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REDUCED RESIDUE SYSTEMS AND
A PROBLEM FOR MULTIPLICATIVE FUNCTIONS II.

Bui Minh Phong (Budapest, Hungary)

Abstract. It is proved that if multiplicative functions F' and G, integers
a>0,b A>0, B with A= Ab—aB # 0 and a non-zero complex
number C' satisfy the equation G(an +b) = CF(An + B) for every
positive integer n, then either the set

{n€eIN | Glan+b) =CF(An+ B) # 0} is finite

or F(n)G(m) # 0 for all positive integers n, m with (n, 24AA) =
= (m, 2aA) = 1, furthermore for all integers o, § > 1

G(2%) #0 ifand only if F[(A, B)]#0

and

F(2°)#0 ifand only if G[(a, b)] # 0.

1. Introduction

Let IN denote the set of all positive integers. The letters p, g, 7 with and
without suffixes denote prime numbers. (m,n) denotes the greatest common
divisor of the integers m and n. Here m || n denotes that m is a unitary
divisor of n, i.e. that m|n and (&,m) = 1. Let M (M*) be the set of
complex-valued multiplicative (completely multiplicative) functions.
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Ungarn 1998/1999.
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The problem concerning the complete characterization of those f, g € M
for which
glan+b) —Cf(An+ B) =o(1) as n — oo,

where a > 0, b, A >0, B are fixed integers with A = Ab—aB # 0 and C is
a non-zero complex constant, is not given yet. In order to give the solution of
this relation, the first problem is to give all solutions of multiplicative functions
F and G for which the equation

G(an+b) = F(An+ B) (for all n € IN)

is satisfied under the assumption that the values are taken from the set {0, 1}.
Excluding the case G(an +b) = F(An + B) = 0 for all large integers n,
the solution of this equation will use a result concerning the characterization
of suitable reduced residue systems. For results and related problems of the
above equation with b = 0, we refer to papers [1]-[7] and [9]-[11]. In a recent
paper [11] we proved the following

Lemma 1. Assume that a function F' € M satisfies the equation
F(an+b) =CF(An+b) forall ne€lIN,
where a > 0, b, A > 0, B are fixed integers with A = Ab— aB # 0 and C
is a mon-zero complex constant. If there are a prime 7w and positive integers
w=w(r), M such that (m, aA) = 1, F(AM + B) # 0 and
F(m)#0 forall me {x, 7¥*1, zvt2 1
then we have

F(n)#0 forall neIN, (n, A) = 1.

Our purpose in this paper is to prove the following

Theorem 1. Leta > 0,b, A >0 and B be integers with A := Ab—aDB #
#0. If F, G € M satisfy

(1) G(an+b) = CF(An+ B) for all n € IN
with a mon-zero complex number C, then either the set
(2) {neIN | Glan+b)=F(An+ B) # 0} s finite

or
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(A) In the case 2 |aAA
(3) F(n)G(m) #0 forall n, meIN, (n, AA) = (m, aA) = 1.
(B) In the case 2 faAA
F(n)G(m) #0 forall n, melIN, (n, 2AA) = (m, 2aA) = 1,
furthermore for all integers a, 5 >1
G(2%) #0 if and only if F[(A, B)]#0
and

F(2°)#0 if and only if G[(a, b)] #0.

The case F' = GG can be formulated as

Theorem 2. Leta > 0,b, A >0 and B be integers with A := Ab—aB #
#0. If F € M satisfies

(4) F(an+b) = CF(An+ B) forall n€IN

with a non-zero complex number C, then either the set

(5) Kr(a,b,A,B):={n€IN | F(an+b)=F(An+ B) #0} is finite
or

(6) F(n) #0 forall nelN, (n, A) = 1.

First we prove Theorem 2, then we can reduce the general case to it.

2. Proof of Theorem 2

In this section we assume that a > 0, b, A > 0 and B are integers with
A := Ab — aB # 0 and the function F' € M satisfies (4). Let

S=8Sp:={neIN | F(n)#0 }.
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The basic idea of the proof is to show that if (5) does not hold, then there is a
prime ¢ for which

(7) (¢,aA) =1 and {1,¢,¢%,...} C S.

Then we apply Lemma 1 to get (6).

Lemma 2. Assume that a function F € M satisfies (4) and the set
Kr(a,b, A, B) is infinite. Then there is a prime q for which (7) holds.

Proof. Since the set Kr(a,b, A, B) is infinite, there is an infinite sequence
ny < ng < ...such that

F(an; +b) =CF(An; + B) #0 for i=1,2,....
First, we assume that a function F € M is of finite support, that is

F(pa):() (0[:1,2,"') lf p%B:{pMPQW"apT}v

where p1,po, -+, p, are primes.
In this case, one can deduce from the multiplicativity of F' and (4) that
all the prime divisors of the numbers An; + B, an; + b are from the set B,

furthermore
A(an; +b) —a(An; + B) = A,

which contradicts to a well-known theorem of Thue (e.g. see [12]).

Thus, we may assume that F' is not of finite support, i.e. there is an
infinite sequence of primes m; < mp < 73 < ... and suitable exponents «; such
that

{W?lvﬂgzﬂﬁgsv'”} cs.

Then there are a positive integer ¢, (¢,aA) = 1 and an infinite sequence of
prime powers
{a",a3%,.. .} C {n{* w52, 75, -} C S,

for which q;“ = (¢ (mod aA) and q]’ > A. We shall prove that for each
number AM + B € S there exist a positive integer @) and a prime ¢ for which

(8) QeS, (Q 2A(AM+B))=1, Q=1 (mod ad)
and
(9) qdQ+1, (¢,20AA) =1

are satisfied.
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Using Euler-Fermat theorem, it follows from the condition q;.“ =/

(mod aA) (j = 1,2,---) that there are infinite many positive integers Qo <
< Q1 < Q2 < --- for which (8) is true, i.e.

Qi €S, (Qi, 2A(AM +B))=1 and Q; =1 (mod aA)
for all ¢ > 0, furthermore

(Qi, Q) =1 forall i#j.

Let N (2aAA) denote the set of those positive integers which are products of
prime power divisors p®, p|2aAA. Assume that (9) is not true for the above
numbers Q1, Qo, -, i.e.

Q;+1=z;, QuQ;+1=y; with z;, y; € N(?CLAA) (i=1,2,...).
Hence

QoQ: €S, (QuQi, 2A(AM +B)) =1, QoQ;=1 (mod aA)

and
Qori —y; = Qo — 1 with z;, y; € N(QGAA)

are satisfied for all ¢ € IN, which contradicts to a theorem of Thue (e.g. see
[12]). Thus, we have proved that there exist a positive @ and a prime ¢ for
which (8) and (9) are satisfied.

Let @, ¢ be such numbers for which (8) and (9) hold. Then, we obtain

if AM+Be€S, then Q(AM+B)_A<QM+BQAl>+BGS,

and so

Q[a(QM+BQ_1>+b] :a<Q2M+BQ

Q-1 Q-1
1 +b

Thus we have proved that

Q-1

if AM+Be€S, then A(Q2M+(aBQ—|—Ab) — )+Bes.

This implies that

Q_lQQm_l

Gm = A (QQmM + (0BQ+ AV o

>+B€S
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holds for all positive integers m. Since ¢ satisfies (9), one can deduce that there
is a positive integer m(q) such that

a1l Gin(g)
furthermore )
Q¥ 1
qll Rq:= o1

It is proved in [8, Theorem 4.1] that the last two conditions imply that for each
positive integer « there exists a positive m(¢®*) for which

@ — 1 2m(qo¢) — 1
¢° || G(gey = A <Q2m<q )M + (aBQ + Ab)Q @ ) + B.

aA Q%-1

This together with the fact G,,4~) € S completes the proof (7). Lemma 2 is
proved.

Finally, Theorem 2 is immediately follows from Lemma 1 and Lemma 2.
3. Proof of Theorem 1

Assume that the functions F,G € M satisfy (1), where a > 0, b,
A > 0, B are integers with A := Ab — aB # 0 and C is a non-zero complex
number. Let

Sp:={neIN | F(n)#0} and Sg:={neIN | G(n)#0}.

Lemma 3. If (2) does not hold, then F and G are not finite support.

Proof. Since (2) does not hold, there is an infinite sequence Ny < Np < ...
such that

(10) G(aNl—l—b):CF(ANZ-i-B)?éO for 1 =1,2,....
Assume that the function F' is a finite support, that is

F(pa):() (0421,2,"') if pgcz{pDPQu"'ypr}»
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where p1, pa, -+, p, are primes. Similarly as in the proof of Theorem 2, one can
deduce from the theorem of Thue that in this case G is not a finite support.
Thus, there are primes 7 < 7y <73 <...and q; < g2 < g3 < ... such that

(11) {7T(1X1a7r2a27ﬂ:?33"'}g8F

(12) {qlflaq§27Q§37"'}gSG7

hold for suitable exponents o; and 5; (j € IN). Let M be a positive integer
such that G(aM +b) = CF(AM + B) # 0. If we write

(aM + b)*(AM + B)?>m + M
in the place of n, then we can write the equation (1) in the form
(13) GUm+1)=F(Vm+1) forall m e IN,

where U = a(aM +b)(AM +B)? and V = A(AM + B)(aM +b)?. As we showed
in the proof of Theorem 2, the conditions (11) and (12) imply that there are
a positive integer @ € Sg with Q@ = 1 (mod U) and infinite positive integers
Qo < Q1 < Qo < -+ for which

Q;€Sr and @Q; =1 (mod QV)
for all ¢ > 0, furthermore

(Qi, Qj) =1 forall i#j.

From (13) we infer that
GAFQVm+1) =GQ)GQUM +1) =

G{U(szwLQ(]l)Jrl} F[V(Q2m+QU1)+1

and F(Q;) = F(QVm;+ 1) # 0 for all integers ¢ > 0. Therefore from Theorem

2 we have
{neIN | (n, ) =1} CSp,

where
5:QwV—wQ_1:AQ

i (aM + b)*A.

Q-1
a
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Let us now consider n = %(AM + B)m + M and taking into account (1), one
can see that

G(aM + b)G[Q(Q — 1)(AM + B)(aM + b)Am + 1] =

=G {a (Z(AM—FB)m—FM) +b] =CF(AM + B)F(dm+1)#0
for all m € IN. Consequently
{neIN | (n, §)=1} CS8g,

where
§ =Q(Q —1)(AM + B)(aM + b)A.

Finally, let m be a positive integer for which
(14) 7=1 (modaA) and (m, §6')=1.

It is obvious that ¥ € Sp NS¢ for all z | m and k € IN. Therefore, we infer
from (1)

CG(n)F(An + B) = G(r)G(an +b) = G [a <7m + b7T;1> + b} =

—CF [A (m+b”1> +B}
a

and

F()G(an +b) = CF(x)F(An + B) = CF [A (m + B7T_1> + B] _

A
—Gla(m+B™=1) 10
= T 1 .
On the other hand, by (10) we have AN; + A € Sp and alN; + b € Sg for all
i € IN, and so Theorem 2 with the last relations shows that

T—1
= C
s (wen | (namis) 1) es
and

(16) { ne N (n aﬂ-a;llA) -1 } C Se.
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An application of the Chinese Remainder Theorem shows that there is a
positive integer K such that

m—1 Tm—1
(aAK—i—l, aA A A)-l and (K7 aA) ‘2.

Repeating the argument used in the proof of (15) and (16), we also have
{neIN | (n, AKA)=1} CSp and {nelIN | (n, aKA)=1} C g,

which with (15) and (16) gives

(17) {neIN | (n,2AA)=1} CSp
and
(18) {neIN | (n, 2aA)=1} CS¢.

It is easily seen that if aAA is even, then (17) and (18) imply (3) and
Theorem 1 is proved.

Now let (aAA, 2) = 1. Then we can assume that a = A = B = 1
(mod 2), b = 0 (mod 2). Thus, for positive integers «, 5 we can fi
positive integer ng, n; such that

(19) ang +b=2% (mod 2°!) and An; +B=2° (mod 2°t).

It is clear that 2|ng, 2 fn;. Since aAA is odd, an application of the Chinese
Remainder Theorem shows that in this case there exists a positive integer
ng, ng for which

(20)  (a'2°'ng +d'ng + V', 2aA) = (A2°ny + A'ng + B, 2AA) =1
and
(21)  (a'2°%'ng+a'ny +V, 2aA) = (A2°T'ng + A'ny + B, 24A) =1,

where A = (A,B)A’, B = (A,B)B’, a = (a,b)a’ and b = (a,b)t’. It follows
from (1), (17), (18), (20) and (21) that for all integers c, 8 > 1 we have

2% e Sg ifand only if (A, B) € Sp

and
2% € Sp if and only if (a, b) € Sg.

Thus, the proof of Theorem 1 is complete.
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