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NONNEGATIVITY OF THE NUMERICAL SOLUTION
OF THREE–DIMENSIONAL HEAT–CONDUCTION

EQUATION

H.A. Haroten (Basrah, Iraq)

1. Introduction

In this paper we study the nonnegativity of the numerical solution of the
three-dimensional heat-conduction problem in a cubic domain. In the one-
dimensional case the problem is considered in [3], [5], [7]. In two dimensions
this problem is studied in [6]. In this paper - during the discretization process
- we use the Descartes product of the basis functions of the one-dimensional
linear FEM to the space discretization and the one-step method to the time
discretization. We give a sufficient condition of the nonnegativity of the
numerical solution.

2. Formulation of the problem

In the domain Ω = (0, L)× (0, L)× (0, L) (L ∈ R+) with boundary ∂Ω,
we consider linear parabolic problem having the form:

(2.1)
∂u

∂t
−
(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
= 0, (x, y, z) ∈ Ω, t > 0,

(2.2) u(x, y, z, 0) = u0(x, y, z), (x, y, z) ∈ Ω,

(2.3) u(x, y, z, t) = 0, (x, y, z) ∈ ∂Ω, t > 0.

Under some natural conditions (i.e. the initial function u0 is sufficiently
smooth and nonnegative) the solution of the problem (2.1)-(2.3) is nonnegative
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on the whole domain Ω×R+
0 [4], [9]. This property plays an important role in

applications, (2.1)-(2.3) describes the process of heat conduction. Our goal is
to formulate the conditions of conservation of this property in the case of the
Galerkin type numerical solutions. First, we apply the Descartes product of the
basis functions of the one-dimensional linear FEM to the space-discretization.
Secondly, we use the one-step method for the time discretization. We give
some sufficient conditions for the conservation of the nonnegativity of the fully
discretized scheme.

The weak form of the problem (2.1)-(2.3) is

(2.4)

L∫
0

L∫
0

L∫
0

(
∂u

∂t
v +

∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y
+

∂u

∂z

∂v

∂z

)
dxdydz = 0; ∀v ∈ H1

0 (Ω).

Let us divide the domain Ω into the subdomains

Ωijk = [xi−1, xi]× [yj−1, yj ]× [zk−1, zk] where xi = ih, yj = jh, zk = kh,

i, j, k = 1, 2, . . . , n. Denote by Φi(x) the linear spline function at points xi. We
define the set of basis functions

(2.5) Φijk(x, y, z) = Φi(x)Φj(y)Φk(z), (x, y, z) ∈ Ωijk

for all i, j, k = 1, 2, . . . , n− 1 and seek the numerical solution in the form

(2.6) Uh(x, y, z, t) =
n−1∑
i=1

n−1∑
j=1

n−1∑
k=1

αijk(t)Φijk(x, y, z).

Here n is the number of subdomains in each direction, h =
L

n
, αijk(t) are

unknown functions to be determined later.

Substituting (2.6) into (2.4) we get a Cauchy problem for the vector α(t) =

= [αijk(t)]
n−1
ijk=1 of the form

(2.7) Mα′(t) +Qα(t) = 0 t > 0,

where α(0) is a given vector being an approximation of the initial function u0.

Here we have used the following notations:

H = tridiag[1, 4, 1] ∈ R(n−1)×(n−1); M1 =
2

27
H, M2 =

1

54
H
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and

M3 =
1

216
H;

M̂4, M̂5 are hypermatrices having the form

M̂4 = tridiag[M3,M2,M3], M̂5 = tridiag[M2,M1,M2]

and
M = tridiag h3[M̂4, M̂5, M̂4] ∈ R(n−1)3×(n−1)3 .

Similarly,

N1 =
2

9
H, N2 =

1

18
H, N3 = −1

9
H, N4 = − 1

36
H;

N̂4, N̂5 are hypermatrices having the form

N̂4 = tridiag[N4, N3, N4], N̂5 = tridiag[N2, N1, N2]

and
N = tridiag h[N̂4, hN̂5, N̂4] ∈ R(n−1)3×(n−1)3 .

Analogically,

C1 =
2

9
H,C2 = −1

9
H, C3 =

1

18
H, C4 = − 1

36
H;

Ĉ4, Ĉ5 are hypermatrices having the form

Ĉ4 = tridiag[C4, C3, C4], Ĉ5 = tridiag[C2, C1, C2]

and
C = tridiag h[Ĉ4, Ĉ5, Ĉ4] ∈ R(n−1)3×(n−1)3 .

In the same way

F = tridiag[−1, 2,−1] ∈ R(n−1)×(n−1); B1 =
4

9
F , B2 =

1

9
F , B3 =

1

36
F ;

B4, B5 are hypermatrices having the form

B̂4 = tridiag[B3, B2, B3], B̂5 = tridiag[B2, B1, B2]

and
B = tridiag h[B̂4, B̂5, B̂4] ∈ R(n−1)3×(n−1)3 .
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Q = N + C +B, we get Q1, Q2, Q3 ∈ R(n−1)×(n−1), where

Q1 =
8

3
I (I is identity matrix), Q2 = tridiag

[
−1

6
, 0,−1

6

]
,

Q3 = tridiag

[
− 1

12
,−1

6
,− 1

12

]
;

Q̂4, Q̂5 are hypermatrices where

Q̂4 = tridiag[Q3, Q2, Q3], Q̂5 = tridiag[Q2, Q1, Q2],

then it is easy to see Q = tridiag h[Q̂4, Q̂5, Q̂4] ∈ R(n−1)3×(n−1)3 .

Using the one-step method to the discretization of (2.7) we get the system
of linear algebraic equations

(2.8) X1α
j+1 = X2α

j , j = 0, 1, 2, . . . ,

where X1 = M + τγQ, X2 = M − τ(1− γ)Q, αj is the approximation of α(t)
time-level tj = τj, τ > 0 is the time-step parameter and γ ∈ [0, 1] is a given

parameter. We remark that α0 is an appropriate approximation of the initial
function at the points of the mesh, namely, we can take (α0)i,j,k = u0(xi, yj , zk).

So, if u0 ≥ 0 then α0 ≥ 0.

3. Nonnegativity of full discretization

We need the nonnegativity of the matrix

X = X−1
1 X2.

The most trivial condition of the nonnegativity of X is the conditions

X−1
1 ≥ 0 and X2 ≥ 0. We give some condition for the number q =

τ

h2
which

guarantees these conditions.

For the matrix X2 we can do it directly and it results the upper bound

(3.1) q ≤ 1

9(1− γ)
.
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In the case of the matrix X1 we are not able to get a sufficient condition
for the nonnegativity of the matrix X−1

1 by the M -matrix method [1]. (Like it
was done for one and two dimensional cases [3], [5], [6], [7].) It follows from the
fact that X1 always contains some positive elements in its off-diagonal. But
by using Theorem 3 in [8] we can give some other sufficient condition for the
nonnegativity.

For this aim we decompose X1 into the following matrices: the diagonal
part (X1)d, the positive off-diagonal part X+

1 and two negative off-diagonal
parts Xz

1 and Xs
1 , where Xz

1 is an upper triangle negative element of X1 and
Xs

1 is a lower triangle negative element of X1. One can check that in the case

(3.2)
2

27
≤
(

1
54 − 1

6qγ
) (

1
216 − 1

12qγ
)

8
27 + 8

3qγ
,

all conditions of the above theorem are satisfied. The inequality (3.2) results
the bound

(3.3)
259 + 13

√
409

36γ
≤ q.

So, we have

Theorem 1. If the conditions

(3.4)
259 + 13

√
409

36γ
≤ q ≤ 1

9(1− γ)
; 0.992395 ≤ γ < 1,

259 + 13
√
409

36
≤ q γ = 1

are fulfilled then the solution of the numerical scheme (2.8) remains nonnegative
for any initial nonnegative vector α0.

Obviously, the upper bound in (3.4) is a sufficient condition for the
nonnegativity of numerical scheme (2.8). To get a greater upper bound let
us apply the process given in [10].

Denoting by

T =

[
I 0

−X2 X1

]
,

where I is the identity matrix of dimension (n − 1)3 × (n − 1)3, the problem
(2.8) can be rewritten in the form

(3.5) T

[
αj

αj+1

]
=

[
αj

0

]
.
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So, if under some conditions (3.5) conserves the nonnegativity then under
the same conditions (2.8) also does it. Therefore we examine the condition T
to be an inverse nonnegative (monotone) matrix. For this aim, we are going to
apply Theorem 3 in [8]. We partition T into the diagonal part Td, the positive
off-diagonal part T+ and two negative off-diagonal parts TZ and TS . Denoting
by

Td =

[
I 0
0 tdI

]
, T+ =

[
0 0

−X−
2 0

]
, TZ =

[
0 0
0 X−

1

]
, TS =

[
0 0

−X+
2 0

]
,

we obtain, that in case

(3.6) p ≤ 3s1t
−
1 + s2t

−
2

td
,

all conditions of above theorem hold. Here we have used the notations

p = −
[
8

27
− 8

3
q(1− γ)

]
, s1 = −

[
1

54
+

1

6
q(1− γ)

]
,

s2 = −
[

1

216
+

1

12
q(1− γ)

]
, td =

8

27
+

8

3
qγ, t−1 =

1

54
− 1

6
qγ,

t−2 =
1

216
− 1

12
qγ.

So, (3.6) results the upper bound

(3.7) q ≤ 691(2γ − 1) +
√

91472γ2 − 91472γ + 477481

12132γ(1− γ)
.

Summarizing our conditions, we have the following

Theorem 2. If q satisfies the conditions

(3.8)
259 + 13

√
409

36γ
≤ q ≤ 691(2γ − 1) +

√
91472γ2 − 91472γ + 477481

12132γ(1− γ)
,

and
0.9923 ≤ γ < 1,

then in case n ≥ 4 the numerical scheme (2.8) conserves the nonnegativity for
any nonnegative vector α0.
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Remark 1. Let us substitute γ = 0.995 into (3.4) and (3.8). It leads to
the bounds

14.5703 ≤ q ≤ 22.2222,

and
14.5703 ≤ q ≤ 22.7773,

respectively.

Analogically, if we substitute γ = 0.9999 into (3.4), (3.8), we obtain

14.4989 ≤ q ≤ 1111.11,

14.4989 ≤ q ≤ 1139.13.

Under the condition (3.8) T is monotone and since T

[
e
e

]
≥ 0 (where

e=[1, 1, 1, . . .]T ∈ R(n−1)3) so the maximum principle also holds [2]. From this
fact we can prove directly the monotone convergence of the numerical scheme
(2.8) in maximum norm. Since the numerical scheme satisfies the maximum
principle and at each time level the solution is nonnegative, we have

max
1≤i≤(n−1)3

αj+1
i ≤ max

1≤i≤(n−1)3
αj
i .

Using the notation ∥∥αj
∥∥
c
= max

1≤i≤(n−1)3

∣∣∣αj
i

∣∣∣ ,
we get immediately

(3.9)
∥∥αj+1

∥∥
c
≤
∥∥αj

∥∥
c
,

which means the monotone convergence of the numerical scheme (2.8) in
maximum norm.

Remark 2. Let us consider instead of (2.1) the equation

∂u

∂t
− k

(
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

)
= 0, (x, y, z) ∈ Ω, t > 0,

where k > 0 is a given constant. Repeating the same calculation instead of
(3.4) we get the bound

259 + 13
√
409

36kγ
≤ q ≤ 1

9k(1− γ)
; 0.992395 ≤ γ < 1
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and instead of (3.8) we get

259 + 13
√
409

36kγ
≤ q ≤ 691(2γ − 1) +

√
91472γ2 − 91472γ + 477481

12132kγ(1− γ)
,

0.9923 ≤ γ < 1.
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