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LACUNARY INTERPOLATION
WITH ARBITRARY DATA OF HIGH ORDER

G. Pittaluga, L. Sacripante and E. Venturino

(Torino, Italy)

Abstract. In this paper we study at first a lacunary interpolation problem

where the conditions given are on the function, on some of its intermediate

and its highest derivatives at every node. Standard results such as con-

vergence of optimal order for the solution scheme are established. Then

by a suitable reformulation of the analysis the investigation is extended to

other types of lacunary interpolation, where the intermediate conditions are

relaxed.

1. Introduction

The objective of this investigation is the extension of the analysis done
for the case of higher order interpolation [8] namely when information on
a function and its highmost derivative is known at a set of nodes. In this
study we want to consider the case of an extra condition being known on
some intermediate derivatives, the same order at each node. Then we relax
somewhat this statement, studying the conditions under which the problem is
still meaningful if an arbitrary number of additional intermediate conditions is
known. In this case we allow possibly a different number of conditions at each
node.

The simplest lacunary interpolation problem under consideration here is
the so-called (0, p, q) problem, in which conditions on the function, on some
intermediate and on its highest derivatives at every node are given. In the
literature many instances of this situation have been considered. For instance,
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[5] considers the two cases p = 2 and p = 3, 4 respectively, finding a C1 solution
in the class of polynomials of degree 5 or 6. Similar cases are found in [3], [4],
where the solution is sought as a G-spline. The solution is also found by means
of quartic or quintic splines, see e.g. [1], [11], [7].

The paper is organized as follows. Section 2 contains the statement of
the most elementary problem in consideration, the so-called (0, p, q) problem.
The structure of the matrix and the algorithm for the solution is presented in
the following section. Section 4 contains the error analysis. In Section 5 the
analysis of the problem is reformulated, and the changes used to investigate
the problem in which the intermediate condition involves a derivative of an
order dependent on the node where the condition is given. Finally in the last
section the problem is generalized: the conditions are considered, under which
an arbitrary number of additional intermediate data are given and lead to a
meaningful problem that can be solved by a similar algorithm.

2. The problem

For simplicity, we state the interpolation problem over a set of equispaced
nodes xk, k = 0, . . . , n. This statement however is not restrictive, since its
elimination would lead to the same algorithm and to the same error estimates
we obtain later, with the obvious replacement of h by H ≡ max

1≤k≤n
hk, where

hk = xk − xk−1. Let then be given the interpolation interval [a, b] which
we normalize to [a, b] ≡ [0, 1], consider its uniform partition xk = kh, k =

= 0, . . . , n, h = 1/n. We want to determine the spline function s(x) ∈ S
(3)
n,q+3

where the notation emphasizes the ”deficiency”, i.e. the fact that it will be
possible to satisfy the continuity of the derivatives at the breakpoints only up
to three orders below the one of the highest known derivative. We assume
that in each subinterval of the partition, ∆k ≡ [xk−1, xk], the spline is smooth
enough, i.e. s(x) ∈ Cq[0, 1]. We denote by sk(x) the restriction of s(x) to the
interval ∆k, k = 1, . . . , n.

The parameters to be determined are thus n(q+4), while the interpolatory
conditions are 3(n+ 1), explicitly

(1) s
(i)
k (xk−1) = f

(i)
k−1, k = 1, . . . , n, i = 0, p, q,

(2) s(i)n (xn) = f (i)
n , i = 0, p, q,
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where f
(j)
k = f (j)(xk).

The continuity conditions are instead (q + 1)(n− 1), explicitly

(3) s
(i)
k (xk) = s

(i)
k+1(xk), i = 0, . . . , q, k = 1, . . . , n− 1.

From this it follows that the free parameters are n(q + 4) − 3(n + 1)−
−(q+1)(n− 1) = q− 2. To have a well-posed problem we need then to choose
additional conditions, which we take here in the form of ”initial conditions”,

(4) s
(i)
1 (x0) = f

(i)
0 , i = 1, . . . , q − 1, i ̸= p.

Let us further denote by

M
(i)
k−1 = s(i)(xk−1), i = 0, . . . , q,

M
(i)
k−1 = s

(i)
k (xk−1), i = q + 1, q + 2, q + 3, and

M (0)
n = sn(xn), M (1)

n = s(1)n (xn), . . . ,M
(q)
n = s(q)n (xn)

the moments of s(x) and of its successive derivatives at the breakpoints. We
then can write

sk(x) =

q+3∑
j=0

M
(j)
k−1

(x− xk−1)
j

j!
, k = 1, . . . , n, x ∈ [xk−1, xk].

Let us recall moreover that

M
(i)
k−1 = f

(i)
k−1, i = 0, p, q, k = 2, . . . , n+ 1 and

M
(i)
0 = f

(i)
0 , i = 0, 1, . . . , q.

By imposing the interpolation conditions which are not implicitly satisfied, i.e.
(2), and the continuity conditions (3) with

s
(i)
k (x) =

q+3−i∑
j=0

M
(i+j)
k−1

(x− xk−1)
j

j!
, i = 0, . . . , q,

we obtain the square linear algebraic system in (n− 1)(q + 1) + 3 equations in
the unknowns

M
(i)
0 , i = q + 3, q + 2, q + 1,

M (i)
s , s = 1, . . . , n− 1, i = q + 3(−1)1, i ̸= p, q.
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The latter are written in inverse order with respect to the derivative order.
Several subcases must be distinguished, as it is apparent from the next formulae

i = q
3∑

j=1

M
(q+j)
k−1

hj

j!
= M

(q)
k −M

(q)
k−1, k = 1, . . . , n;

i = q − 1(−1)p+ 1

3∑
j=1

M
(q+j)
0

hq+j−i

(q + j − i)!
−M

(i)
1 = −

q−i∑
j=0

M
(j+i)
0

hj

j!
,

q+3−i∑
j=0

j ̸=q−i

M
(j+i)
k−1

hj

j!
−M

(i)
k = −M

(q)
k−1

hq−i

(q − i)!
, k = 2, . . . , n− 1.

i = p

3∑
j=1

M
(q+j)
0

hq+j−p

(q + j − p)!
= M

(p)
1 −

q−p∑
j=0

M
(j+p)
0

hj

j!
,

q+3−p∑
j=1

j ̸=q−p

M
(j+p)
k−1

hj

j!
= M

(p)
k −M

(p)
k−1 −M

(q)
k−1

hq−p

(q − p)!
, k = 2, . . . , n.

i = p− 1(−1)1

3∑
j=1

M
(q+j)
0

hq+j−i

(q + j − i)!
−M

(i)
1 = −

q−i∑
j=0

M
(i+j)
0

hj

j!
,

q+3−i∑
j=0

j+i ̸=p,q

M
(i+j)
k−1

hj

j!
−M

(i)
k = −M

(p)
k−1

hp−i

(p− i)!
−M

(q)
k−1

hq−i

(q − i)!
,

k = 2, . . . , n− 1.
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i = 0

3∑
j=1

M
(q+j)
0

hq+j

(q + j)!
= M

(0)
1 −

q∑
j=0

M
(j)
0

hj

j!
,

q+3∑
j=1
j ̸=p,q

M
(j)
k−1

hj

j!
= M

(0)
k −M

(0)
k−1 −M

(p)
k−1

hp

p!
−M

(q)
k−1

hq

q!
, k = 2, . . . , n.

3. The linear system and its solution

We start by rewriting the system in compact form Am = b where the
matrix A denotes a block Hessemberg matrix, A ≡ [Ai,j ] , i, j = 1, . . . , q + 1,
with Ai,j ≡ 0 for i ≤ q − p , j > i + 2 or i > q − p , j > i + 1 . Note that
not all the blocks of the matrix are of the same dimension. Specifically,

A
(n,n)
i,j , i = 1, q − p+ 1, q + 1, j = 1, 2, 3,

A
(n−1,n)
i,j , i = 2, . . . , q, i ̸= q − p+ 1, j = 1, 2, 3,

A
(n−1,n−1)
i,j , i = 2, . . . , q, i ̸= q − p+ 1, j = 4, . . . , q + 1,

A
(n,n−1)
i,j , i = q − p+ 1, q + 1, j = 4, . . . , q + 1.

Let E, F , D be defined as follows

E =(δi,j)n−1,n,

F =(δi−1,j)n−1,n−1,

D =(δi−1,j)n,n−1,

with δi,j denoting the Kronecker symbol.

The nonzero blocks are all either diagonal, subdiagonal or bidiagonal:

for j = 1, 2, 3

Aij =


hi−j+3

(i− j + 3)!
In, i = 1, q − p+ 1, q + 1,

hi−j+3

(i− j + 3)!
E i = 2, . . . , q, i ̸= q − p+ 1,
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for j = 4, . . . , q − p + 2, provided that q − p + 2 ≥ 4, (Aij ̸= 0 if and only if
i ≥ j − 2)

Aij =



F − In−1, i = j − 2,

hi−j+2

(i− j + 2)!
F, i = j − 1, . . . , q, i ̸= q − p+ 1,

hi−j+2

(i− j + 2)!
D, i = q − p+ 1, q + 1,

and for j = q − p + 3, . . . , q + 1, provided that p ≥ 2, (Aij ̸= 0 if and only if
i ≥ j − 1)

Aij =



F − In−1, i = j − 1,

hi−j+1

(i− j + 1)!
F, i = j, . . . , q,

hi−j+1

(i− j + 1)!
D, i = q + 1.

To solve the system, we follow the steps of [8]. ”Almost” direct forward
substitution can be employed to yield the algorithm. Let us suppose to be at
the k−th stage of the procedure, k = 1, . . . , n− 1:

1) by solving the k−th equations of the first, the (q − p + 1)−th and the

(q + 1)−th row-block, we obtain M
(q+3)
k−1 ,M

(q+2)
k−1 ,M

(q+1)
k−1 ; the corresponding

columns can then be eliminated;

2) from the k−th equations of the j−th row-block, j = 2, . . . , q, j ̸=
q− p+1, M

(i)
k , i = q− 1, (−1), 1 , i ̸= p are obtained immediately. These two

steps are iterated until the (n− 1)−st step;

3) at the end of the (n− 1)−st step, we need to solve the system obtained
by the last equations of the first, the (q−p+1)−st and (q+1)−st row-block, in

this way thus determining the remaining unknowns M
(q+3)
n−1 ,M

(q+2)
n−1 ,M

(q+1)
n−1 .

At each stage, the process of elimination of the columns corresponding to
the lastly calculated unknowns yields a matrix possessing the same structure of
the original one, just of lower dimension. This is a fundamental remark for the
validity of the above scheme. Moreover the column elimination corresponds
to moving to the right hand side the unknowns just calculated times the
corresponding weights given by the respective matrix entries. The latter
multiplication when applied to the error equation to be discussed in the next
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section, gives terms that are of the same order of the corresponding right hand
side, as is easily seen by induction.

The algorithm then hinges upon the solution at each stage of a 3 by 3

system for the unknowns M
(q+3)
j ,M

(q+2)
j ,M

(q+1)
j , j = 0, . . . , n− 1. Its matrix

has the explicit form:

C =



h3

3!

h2

2!
h

hq−p+3

(q − p+ 3)!

hq−p+2

(q − p+ 2)!

hq−p+1

(q − p+ 1)!

hq+3

(q + 3)!

hq+2

(q + 2)!

hq+1

(q + 1)!


,

It is easily observed that detC ̸= 0, from which the unconditional solvability of
the system follows.

Theorem 1. The algorithm presented above always leads to the solution
of the lacunary interpolation problem.

It is also possible to determine explicitly the inverse of the above matrix:

C−1 =



A1

h3

B1

hq−p+3

C1

hq+3

A2

h2

B2

hq−p+2

C2

hq+2

A3

h

B3

hq−p+1

C3

hq+1

,

 ,

where Ai, Bi, Ci i = 1, 2, 3 are suitable constants. This allows us to obtain
immediately a stability result. It turns out however that it is of limited
usefulness as will be apparent in the next section.

Theorem 2. The norm of the inverse matrix of the system satisfies the
following estimate

∥C−1∥2 = O(h−q−3).

3.1. An alternative approach

Looking for the solution in the general form, for k = 1, 2, . . . , n

sk(x) =fk−1 +

p−1∑
i=1

ak,i
i!

(x− xk−1)
i +

f
(p)
k−1

p!
(x− xk−1)

p +

q−1∑
i=p+1

ak,i
i!

(x− xk−1)
i

+
f
(q)
k−1

q!
(x− xk−1)

q +

q+3∑
i=q+1

ak,i
i!

(x− xk−1)
i ,
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we get the coefficients

ak,i = s
(i)
k−1(xk−1), k = 2, 3, . . . , n, i = 1, 2, . . . , q − 1, i ̸= p.

The coefficients ak,q+1, ak,q+2, ak,q+3 are found by solving a 3 by 3 linear
system, giving

ak,q+3 =
3(q + 3)(q + 2− p)(q + 3− p)

p(q − p)h2
[Rk,0 −Rk,p]+

+
2 · 3(q + 3)(q + 3− p)

q2(p+ 3)h2
[Rk,0 −Rk,q],

ak,q+2 =
2(q + 2)

−qh
[Rk,0 −Rk,p]−

q + 5

3(q + 3)
hak,q+3,

ak,q+1 = Rk,q −
h

2
ak,q+2 −

h2

6
ak,q+3,

where

Rk,0 =

[
fk − fk−1 −

q−1∑
i=1

s
(i)
k−1(xk−1)

(k − 1)!
hk−1 −

f
(p)
k−1

p!
hp −

f
(q)
k−1

q!
hq

]
(q + 1)!

hq+1
,

Rk,p =

f (p)
k − f

(p)
k−1 −

q−1∑
i=p+1

s
(i)
k−1(xk−1)

(i− p)!
hi−p −

f
(q)
k−1

(q − p)!
hq−p

 (q + 1− p)!

hq+1−p
,

Rk,q =
[
f
(q)
k − f

(q)
k−1

] 1

h
.

For k = 1 we obtain the coefficients from the Taylor polynomial at x0

a1,i = s
(i)
1 (x0) = f

(i)
0 , i = 1, 2, . . . , q − 1, i ̸= p.

4. Error analysis

Let us assume that f(x) ∈ C(q+4) in [0, 1] and let T (x) be the Taylor
polynomial in ∆k,

T (x) =

q+3∑
j=0

f (j)(xk−1)
(x− xk−1)

j

j!
.
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Then

(5) f(x)− T (x) = Khq+4.

Let us define the error vector as

e(m)(x) = f (m)(x)− s(m)(x), m = 0, . . . , q + 3,

e
(m)
k = f

(m)
k −M

(m)
k , m = 1, . . . , q + 3, m ̸= p, q.

For x ∈ ∆k, let us moreover denote the restriction of e(x) on ∆k by ek(x).
Then

(6) ek(x) = f(x)− T (x) + T (x)− sk(x),

and

T (x)− sk(x) =

q+3∑
j=1
j ̸=p,q

e
(j)
k−1

(x− xk−1)
j

j!
.

By imposing the continuity at the points xk, k = 1, . . . , n− 1 of e(x) and
its derivatives and the interpolation conditions at xn, we obtain a system in
the unknowns

e
(i)
0 , i = q + 3, q + 2, q + 1,

e(i)s , s = 1, . . . , n− 1, i = q + 3(−1)1, i ̸= p, q,

which possesses the same matrix of the system for the calculation of the

moments, analyzed in the previous section. To estimate the errors e
(m)
k , the re-

marks of the previous section apply. In order to calculate e
(q+3)
k , e

(q+2)
k , e

(q+1)
k

we need to solve the system
(7)

h3

3!

h2

2!
h

hq−p+3

(q − p+ 3)!

hq−p+2

(q − p+ 2)!

hq−p+1

(q − p+ 1)!

hq+3

(q + 3)!

hq+2

(q + 2)!

hq+1

(q + 1)!




e
(q+3)
k

e
(q+2)
k

e
(q+1)
k

 =


Kk,1h

4

Kk,2h
q−p+4

Kk,3h
q+4



from which, easily,

e
(q+i)
k = O(h4−i), i = 3, 2, 1, k = 0, . . . , n− 1.
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This corresponds to Step 1 of the algorithm in Section 3. Making use of this

result, Step 2 yields equations where the only unknowns are e
(i)
k , i = q−1 (−1) 1,

i ̸= p, k = 1 (1)n − 1. Their value is immediately read off and can be used
in the solution of the next equations. Note indeed that the coefficient of each
such term is −1, the matrix being lower bidiagonal with constant entries given
by −1 and 1. Also by differentiating i times (6) and recalling (5), each right

hand side is seen to be of order O
(
hq+4−i

)
, implying that this is also the order

of e
(i)
k . Hence

e
(i)
k = O(hq+4−i), i = 1, . . . , q + 3, i ̸= p, q, k = 1, . . . , n− 1.

Remembering that by definition e
(q)
k = e

(p)
k = 0, by iterating the procedure

alternating at each stage between Step 1 and Step 2, we then explicitly find

• by solving system (7), e
(q+3)
0 , e

(q+2)
0 , e

(q+1)
0 ;

• by reading off the values, e
(q−1)
0 , ..., e

(1)
0 ;

• by solving system (7), e
(q+3)
1 , e

(q+2)
1 , e

(q+1)
1 ;

• by reading off the values, e
(q−1)
1 , ..., e

(1)
1 ;

...

• by solving system (7), e
(q+3)
n−2 , e

(q+2)
n−2 , e

(q+1)
n−2 ;

• by reading off the values, e
(q−1)
n−2 , ..., e

(1)
n−2;

Finally, Step 3 gives

• by solving system (7), e
(q+3)
n−1 , e

(q+2)
n−1 , e

(q+1)
n−1 .

On using these results into (6), together with the triangular inequality, we
finally have the convergence result. We summarize the results just obtained in
the following

Theorem 3. For the error of the spline function and its derivatives, the
following estimates hold

(8) f (m)(x)− s(m)(x) = O(hq+4−m), x ∈ [0, 1], m = 0, . . . , , q + 3.

5. Problem reformulation and extension

In this section we would like to consider an extension of the previuos
problem, by relaxing the condition that the intermediate interpolatory one be
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on the same derivative at every breakpoint. In order to quickly establish the
former results also for this case, we reinterpret the problem in a more general
context. Namely, it is possible to reformulate the problem by enlarging the
matrix of the system; this operation is certainly not apt for the implementation,
but will enlighten the error analysis for more complicated cases. The matrix of
the system is partitioned into two big horizontal blocks, the upper one being
similar to the matrix A discussed in the previous sections and in [8], the
lower one instead by explicitly stating the known intermediate interpolation

conditions. In fact, let us consider the moments M
(p)
k , k = 1, . . . , n − 1 as

unknowns. The matrix A will have n−1 more columns, which can be considered
as a block column of structure similar to the ones studied earlier. Now, if we
add to our system n− 1 equations of the type

(9) M
(p)
k = f

(p)
k , k = 1, . . . , n− 1

and if the extra initial conditions are the same as (4), we get back a square
matrix.

This operation allows us to consider the same algorithm as given in the
previous section (with minor modifications to take into account that some
intermediate information is known) and to reformulate the error equation in
which the topmost part of the right hand side is once again given by the
consistency error as before, but in which the bottom part consists only of
zeros, since the interpolation conditions (9) are known exactly. It turns out
then that the same scheme for the previous case can be used also for the error
analysis and the same convergence rates will apply.

To extend the previous case, we can now assume to substitute the condi-
tions (9) and the intermediate condition on the last node with the following n
conditions of the form

M
(pk)
k = f

(pk)
k , k = 1, . . . , n, 1 ≤ pk ≤ q − 1.

The matrix of the system will be the same and every consideration made earlier
carried on also to this case. The only modification will be in the structure of
the q− pn+1-st row, related to the condition on the last node. It will be quite
similar to the q − p+ 1-st row of the matrix of the previus case.

Theorem 4. For the extended lacunary interpolation problem with one
intermediate condition on each node, placed on a derivative of arbitrary order,
possibly differing at each node, the same error estimates (8) hold.
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6. The general case

In this section we turn to examining the following questions:

1) Leaving the conditions (0, q) ”clamped”, what does it happen if we vary
the number of additional conditions?

2) How many such additional conditions can be added on the very same
node?

3) Is it possible for the nodes to have a different number of conditions?

In order to answer these questions, let q+ s− 1 be the degree of the spline
and let (q + s)n be the number of coefficents which need to be determined.

Since the numbers of interpolatory and continuity conditions are respec-
tively 2(n+ 1) and (n− 1)(q + 1), there will be 3n+ 1− q + nq equations.

Now let N be the number of additional conditions on the internal nodes
x1, . . . , xn−1. Let also X be the number of free parameters which will yield
conditions on the extreme nodes. Thus we must have max X = 2(q − 1). It
follows then that nq + ns = 3n+ 1− q + nq +N +X, i.e.

s = 3 +
1− q +N +X

n
= 3 + an integer number.

To ensure that s does not grow, we must have

N +X = q − 1.

In [8] X = q − 1 implies that N = 0 and the error is O(hq+3).

To answer the above questions, as long as the number N of additional
conditions does not exceed q− 1, the problem is well posed and the spline does
not increase its degree, provided that we decrease the endpoint conditions by
the same amount by which N increases, so that N +X remains constant.

It does not matter how many additional conditions are imposed on the
same internal node. The block structure of the matrix will of course be pre-
served, but the strategy for the resolution of the system will change accordingly
to the changes imposed by the new conditions.

If instead N +X = n+ q − 1, we have s = 4.

The (0, p, q) case is now the particular case in which N = n− 1 conditions
are imposed on the intermediate nodes, all of them being imposed on the p-th
derivative, and where additionally there are q − 1 conditions on the very first
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node and 1 condition always on the p-th derivative is imposed on the very last
node.

Any other distribution of the N+X conditions, as long as the requirement
N+X = n+q−1 is satisfied, will not alter the order of the error in the solution.

The block structure of the matrix remains unchanged, although the
strategy for solving the problem will change. However, it will still be similar
to the one examined earlier.

Acknowledgments. The authors express their gratitude to the referee for
pointing out the recursive form of the solution of the problem of Section 3.1.
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