
Annales Univ. Sci. Budapest., Sect. Comp. 20 (2001) 55-70

ON FAST NUMERICAL SOLUTIONS
OF SPECIAL STIFF EQUATIONS
ARISING IN ASTROPHYSICS

A. and Z. Horváth (Győr, Hungary)

1. Introduction

In astrophysical calculations the interstellar matter (ISM) is often de-
scribed with a system of partial differential equations (see the fundamental
paper [7] and the references therein). After applying the operator splitting
method (see e.g. [7], [6], [9]), in one of the splitting steps we have to solve a
series of scalar initial value problems (IVPs) for ordinary differential equations
(ODEs), the so-called ”cooling part” of the problem (see (1) below). Note that
the right hand side function of the corresponding ODE is called the cooling
function.

In a typical simulation ([6]) we have to solve this cooling part 108-109

times. Classical implicit methods (implicit Euler, implicit trapezoidal rule) are
used to solve this problem in the astrophysical practice, and solving the cooling
part requires 20-30% of the total CPU-cost.

This fraction was lowered with a special method (called Gexp1 below) to
1-2%, see [5] and, for an application, [6]. This method is based on a global
approximation of the cooling function in such a way that the new IVP can be
solved explicitly. This results in a very robust new method.

Some test results with Gexp1 were presented in [5] without full study.
In the present paper this method is studied theoretically in detail. We will
show that it is convergent of first order on the relevant problems and fits our
requirements at low CPU-cost. In addition, as a generalization of Gexp1, we
introduce two new methods called Gexp21 and Gexp22 below which are of
second order and have similarly robust as Gexp1.

In Section 4 we present some of our numerical experiments. We compare
our new methods with other ones proposed for the same task, namely the
implicit Euler, the BDF2, exponential Euler, exponentially fitted methods of
higher order [3]. We conclude that our novel methods need significantly less
CPU-time to achieve low accuracy (1-2 correct digits).

56 A. and Z. Horváth

2. The IVPs to be investigated

2.1. On the original IVPs

In the cooling part of the operator splitting solution method we have to
solve an IVP for e, the energy density function, concerning each discretization
cell. This IVP takes the form

(1)
de

dt
= −ρ2 · Λ (ρ, e) + Z · ρ, 0 ≤ t ≤ T, e(0) = e0,

where ρ is the density of the ISM, Z is a positive value that describes the
intensity of the heating due to the radiation of the outer sources, Λ is a function
which can be given only with a very complicated formula (see [4]), further T and
e0 are determined from the splitting procedure. At this stage both ρ and Z can
be assumed constant. Note that in (1) we did not denote the cell-dependency
of the values occured.

The components of the right hand side function of the ODE in (1) have
some special properties, due to the underlying physical problem. Namely

- Λ(ρ, e) > 0 for all ρ and e;

- Λ(ρ, e) has continuous derivatives in both variables;

- there exists e1 = e1(ρ) such that Λ (ρ, e) is proportional to e4 if 0 < e <
< e1;

- there exists e2 = e2(ρ) such that
∂Λ

∂e
(ρ, e) > 0 if 0 < e < e2;

- there exists a unique eequ. = eequ.(ρ) for which

f(eequ.) = −ρ2Λ(ρ, eequ.) + Z · ρ = 0.

Note that the latter condition corresponds to the fact that there is a
unique temperature (depending on the density) for which the ISM is in radiative
equilibrium with the radiative field of outer sources.

Moreover, in many situations (see [6]) we have that

- for e0, the initial value in (1), there holds e0 ≤ e2,

according to the task we want to model ISM at ”low” temperature (less than
105 K).

The IVP (1) is stiff in most of our cases (i.e. most of discretization cells)

because
∂Λ

∂e
· T can reach very high values. Remember that T is determined

On fast numerical solutions of special stiff equations 57

by the other part of the outer splitting method. Another important feature of
our problem is the large number of IVPs to be solved.

In virtue of these, in this paper we deal with IVPs of form

(2) y′(t) = f(y(t)), 0 ≤ t ≤ T, y(0) = y0,

where

(3.a) y0 ≥ 0 and T > 0 are given real numbers,

(3.b) f ∈ C1(R),

(3.c) there exists ye ∈ (0,∞) such that f(ye) = 0, and f(y) is positive or
negative if y < ye or y > ye, respectively,

(3.d) f ′(y) < 0 for all y ∈ (0,max{y0, ye}).

2.2. The test IVPs

For the sake of perspicuity, instead of the original functions describing the
radiative cooling (and heating), in our numerical experiments we shall use two
families of test IVPs which are qualitatively similar to those cooling functions
and fit our assumptions above.

The test IVPs have right hand side functions f1 and f2 with

(4) f1(y) = 1− y4 · e1−y

and

(5) f2(y) = 0.1 ∗ (1− yα(y)), where α(y) =

{
4, if y < 3,
4− (y − 3)/3, if y ≥ 3,

and we will vary T on a wide range.

Notice that f2 does not fulfill (3.b), the differentiability condition. The
reason of studying f2 is that in practice the cooling function is often calculated
by using tabulated values with piecewise linear interpolation to cut down the
CPU-cost of the function evaluation (see e.g. [9]). In this way the cooling
function used in the astrophysical codes is continuous with non-continuous
derivative - and so is our f2.

Our test problems have an equilibrium point ye = 1. In the original
problem ([7], [6]) this value depends on another parameter (density). We are
able to determine it very cheaply using an interpolation array initialized once
at the very beginning of the calculations. Using the initialized interpolation
array, we need only a few additions and multiplications to get ye.

58 A. and Z. Horváth

3. Numerical methods

For solving the IVPs described in the previous section we need some
numerical methods. Since the number of equations is very large and the
underlying physical model is valid only with limited accuracy, the method must
be very efficient at low accuracy, say at 1-2 correct digits. Furthermore, we
require the method to be robust even in stiff situations. Here robustness also
includes that the method gives approximations for y(T) which tend to ye as T
goes to infinity, even if the step size is large (because T determined from the
dynamic part is usually so high, that y(T) is close to ye).

There are several methods (e.g. the stiff solvers) that meet most of these
requirements, but in our special case (see the conditions under (3)) it seems we
can do better.

3.1. Our main method

This method was introduced in [5] motivated by the following idea: we
replace f in (2) by a linear function l that approximates f globally, namely

l(y) =
f(y0)

y0 − ye
(y − ye),

i.e. l interpolates the points (y0, f(y0)) and (ye, f(ye)) = (ye, 0). We then solve
the resulting linear equation exactly to get an approximation to the solution
of (2). In this way we obtain a one-step method the first step of which of step
size h is given by

(6) y1 = ye + (y0 − ye) exp

(
f(y0)h

y0 − ye

)
.

In the paper we call this method ”global exponential method” or ”Gexp1” in
short.

Note that this method happens to be similar to the ”exponential Euler”
method (see e.g. [3] and the references therein) which arises in the same
way as Gexp1, but uses a local linear approximation for f , namely the first
order Taylor polynomial corresponding to the point y0, rather than our global
approximation.

We see from (6) that one step with Gexp1 requires only one function
evaluation (and one exponential function calculation which is not too time
consuming in modern computers). Note that we need no evaluation of the

On fast numerical solutions of special stiff equations 59

derivative of the right hand side function, which takes usually a longer time
than that of the function itself. Hence one step with Gexp1 is very cheap.

As shown in Subsection 3.2., Gexp1 is a first order method. The method
can be used as a starting point for constructing higher order methods. Two
second order methods derived from Gexp1 are considered in a subsequent
section.

3.2. Numerical analysis of the main method

In this section we examine the method Gexp1 introduced in the previous
section from the point of view of convergence. For this aim we consider the
IVP. Under the assumptions (3) there exists a unique continuous function λ
for which

(7) f(y) = λ(y)(y − ye) for all y ∈ R

holds. Note that λ is strictly negative on R\{ye}.
Using the representation of (7) for f , the n + 1st step of Gexp1 for (2)

with step size h = hn reads

(8) yn+1 = ye + exp(λ(yn)h)(yn − ye) for n ≥ 0,

where yn+1 is regarded as an approximation to y at tn+1 = tn + h (t0 = 0).

Let us investigate first the truncation error of the method. If we replace
in (8) yn and yn+1 by the exact solution values y(tn) and y(tn+1), respectively,
we obtain a defect ∆h(tn) given by

(9) y(tn+1) = ye + exp(λ(y(tn))h)(y(tn)− ye) + ∆h(tn).

We shall give an approximation to the defect in terms of the exact solution
rather than that of the right hand side function of (2).

Lemma 1. Let y be the solution of the IVP (2) where f has the properties
given in (3). Then ∆h(tn) = O(h2) for the defect defined in (9).

Proof. We obtain from (7) and (2) and by employing twice a Taylor
expansion that
(10)

∆h(tn) = y(tn) + y′(tn)h+
h2

2
y′′(tn + θ1h)− ye−

−
(
1 + λ(y(tn))h+

h2

2
λ(y(tn))

2 exp(θ2λ(y(tn))h)

)
(y(tn)− ye) =

=
h2

2
(y′′(tn + θ1h)− exp(θ2λ(y(tn))h)y

′(tn)λ(y(tn)))

60 A. and Z. Horváth

with some constants θ1, θ2 ∈ (0, 1). By taking into account that λ(t) ≤ 0 and

y′(t)λ(y(t)) =
(y′(t))2

y(t)− ye
for all t > 0, we obtain the desired result.

Next we investigate the stability of Gexp1. It is clear that the method is
exact for linear autonomous problems with constant coefficients, even in the
case of complex coefficients. Hence the method is A-stable.

For nonlinear stability investigations let us introduce the function

(11) Φ(z, h) = ye + exp(λ(z)h)(z − ye),

then (8) can be written as

(12) yn+1 = Φ(yn, h) for n ≥ 0.

For the stability we use the following definition.

Definition 1. We call the one-step method given by (12) conditionally
contractive if for all VIP (2) with f having properties (3) there exists a closed,
bounded interval K and H > 0 such that y(t) ∈ K for all t ≥ 0,Φ(., h) maps
K into K for all 0 < h ≤ H, and if, moreover, Φ satisfies

(13) |Φ(z1, h)− Φ(z2, h)| ≤ |z1 − z2| for all z1, z2 ∈ K, 0 < h ≤ H.

Lemma 2. Gexp1 is conditionally contractive.

Proof. Consider an IVP of form (2) with f that has the properties (3)
and let K be the interval spanned by y0 and ye.

It is clear by (3.c) and (3.d) that y(t) ∈ K for all t ≥ 0. Further, by taking
into account (8) and the nonpositivity of λ, we observe that Φ(., h) maps K
into K for all h ≥ 0.

By employing the mean value theorem, we obtain that (13) is equivalent
to the statement

(14)

∣∣∣∣∂Φ∂z (z, h)
∣∣∣∣ ≤ 1 for all z ∈ int(K), 0 < h ≤ H.

It follows from (7) and (11) by direct calculation that

(15)
∂Φ

∂z
(z, h) = (1 + h(f ′(z)− λ(z))) exp(λ(z)h).

The Taylor expansion of
∂Φ

∂z
with respect to h gives that

∂Φ

∂z
(z, h) =

= 1 + f ′(z)h+ O(h2) for each fixed z, hence, by employing (3.d), there exists

On fast numerical solutions of special stiff equations 61

H(z) > 0 for each z ∈ K such that

∣∣∣∣∂Φ∂z (z, h)
∣∣∣∣ ≤ 1 for all 0 < h ≤ H(z). Then

we can see immediately that (13) is fulfilled with H = min
z∈K

H(z) > 0 as well,

which means the conditional contractivity of Gexp1.

Remark 1. Under special conditions much more can be proved with
regard to stability of Gexp1. For example, if K is an arbitrary interval of R
and the relative error of f ′ and λ is at most 1 on K, i.e. |r(z)| ≤ 1 for all

z ∈ K, where r :=
f ′(z)− λ(z)

λ(z)
, then (14) holds with H = ∞. Indeed, from

(15) we have for all z ∈ K and 0 < h that∣∣∣∣∂Φ∂z
∣∣∣∣ = |(1 + hλ(z)r(z)) exp(λ(z)h)| ≤ exp(−λ(z)h|r(z)|) exp(λ(z)h) =

= exp(λ(z)h(1− |r(z)|)) ≤ 1,

due to λ(z) ≤ 0 for all z.

Remark 2. Under the conditions in (3) the sets [0, ye] and [ye,∞) are
positively invariant for the flow generated by the ODE of (2). If follows from
the arguments given in the proof of Lemma 2 that the same statement holds
for the discrete flow generated by Gexp1 with arbitrary h > 0. This implies
that no oscillations around the equilibrium appear when using Gexp1.

We conclude this subsection with the following theorem on convergence
and asymptotical behaviour of Gexp1.

Theorem 1. Consider the IVP (2) where the right hand side function f
has the properties (3). Then Gexp1 is convergent of order 1 on the IVP (2).
Further, if yn is the sequence generated by Gexp1 for (2) with arbitrary h > 0,
then lim yn = ye.

Proof. The first statement follows directly by combining Lemma 1 and
Lemma 2 (see e.g. [1] pp. 159-162 for similar arguments), while the second one
immediately from (8).

3.3. Some related higher order methods

Though Gexp1 is shown to be robust and cheap, the order of convergence
is only 1. In this subsection we will show two second order methods derived
from Gexp1. Note that it is possible to construct other higher order methods
as well, but this is outside of our interest here.

The basic idea of our first second order method called Gexp21 is to take
a trial step with Gexp1 with full timestep, get y∗, and approximate the right

62 A. and Z. Horváth

side of the differential equation with a linear function between y0 and y∗. The
result of Gexp21 is the exact solution of the problem corresponding to this
linear approximation. Namely

(16) y∗ = ye + (yn − ye) exp

(
f(yn)h

yn − ye

)
,

(17) m =
f(yn)− f(y∗)

yn − y∗
,

(18) yn+1 = yn +
exp(mh)− 1

m
· f(yn).

The other second order method we consider (called Gexp22) is a Runge-Kutta
like method derived from Gexp1. It can be formalized as

(19) y∗ = ye + (yn − ye) exp

(
f(yn)

yn − ye

h

2

)
,

(20) yn+1 = ye + (yn − ye) exp

(
f(y∗)

y∗ − ye
h

)
.

Now we show that these methods are indeed of second order.

Theorem 2. Gexp21 and Gexp22 are convergent of order 2 for IVPs of
form (2) if f fulfills the conditions of (3). Moreover, lim yn = ye whenever
n → ∞ with arbitrary h > 0.

Proof. The proof of the second order convergence consists of the same
steps as that of Gexp1: investigation of the local error and stability in the same
way as it is in Lemma 1 and Lemma 2, respectively.

As to the counterpart of Lemma 1 we have to mention that concerning
Gexp21 and Gexp22 we cannot give so simple formulas for ∆h as is in (10).
Lack of this we verify ∆h = O(h3) by using a computer algebra program.

As to the counterpart of Lemma 2, we choose the same K set which is
given in the proof of Lemma 2, but in case of the Gexp21 method Φ(., h) maps

K into itself only under an additional condition h ≤ H (but this does not
destroy the desired conditional contractivity). Namely, y∗ ∈ K for all h > 0
(see Lemma 2 and (6)), hence m defined in (17) can take values only from a
bounded set, which is a subset of (−∞, 0), due to (3.d). Hence we see from

(18) that there exists H > 0 that has the desired property.

On fast numerical solutions of special stiff equations 63

Note that the last difference between the proof of Lemma 2 and the proof
of conditional contractivity of Gexp21 and Gexp22 is that lack of a simple

formula for
∂Φ

∂z
, we verify

∂Φ

∂z
(z, h) = 1 + f ′(z)h+ O(h2) again with the help

of a computer algebra program.

Note that both of these second order methods need two evaluations of f
and two calculations of the exponential function. Hence Gexp21 and Gexp22
have approximately twice as large CPU-cost as Gexp1 in each step.

3.4. The methods examined in our numerical experiments

Our aim was to construct a method with low CPU-cost achieving 1-2
correct digits and a high degree of stability. These requirements restricted the
choice of numerical methods for the numerical experiments.

We examined a lot of methods to find the fastest at low accuracy in our
problem. In this article we will present the results of the following ones:

1. Implicit Euler-method (IE). Though this is only a first order method,
it is robust, easy to implement and needs relatively low CPU-cost at small
accuracy. This is the most frequently used method in the numerical codes for
astrophysical simulations. (See [7], [9].)

We used the simplified Newton iteration to solve the nonlinear equation as
described in [2]. The only difference in implementation of the Newton method
was that we chose z0 = (ye − y0)/2 as the first guess, instead of z0 = 0.
Our numerical experiments showed that with z0 = (ye − y0)/2 the simplified
Newton iteration was always successful, but with z0 = 0 we often got diverging
iterations.

2. BDF2 method (BDF2). This second-order implicit method is commonly
used to solve stiff equations.

Our implementation is based on [8]. We tested BDF2 both with and
without automatic step-size control. The numerical experiments showed that
the step-size control is economic even at low precisions (i.e. with TOL = 10−1

in the notation of [8]), which is not self-evident according to the considerations
above. On the other hand, the BDF2 method produced very poor results at
high values of T without step-size control.

Therefore we will show only the results of BDF2 with step-size control.

3. Exponential Euler method (Exp2). Although this is an explicit method
it is sometimes used for integrating stiff systems of equations. (See [3] and the
references therein.)

The reason why we studied Exp2 is that in our case one step with
Exp2 needs only one evaluation of the right hand side, one calculation for

64 A. and Z. Horváth

its derivative and one evaluation of the scalar exponential function. In this
way the CPU-cost of one step is significantly lower than the CPU-cost of an
implicit method (like IE, BDF2).

4. 4-th order exponential Runge-Kutta method (Exp4). This method is
described in [3]. We implemented it in the same way as in [3], both with and
without adaptive step-size control.

5. Global exponential method (Gexp1). It is our main method. (See
Section 3.1.)

We will show that at low accuracy (at 1-2 significant digits) it is the fastest
method.

6. Corrected global exponential method (Gexp21); see Section 3.3.

7. Our third global exponential method Gexp22; see Section 3.3.

We studied some other methods, too. For example we implemented the
3rd order exponential Runge-Kutta method described in [3], and the various
exponential Runge-Kutta methods with inaccurate Jacobian. We also tried
the classical implicit trapezoid and midpoint methods. All of these methods
proved to be less economic than the solvers mentioned above, hence we do not
present their results.

We did not study higher order implicit methods (e.g. RADAU5), because
they need a lot of function evaluations in every step, and one step with such a
method is very expensive. Although these high-order methods must be better
than the methods mentioned above at high accuracy (SCD ≥ 5, see (22) below
for the definition of SCD), at low accuracy they are not economic. For example
with Gexp21 we could reach at relative error of 10−2 using 6 evaluations of the
cooling function and a few multiplications and additions, while a 5th order
method needs at least 6 function evaluations and a lot of auxiliary calculations
to get the correct step-size in every step.

4. Numerical experiments

In this section we will present some graphs about numerical tests with the
discussed methods.

In the graphs on Fig. 1 and 2 we present the CPU time1 as a function
of significantly corrected digits. Namely: we performed test calculations with

1 The actual unit of CPU time is 10−6s. Though it depends on the specific
machine, and this value does not influe the differences of the methods.

On fast numerical solutions of special stiff equations 65

different final times, i.e. for T = 0.1, 0.2, 0.5, 1.0, 2.0, 5.0. The reason of this
wide-range calculations is that in our case we need a method which is stable and
moderately accurate at very small and very high values of integration times,
according to the expectations above. Calculations corresponding to different
values of T are shown in separate graphs.

On each graph the horizontal axes show the significantly correct digits
(SCDs). To obtain these results we took the following set of initial values: Y =
= {0.5, 1.3, 2.1, 2.9, 3.7}. The relative error we used can be formalized as

(21) R(y0, T) =

∣∣∣∣y(T)− y∗(T)

y(T)

∣∣∣∣ ,
where y(T) is the exact solution and y∗(T) is the value calculated with the
actually discussed method.

Now we can give the formula of SCD:

(22) SCD = − log10

√
1

Ny

∑
y0∈Y

R(y0, T)2,

where Ny is the number of elements in Y set (actually: Ny = 5).

The vertical axes show the decimal logarithm of the mean square CPU-
times.

The curves on the graphs arose in the following way:

- In the case of the methods with fixed time steps the dots represent the
results according to N = 1, 2, 4, 8, 16, 32, 64, 128 number of equidistant time
step.

- In the case of methods with step size control the subsequent dots corre-
spond the results with TOL = 0.2/22i for i = 0, 1, 2, 3, 4, 5, 6, 7, respectively.

We have the following conclusions:

1. The curves show different gradient according to the order of the method,
usually. The exceptions can be found at low precision.

2. The Exp2 method shows a negative value of SCD on some graphs which
is unacceptable. The reasons of this behavior is that we did not implement
step-size control in this case. (In the cases of BDF2 and Exp4 without step-
size control we did the same observations, too. Hence we do not present their
results.)

3. In some cases the IE gives negative value of SCD, too.

66 A. and Z. Horváth

4. At low precision the new method Gexp1 is the most economic, it needs
the least CPU-time at SCD = 1.5 (which corresponds to relative error of 3%
approximately).

Gexp21 is quite good at this region, too. Gexp22 produces very good
results in the case of f1 test function, but in the second test problem it becomes
less accurate. The reason of this is that the derivative of f2 is not continuous
at one point in the analyzed domain.

5. At moderate precision (1.5 < SCD < 3) the most economic method is
Gexp21 or Gexp22 depending on the time step and the test function. (In some
small regions the method Gexp1 is the winner with a small difference between
it and Gexp21 or Gexp22.)

In the case of ”smooth” f1 function the Gexp22 seems to be the best in
this region, while in the case of f2 it can produce less accuracy than Gexp21.

6. At high precision (SCD ≥ 5) Exp4 is the ”winner”.

The algorithms were implemented in ANSI C language, and the numerical
tests were performed on an Intel Pentium-based machine under Linux (RedHat
5.0) with GNU C 2.7.2.3. It is likely that our above conclusions do not depend
on this hardware/software environment. There may be however small changes
in the differences between implemented methods on other architectures. For
example, the ratio of CPU cost of an exponential function call to the CPU-time
of a multiplication can slightly influe the results.

5. Conclusions

We studied both theoretically and numerically the new method Gexp1.
We proved that it is convergent of order 1 and preserves important qualitative
properties of the original problem. The numerical tests showed that at low
precision (SCD = 1.0 − 1.5) it is the most economic method in the set of
examined ODE solvers.

Two new methods (Gexp21 and Gexp22) were introduced as generalisatios
of Gexp1. These methods appeared to be of second order of accuracy.
According to the numerical tests we conclude that these methods are the
most economic at moderate precision (1.5 < SCD < 3.0). For problems
with continuous derivatives of the right hand side Gexp22 seems to be better,
otherwise Gexp21 can be preferred.

On fast numerical solutions of special stiff equations 69

In the astrophysical problems the precision SCD = 1.5 is enough. To
achieve it N = 4 steps are needed with Gexp1, and in this range it is the most
economic method. Furthermore, Gexp1 even with N = 1 is remarkably stable.
Thus Gexp1 can be proposed in astrophysical simulations of interstellar matter.
To get a little bit more precision, Gexp21 or Gexp22 is recommended.

The Gexp21 method shows a very interesting behavior, it should be
examined in more detail in the future. It is robust even in the case of
discontinuous derivatives. To achieve SCD = 2.0 it can be recommended
to use Gexp 21 with N = 4.

The Runge-Kutta like generalisation of Gexp1 is also noticeable and might
be examined even with higher order generalisations later.

All the methods seem to be applicable to systems of ODEs with an
attractive fixpoint. This question will be examined in a subsequent paper.

References

[1] Hairer E., Norsett S.P. and Wanner G., Solving ordinary differential
equations I., Springer, 1993.

[2] Hairer E. and Wanner G., Solving ordinary differential equations II.,
Springer, 1991.

[3] Hochbruck M., Lubich Ch. and Selhofer H., Exponential integrators
for large systems of differential equations (to appear in SIAM J. Sci.
Comp.)

[4] Hollenbach D. and McKee C. Molecule formation and infrared emis-
sion in fast interstellar shocks I., Astrophysical Journal Supplementary
Series, 41, 1979.

[5] Horváth A. Jr. and Kiss Cs., Interstellar shock-cloud collisions - A new
method for cooling, Proceedings of May Advanced School and Work-shop
on the Interaction of Stars with their Environments, Visegrád, Hungary,
eds. L.V. Tóth, M. Kun and L. Szabados, GPRINT Press, Budapest, 1997.

[6] Horváth A. Jr. and Ziegler U., The influence of hydrogen molecules
to the shock-cloud collisions (to appear in Astronomy and Astrophysics,
1998)

[7] Stone J.M. and Norman M.L., ZEUS 2D: A radiation MHD code
for astrophysical flows in two space dimensions I. The hydrodynamical
algorithms and tests, Astrophysical Journal Supplementary Series, 80
(1992), 753-790.

70 A. and Z. Horváth

[8] Verwer J., Gauss-Seidel iteration for stiff ODEs from chemical kinetics,
SIAM J. Sci. Comput., 15 (1994), 1243-1250.

[9] Ziegel U., The role of supernova remnants to galactic dynamos, PhD
Thesis, University of Würzburg, 1995.

(Received May 22, 1998)

A. and Z. Horváth
Matematika Tanszék
Széchenyi István Főiskola
Hédervári u. 3.
H-9026 Győr, Hungary
zhorvath@kvark.szif.hu

