(C

B
s) = t1(C ∝ B) + c21(P

B
C).

The solution of the nonlinear programming problem gives a global opti-
mum for the execution of the full reducer program. The problem can be solved
with the algorithm given in the appendix.

After this program the final state is the same for every strategy and
for calculating the join QS1 we can apply the global optimization model for
multiple join from [4].

Appendix

Let (X, d) be a compact metric space and f1, . . . , fp : X → R+ conti-
nuous, strictly positive functions. We have the next problem:

(P)

f1(x) ≤ y,

...

fp(x) ≤ y,

min y, y ∈ R, y > 0.

Stochastic query optimization in distributed databases 129

Theorem 1. The problem (P) has at least one solution.

Proof. Let f : X → R be the function defined by f(x) = max{f1(x),
. . . , fp(x)}. Because the function f is continuous and X is a compact metric
space, then using the Weierstrass theorem, there exists a point x0 ∈ X such
that f(x0) = min

x∈X
f(x). We prove that f(x0) = min y.

We suppose, that exists y0 ∈ R∗
+ such that f(x0) > y0 and y0 satisfy the

inequalities from the problem (P) for x∗
0 ∈ X, i.e.

f1(x
∗
0) ≤ y0,

...

fp(x
∗
0) ≤ y0.

We obtain f(x∗
0) = max{f1(x∗

0), . . . , fp(x
∗
0)} ≤ y0 < f(x0) which contradicts

with the fact that x0 ∈ X is the global minimum point of the function f .

Now we give an algorithm, which gives the solution of the problem (P).

Let A1 ⊆ A2 ⊂ A3 ⊂ . . . ⊂ An ⊂ . . . be a sequence of finite subsets of X

such that
∞
∪

n=1
An is dense in X, thus

A1 = {x1
1, . . . , x

1
q1},

A2 = {x2
1, . . . , x

2
q2},

.............................

An = {xn
1 , . . . , x

n
qn}.

.............................

We calculate

y1 = min{max{f1(x1
1), . . . , fp(x

1
1)}, . . . ,max{f1(x1

q1), f2(x
1
q1), . . . , fp(x

1
q1)}},

y2 = min{max{f1(x2
1), . . . , fp(x

2
1)}, . . . ,max{f1(x2

q2), f2(x
2
q2), . . . , fp(x

2
q2)}},

...

yn = min{max{f1(xn
1), . . . , fp(x

n
1)}, . . . ,max{f1(xn

qn), f2(x
n
qn), . . . , fp(x

n
qn)}}.

We obtain the sequence {yn}n∈N∗ which is monotone and decreasing, therefore
is convergent. We have the following

Theorem 2. The sequence {yn}n∈N∗ converges to the solution of the
problem (P).

130 T. Márkus, C. Moroşanu and V. Varga

Proof. We suppose that yn → y∗ > f(x0). Because the set
∞
∪

n=1
An

is dense in X and the function f is continuous results, that there exists a

sequence {xn} ⊂
∞
∪

n=1
An such that xn → x0 and f(xn) → f(x0). Without loss

of generality we suppose that x1 ∈ A1, . . . , xn ∈ An, Then f(xn) ≥ yn for
every n ∈ N∗. If n → ∞ we obtain f(x0) ≥ y∗, which is a contradiction with
the presumtion y∗ > f(x0).

Remark. From the algorithm we see that for every n ∈ N∗, there exists
in ∈ {1, . . . , qn} such that yn = max{f1(xn

in
), . . . , fp(x

n
in
)}. Thus we obtain a

sequence {xn
in
}n∈N∗ . Then every accumulation point of this sequence gives a

solution of the problem (P).

Acknowledgement. The third author would like to thank Professor A.
Benczúr for introducing her to reference [4] and for the interesting discussions.

References

[1] Date C.J., An introduction to database systems, Addison-Wesley Pub-
lishing Company, 1995.

[2] Drenick R.F., A mathematical organization theory, Elsevier, New York,
1986.

[3] Drenick P.E. and Drenick R.F., A design theory for multi-processing
computing systems, Large Scale Syst., 12 (1987), 155-172.

[4] Drenick P.E. and Smith E.J., Stochastic query optimization in dis-
tributed database, ACM Trans. on Database Systems, 18 (2) (1993), 262-
288.

[5] LaFortune S. and Wong E., A state transition model for distributed
query processing, ACM Trans. on Database Systems, 11 (3) (1986), 294-
322.

[6] Özsu M.T. and Valduriez P., Principles of distributed database sys-
tems, Prentice-Hall, 1991.

[7] Ramakrishnan R., Database management systems, WCB McGraw-Hill,
1998.

[8] Ullman J.D., Principles of database and knowledge-base systems, Vol.
I-II., Computer Science Press, 1988.

(Received February 8, 2000)

Stochastic query optimization in distributed databases 131

T. Márkus
Eötvös Loránd University
Budapest, Hungary

C. Moroşanu
A.I. Cuza University
Iaşi, Roumania

V. Varga
Babeş-Bolyai University
Cluj-Napoca, Roumania

