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REDUCED RESIDUE SYSTEMS AND
A PROBLEM FOR MULTIPLICATIVE FUNCTIONS II.

Bui Minh Phong (Budapest, Hungary)

Abstract. It is proved that if multiplicative functions F and G, integers

a > 0, b, A > 0, B with ∆ = Ab − aB ̸= 0 and a non-zero complex

number C satisfy the equation G(an + b) = CF (An + B) for every

positive integer n, then either the set

{n ∈ IN | G(an+ b) = CF (An+B) ̸= 0} is finite

or F (n)G(m) ̸= 0 for all positive integers n, m with (n, 2A∆) =
= (m, 2a∆) = 1, furthermore for all integers α, β ≥ 1

G(2α) ̸= 0 if and only if F [(A, B)] ̸= 0

and

F (2β) ̸= 0 if and only if G[(a, b)] ̸= 0.

1. Introduction

Let IN denote the set of all positive integers. The letters p, q, π with and
without suffixes denote prime numbers. (m,n) denotes the greatest common
divisor of the integers m and n. Here m ∥ n denotes that m is a unitary
divisor of n, i.e. that m|n and ( n

m ,m) = 1. Let M (M∗) be the set of
complex-valued multiplicative (completely multiplicative) functions.

It was financially supported by OTKA 2153 and by MÖB-DAAD PPP-
Ungarn 1998/1999.
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The problem concerning the complete characterization of those f, g ∈ M
for which

g(an+ b)− Cf(An+B) = o(1) as n → ∞,

where a > 0, b, A > 0, B are fixed integers with ∆ = Ab− aB ̸= 0 and C is
a non-zero complex constant, is not given yet. In order to give the solution of
this relation, the first problem is to give all solutions of multiplicative functions
F and G for which the equation

G(an+ b) = F (An+B) (for all n ∈ IN)

is satisfied under the assumption that the values are taken from the set {0, 1}.
Excluding the case G(an + b) = F (An + B) = 0 for all large integers n,
the solution of this equation will use a result concerning the characterization
of suitable reduced residue systems. For results and related problems of the
above equation with b = 0, we refer to papers [1]-[7] and [9]-[11]. In a recent
paper [11] we proved the following

Lemma 1. Assume that a function F ∈ M satisfies the equation

F (an+ b) = CF (An+ b) for all n ∈ IN,

where a > 0, b, A > 0, B are fixed integers with ∆ = Ab − aB ̸= 0 and C
is a non-zero complex constant. If there are a prime π and positive integers
w = w(π), M such that (π, aA) = 1, F (AM +B) ̸= 0 and

F (m) ̸= 0 for all m ∈ {πw, πw+1, πw+2, . . .},

then we have
F (n) ̸= 0 for all n ∈ IN, (n, ∆) = 1.

Our purpose in this paper is to prove the following

Theorem 1. Let a > 0, b, A > 0 and B be integers with ∆ := Ab−aB ̸=
̸= 0. If F, G ∈ M satisfy

(1) G(an+ b) = CF (An+B) for all n ∈ IN

with a non-zero complex number C, then either the set

(2) {n ∈ IN | G(an+ b) = F (An+B) ̸= 0} is finite

or
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(A) In the case 2 |aA∆

(3) F (n)G(m) ̸= 0 for all n, m ∈ IN, (n, A∆) = (m, a∆) = 1.

(B) In the case 2 ̸ |aA∆

F (n)G(m) ̸= 0 for all n, m ∈ IN, (n, 2A∆) = (m, 2a∆) = 1,

furthermore for all integers α, β ≥ 1

G(2α) ̸= 0 if and only if F [(A, B)] ̸= 0

and
F (2β) ̸= 0 if and only if G[(a, b)] ̸= 0.

The case F = G can be formulated as

Theorem 2. Let a > 0, b, A > 0 and B be integers with ∆ := Ab−aB ̸=
̸= 0. If F ∈ M satisfies

(4) F (an+ b) = CF (An+B) for all n ∈ IN

with a non-zero complex number C, then either the set

(5) KF (a, b, A,B) := {n ∈ IN | F (an+ b) = F (An+B) ̸= 0} is finite

or

(6) F (n) ̸= 0 for all n ∈ IN, (n, ∆) = 1.

First we prove Theorem 2, then we can reduce the general case to it.

2. Proof of Theorem 2

In this section we assume that a > 0, b, A > 0 and B are integers with
∆ := Ab− aB ̸= 0 and the function F ∈ M satisfies (4). Let

S = SF := { n ∈ IN | F (n) ̸= 0 }.
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The basic idea of the proof is to show that if (5) does not hold, then there is a
prime q for which

(7) (q, aA) = 1 and {1, q, q2, . . .} ⊆ S.

Then we apply Lemma 1 to get (6).

Lemma 2. Assume that a function F ∈ M satisfies (4) and the set
KF (a, b, A,B) is infinite. Then there is a prime q for which (7) holds.

Proof. Since the set KF (a, b, A,B) is infinite, there is an infinite sequence
n1 < n2 < . . . such that

F (ani + b) = CF (Ani +B) ̸= 0 for i = 1, 2, . . . .

First, we assume that a function F ∈ M is of finite support, that is

F (pα) = 0 (α = 1, 2, · · ·) if p ̸∈ B = {p1, p2, · · · , pr},

where p1, p2, · · · , pr are primes.

In this case, one can deduce from the multiplicativity of F and (4) that
all the prime divisors of the numbers Ani + B, ani + b are from the set B,
furthermore

A(ani + b)− a(Ani +B) = ∆,

which contradicts to a well-known theorem of Thue (e.g. see [12]).

Thus, we may assume that F is not of finite support, i.e. there is an
infinite sequence of primes π1 < π2 < π3 < . . . and suitable exponents αj such
that

{πα1
1 , πα2

2 , πα3
3 , · · ·} ⊆ S.

Then there are a positive integer ℓ, (ℓ, aA) = 1 and an infinite sequence of
prime powers

{qγ1

1 , qγ2

2 , . . .} ⊆ {πα1
1 , πα2

2 , πα3
3 , · · ·} ⊆ S,

for which q
γj

j ≡ ℓ (mod aA) and q
γj

j > ∆. We shall prove that for each

number AM +B ∈ S there exist a positive integer Q and a prime q for which

(8) Q ∈ S, (Q, 2∆(AM +B)) = 1, Q ≡ 1 (mod aA)

and

(9) q|Q+ 1, (q, 2aA∆) = 1

are satisfied.
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Using Euler-Fermat theorem, it follows from the condition q
γj

j ≡ ℓ

(mod aA) (j = 1, 2, · · ·) that there are infinite many positive integers Q0 <
< Q1 < Q2 < · · · for which (8) is true, i.e.

Qi ∈ S, (Qi, 2∆(AM +B)) = 1 and Qi ≡ 1 (mod aA)

for all i ≥ 0, furthermore

(Qi, Qj) = 1 for all i ̸= j.

Let N (2aA∆) denote the set of those positive integers which are products of
prime power divisors pα, p|2aA∆. Assume that (9) is not true for the above
numbers Q1, Q2, · · ·, i.e.

Qi + 1 = xi, Q0Qi + 1 = yi with xi, yi ∈ N (2aA∆) (i = 1, 2, . . .).

Hence

Q0Qi ∈ S, (Q0Qi, 2∆(AM +B)) = 1, Q0Qi ≡ 1 (mod aA)

and
Q0xi − yi = Q0 − 1 with xi, yi ∈ N (2aA∆)

are satisfied for all i ∈ IN , which contradicts to a theorem of Thue (e.g. see
[12]). Thus, we have proved that there exist a positive Q and a prime q for
which (8) and (9) are satisfied.

Let Q, q be such numbers for which (8) and (9) hold. Then, we obtain

if AM +B ∈ S, then Q(AM +B) = A

(
QM +B

Q− 1

A

)
+B ∈ S,

and so

Q

[
a

(
QM +B

Q− 1

A

)
+ b

]
= a

(
Q2M +BQ

Q− 1

A
+ b

Q− 1

a

)
+ b ∈ S.

Thus we have proved that

if AM +B ∈ S, then A

(
Q2M + (aBQ+Ab)

Q− 1

aA

)
+B ∈ S.

This implies that

Gm := A

(
Q2mM + (aBQ+Ab)

Q− 1

aA

Q2m − 1

Q2 − 1

)
+B ∈ S
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holds for all positive integers m. Since q satisfies (9), one can deduce that there
is a positive integer m(q) such that

q ∥ Gm(q),

furthermore

q ∥ Rq :=
Q2q − 1

Q2 − 1
.

It is proved in [8, Theorem 4.1] that the last two conditions imply that for each
positive integer α there exists a positive m(qα) for which

qα ∥ Gm(qα) = A

(
Q2m(qα)M + (aBQ+Ab)

Q− 1

aA

Q2m(qα) − 1

Q2 − 1

)
+B.

This together with the fact Gm(qα) ∈ S completes the proof (7). Lemma 2 is
proved.

Finally, Theorem 2 is immediately follows from Lemma 1 and Lemma 2.

3. Proof of Theorem 1

Assume that the functions F,G ∈ M satisfy (1), where a > 0, b,
A > 0, B are integers with ∆ := Ab − aB ̸= 0 and C is a non-zero complex
number. Let

SF := { n ∈ IN | F (n) ̸= 0} and SG := { n ∈ IN | G(n) ̸= 0}.

Lemma 3. If (2) does not hold, then F and G are not finite support.

Proof. Since (2) does not hold, there is an infinite sequenceN1 < N2 < . . .
such that

(10) G(aNi + b) = CF (ANi +B) ̸= 0 for i = 1, 2, . . . .

Assume that the function F is a finite support, that is

F (pα) = 0 (α = 1, 2, · · ·) if p ̸∈ C = {p1, p2, · · · , pr},
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where p1, p2, · · · , pr are primes. Similarly as in the proof of Theorem 2, one can
deduce from the theorem of Thue that in this case G is not a finite support.
Thus, there are primes π1 < π2 < π3 < . . . and q1 < q2 < q3 < . . . such that

(11) {πα1
1 , πα2

2 , πα3
3 , · · ·} ⊆ SF

(12) {qβ1

1 , qβ2

2 , qβ3

3 , · · ·} ⊆ SG,

hold for suitable exponents αj and βj (j ∈ IN). Let M be a positive integer
such that G(aM + b) = CF (AM +B) ̸= 0. If we write

(aM + b)2(AM +B)2m+M

in the place of n, then we can write the equation (1) in the form

(13) G(Um+ 1) = F (V m+ 1) for all m ∈ IN,

where U = a(aM+b)(AM+B)2 and V = A(AM+B)(aM+b)2. As we showed
in the proof of Theorem 2, the conditions (11) and (12) imply that there are
a positive integer Q ∈ SG with Q ≡ 1 (mod U) and infinite positive integers
Q0 < Q1 < Q2 < · · · for which

Qi ∈ SF and Qi ≡ 1 (mod QV )

for all i ≥ 0, furthermore

(Qi, Qj) = 1 for all i ̸= j.

From (13) we infer that

G(Q)F (QVm+ 1) = G(Q)G(QUm+ 1) =

= G

[
U

(
Q2m+

Q− 1

U

)
+ 1

]
= F

[
V (Q2m+

Q− 1

U
) + 1

]
and F (Qi) = F (QVmi+1) ̸= 0 for all integers i ≥ 0. Therefore from Theorem
2 we have

{ n ∈ IN | (n, δ) = 1 } ⊆ SF ,

where

δ = QV (V − U)
Q− 1

U
= AQ

Q− 1

a
(aM + b)2∆.
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Let us now consider n = δ
A (AM +B)m+M and taking into account (1), one

can see that

G(aM + b)G [Q(Q− 1)(AM +B)(aM + b)∆m+ 1] =

= G

[
a

(
δ

A
(AM +B)m+M

)
+ b

]
= CF (AM +B)F (δm+ 1) ̸= 0

for all m ∈ IN . Consequently

{ n ∈ IN | (n, δ′) = 1 } ⊆ SG,

where
δ′ = Q(Q− 1)(AM +B)(aM + b)∆.

Finally, let π be a positive integer for which

(14) π ≡ 1 (mod aA) and (π, δδ′) = 1.

It is obvious that xk ∈ SF ∩ SG for all x | π and k ∈ IN . Therefore, we infer
from (1)

CG(π)F (An+B) = G(π)G(an+ b) = G

[
a

(
πn+ b

π − 1

a

)
+ b

]
=

= CF

[
A

(
πn+ b

π − 1

a

)
+B

]
and

F (π)G(an+ b) = CF (π)F (An+B) = CF

[
A

(
πn+B

π − 1

A

)
+B

]
=

= G

[
a

(
πn+B

π − 1

A

)
+ b

]
.

On the other hand, by (10) we have ANi + A ∈ SF and aNi + b ∈ SG for all
i ∈ IN , and so Theorem 2 with the last relations shows that

(15)

{
n ∈ IN

∣∣∣∣ (n, A
π − 1

aA
∆

)
= 1

}
⊆ SF

and

(16)

{
n ∈ IN

∣∣∣∣ (n, a
π − 1

aA
∆

)
= 1

}
⊆ SG.
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An application of the Chinese Remainder Theorem shows that there is a
positive integer K such that(

aAK + 1, aA
π − 1

aA
∆

)
= 1 and

(
K,

π − 1

aA

) ∣∣∣∣ 2.
Repeating the argument used in the proof of (15) and (16), we also have

{ n ∈ IN | (n, AK∆) = 1 } ⊆ SF and { n ∈ IN | (n, aK∆) = 1 } ⊆ SG,

which with (15) and (16) gives

(17) { n ∈ IN | (n, 2A∆) = 1 } ⊆ SF

and

(18) { n ∈ IN | (n, 2a∆) = 1 } ⊆ SG.

It is easily seen that if aA∆ is even, then (17) and (18) imply (3) and
Theorem 1 is proved.

Now let (aA∆, 2) = 1. Then we can assume that a ≡ A ≡ B ≡ 1
(mod 2), b ≡ 0 (mod 2). Thus, for positive integers α, β we can find a
positive integer n0, n1 such that

(19) an0 + b ≡ 2α (mod 2α+1) and An1 +B ≡ 2β (mod 2β+1).

It is clear that 2|n0, 2 ̸ |n1. Since aA∆ is odd, an application of the Chinese
Remainder Theorem shows that in this case there exists a positive integer
n2, n3 for which

(20)
(
a′2α+1n2 + a′n0 + b′, 2a∆

)
=
(
A′2α+1n2 +A′n0 +B′, 2A∆

)
= 1

and

(21)
(
a′2α+1n3 + a′n1 + b′, 2a∆

)
=
(
A′2α+1n3 +A′n1 +B′, 2A∆

)
= 1,

where A = (A,B)A′, B = (A,B)B′, a = (a, b)a′ and b = (a, b)b′. It follows
from (1), (17), (18), (20) and (21) that for all integers α, β ≥ 1 we have

2α ∈ SG if and only if (A, B) ∈ SF

and
2β ∈ SF if and only if (a, b) ∈ SG.

Thus, the proof of Theorem 1 is complete.
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