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NEWTON-RELAXATION SCHEMES
FOR NONLINEAR FLUID FLOW EQUATIONS

I. Tuwegiar (Tripoli, Libya)

Abstract. The rapid solution of the nonlinear algebraic equations
resulting from the discretization of convection-diffusion equations is of
interest in the field of computational fluid dynamics. In this paper local
linearization schemes based on Newton’s method are proposed. The Navier-
Stokes equations without the pressure gradient term (Burger’s equations)
are used as test problems. Unlike full Newton, the proposed schemes are
found to be stable for all cases tested, demand less computer storage and
can be overrelaxed for faster convergence.

1. Introduction

The Navier-Stokes equations for incompressible fluid flow in Cartesian
coordinates are used as starting point.
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The solution of equations (1.1), (1.2) and (1.3) is difficult due to several
problems, namely, the discretization of the convective non-linear terms, the
satisfaction of the continuity constraint and the solution of the resulting
set of non-linear algebraic equations. All of these three problems are of
current interest to the computational fluid dynamics community. In this
paper we concentrate on the third problem and attempt to formulate efficient
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solution procedures based on local Newton linearization. For this aim we
remove the pressure term from the momentum equation to obtain the well-
known Burger’s equations in two dimensions. These equations contain the
convective non-linearity typicality of fluid dynamics equations. Furthermore,
they possess readily computable exact solutions for many combinations of initial
and boundary conditions. For this reason they are appropriate model equations
to test various computational techniques. Fietcher [2] used Burger’s equation
to model various physical phenomena and to test several numerical methods.
He also solved the two-dimensional equations using full Newton’s method with
and without pseudo-transient formulation [3]. We introduce improved schemes
based on local Newton linearization and compare our results to those available
in [2]. In addition we study and compare the behaviour of the proposed schemes
on various grids and for the two test cases given in the Appendix.

2. Discretization

Using central differences for both the convectice and the diffusive terms,
the equations 1.2 and 1.3 without the pressure gradient term are discretized on
the domain shown in the Figure 1.
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Fig.1. Solution domain
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where R,o and R,q are the residuals for the equations of u and v. Several
solution schemes can be derived for equation (2).

3. Newton’s method

The equations (2) will be writien in the form
(3.1) R (u,v) =0, R (u,v) =0,

where n denotes the iteration nurnber. The expansion of residuals over an
iteration step yields
OR dR
(32) RMH! = RP 4 —=Au™ + ——Av*t!' =0, where Au"t! ="ty
ou dv
and similar expressions for R, and Av. The higher-order terms have been ne-
glected. Equation (3.2) is a set of linear algebraic equations for the corrections
and can be written in matrix form as follows
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4.1. Point Newton-Gauss-Seidel

In equation (3.3), if we set the corrections to zero except at point 0 in
Figure 1, we get a 2 x 2 system coupling the two unknowns u and v.

. u; —u 1 1 Uy — U
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V1 — U3 Vy — V4 1 1 _
(42) [ oh, ] Aug + [ 2hy + 2v ( — + h—z)] Avg = —Rug.

This method will be called Block Point Newton-Gauss-Seidel (BPNGS).
4.2. Line Newton-Gauss-Seidel

As we will see later at high grid aspect ratios (discrete anisotropy) point
methods are not efficient, because the unknowns are strongly coupled in one
direction and they have to be relaxed simultaneously. We call this arrangement
Block Line Newton-Gauss-Seidel (BLNGS) scheme. We distinguish XLNGS,
in which the linearization is done along the z-axis, and YLNGS, in which only
the unknowns along the y-line are included.

4.2.1. The XLNGS scheme

Dropping all corrections except at those points included in the discretiza-
tion along the z-axis we obtain

- [ oy 1] Auz + [“1——“3 + 2 (i + i)} Aug + [’” _“"] Avg+

2h, | h2 2h, h " k2 2h,
(5.1) + [ii - h—”%] Au; = —Rug,
- [;TOI + hﬁg] Avsz + [v22—’;yv4 + 2v <-é + 711—;->] Avy + [v12;:)3] Aug+
(5.2) + [—2%“: - ,—%J Av; = —Rug.

When equation (5) is written in a 5 X 5 grid in matrix form, we get

b ¢ d 0 0 0 Aug —Rus

e f 0 d 0 0 Avs —Rus

(5.3) a 0 b ¢c d 0 Aupg | _ | —Rug
’ 0 a e f 0 d Avg | = | =Ruvg

0 0 a 0 b ¢ Auy —Ru,

0 0 0 a e f Avy ~Rv;

The coefficients a,b,¢,d, e and f are obvious from equations (5.1)-(5.2).
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4.2.2. The YLNGS scheme

Similar steps produce the YLNGS scheme:

Vg - 1 1 Uy — Ug
[Qh +h]A““+{ oh. 2+ <h2 }y)}A“”[ ok, ]A”°+
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. v S = —
(6.2) + [th h;] Avy Ruvg.

5. Solution procedure

The equations (4,5,6) can be written in the general Newton form
(7.1) JA® = —-R,

where J is the Jacobian, A® is the correction vector of u and v, and R is the
residual vector. The corrections obtained from equation (7.1) are applied to
the unknowns as follows

(12) up*t! = uf + w,Ouo,
' vp Tt = vd + wy O,

where n is the iteration number and w is a relaxation parameter. When w < 1
the corrections are damped or underrelaxed. For w > 1 we have overrelaxation.

In scheme (4) the domain is swept point by point. The sweep direction may
affect the rate of convergence [3,4]. In arrengements (5) and (6) the domain
is swept in lines, in the X- and Y-direction depending on the nature of the
domain and the problem to be solved. It is also possible to combine the two
line sweeps in alternating fashion to produce a more robust yet more expensive
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scheme. We give the procedure we have used to solve (5.3) as a pentadiagonal
system.

for all (ny-2) j-lines do
begin
calculate coefficients a,b,¢,d, e, f for line 7
calculate residuals r on line j
solve the pentadiagonal system: Penta(nz,a,b,c,d,¢, f,r, A®);
correct the unknowns as in (7.2)
end;

Here nz and ny are the numbers of grid points in the X and Y directions.

6. Results

Schemes 4, 5 and 6 have been implemented to obtain steady-state solution
in the computational domain (see Fig.1) -1 <z <1and 0 < Y < Ymaz, Where
Ymaz = m/6A (A is a constant used to control the behaviour of the exact sol-

Scheme Iterations | 10°rms Relax. factors
full Newton* - diverged 1.0

115 987 0.15
Pseudo-transient | 23 832 At =0.01
Newton*
BPNGS 23 9.70 1.0

11 4.00 1.2
XLNGS 15 7.44 1.0

10 8.30 12
YLNGS** 46 8.6 1.0

Table 1. Comparison of various schemes (test-case 1 on 5 x 5 grid)
* reference [3]; ** overelaxation ineffective

ution). Dirichlet boundary conditions are obtained from the exact solution (see
Appendix). First, the exact solution is used as a starting solution to be able
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to compare the results to those given in [3]. The comparison produced the
results shown in Table 1. Figures 2 and 3 display the convergence rates for the
BPNGS and XLNGS schemes for various overrelaxation factors and several grid
sizes. Nearly optimal (by numerical experimentation) overrelaxation factors for
the two schemes on various grids are quoted in Table 2 and plotted in Figure
4. Convergence rates at optimal relaxation factors are given in Figure 5. To
assure comparison on an equal basis, execution times to reach certain levels of
accuracy are provided in Figure 6. The effect of steep gradients on the rate of
convergence 1s shown in Figure 7.

nxxny | BPNGS [ XLNGS
5x5 1.2 1.2

9x9 1.5 1.3
17x17 1.7 1.3
33x33 1.85 1.15
65x65 1.9 1.05

Table 2. Optimal overrelaxation factors for various grid dimensions

6. Conclusions

From the results presented in Tables 1 and 2 and Figures 2-7 we draw the
foliowing conclusions:

¢ Local linearization schemes have shown good convergence for all cases
and number of grid points considered in contrast to the full Newton’s method
which has been reported [3] to diverge on a grid of 5 x 5 for test-case 1.

e Overrelaxation was found to improve the rate of convergence of the
BPNGS and XLNGS schemes especially on small number of grid points.

e Point relaxation schemes on grids with small number of points perform
as good as line relaxation (sce Figure 4 and 5). On large grids, however, they
perform very poor.

e On larger grids considerable time saving is achieved by the use of line

relaxation instead of point relaxation for the same levels of accuracy (see Figure
5).
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Fig.2. Convergence rates for BPNGS for various overrelaxation factors
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Fig.3. Convergence rates for XLNGS for various grids and overrelaxation factors
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Fig.5. Convergence rates at optimal overrelaxation factors on various grids
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Fig.6. Comparison of execution times for BPNGS and XLNGS on various grids
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e From the last two conclusions it follows that point relaxation may be
cheaper if one uses as a solver on the coarsest grid in a multigrid scheme.

o The trends of the optimal overrelaxation factors shown in Figure 3
promote further study using various problems and boundary conditions. For
the studied cases the optimal overrelaxation factor tends to 1.0 as the number of
grid points increases in the case of the XLNGS scheme. In the case of BPNGS
it is interesting to note the increase of the optimal overrelaxation factor with
the increase of number of grid points. Further study is needed before drawing
any general conclusions.

e The YLNGS scheme performed is rather poor even on a 5 x 5 grid (see
Table 1). Overrelaxation was ineffective for this scheme. This emphasizes
the importance of sweeping in the proper direction when using line relaxation
methods (this is the down-stream direction, see [1,4,6]).
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Appendix
1. Exact solution of Burger’s equations

Using the Cole-Hopf transformation [3]

_zvé? —Qv%E
0] o)
Burger’s equations are transformed to
0’ 0%
2 — + == =0
(2) 557t g =0

Equation (2) has the exact solution
— [
d =a; + ayz + azy + aq2y + as le’\(””") + e"\(”"")] cos(Ay),

ay,...,as, A and zo are paramcters chosen to give appropriate features to the
exact solution.
The corresponding exact solutions for u and v are

—2v {az + agy + Aag [AF770) 4 e~ A(E==70)] cos(Ay) }

3.1 u= ,

(3.1) @ a, + ayT + azy + a,ry - as [e*(’"“) + e=Az=20)] cos(Ay)
A(r—z —A(z-z0o ;

32) 7= ~2v {a3 + agz — Aas [eMNF70) 4 ¢=A(==20)] sin(Ay) }

a + a2z + azy + aqry -+ as [eAF-T) 4 e=M==20)] cos(Ay)’

2. Test cases

Two test cases are considered.
2.1. moderate internal gradien!

ay=a; =110, az=aqs=0, as=10, zg=10, A=5 and v=0.1.
2.2. sever internal gradient

a1 =a;=13x102, a3=a4 =0, a5 =10, zo =10, /=25 and n = 0.04.
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