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ON COMPLETELY ADDITIVE FUNCTIONS
SATISFYING A CONGRUENCE

A. Kovéacs and Bui Minh Phong (Budapest, Hungary)

Abstract. A fascinating connection was conjectured on sums of com-
pletely additive functions satisfying a congruence by Katai. The object of
the present paper is to prove that if P(z) = 1+ A2+ A, 224+ A3z3+A42% €
IR[2] \ @[z] and f € A" satisfy the congruence relation

f(N)+ A1 f(n+1)+ A f(n+2)+ Asf(n+3)+ A f(n+4) =0 (mod 1)

for every positive integer n, then f(n) is identically zero. Another purpose
of the authors was to discuss the problem from group thcoretical aspects
and to describe an algorithm verifying the conjecture for finite number of
functions under a certain bound.

1. Introduction

An arithmetical function f(n) is said to be completely additive if the
relation f(nm) = f(n)+ f(m) holds for every positive integer n and m. Let A*
denote the class of all real-valued completely additive functions. Throughout
this paper we apply the usual notations, i.e. P denotes the set of primes, IV
the set of positive integers, @ and IR the fields of rational and real numbers,
respectively.

Let P(z) = 14 A1z + Az22% 4+ ... + Agz® (k > 1) be a polynomial with
real coefficients. Let E denote the operator E'z, := z,41 in the linear space of
infinite sequences. For the polynomial P(z) we have

P(E)f(n) = f(n)+ A1 f(n+ 1)+ ...+ Apf(n + k).
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Conjecture I. (Kitai) If f € A* P(z) ¢ @Q[z] and P(E)f(n) = 0
(mod 1) for alln € IN then f(n) is identically zero.

This conjecture was proved for the case of k = 2 (see [1]). Moreover, Katai
raised a more general question:

Conjecture II. (Katai) Let f; € A* (7 =0,1,2,...,k). Assume that

k
Y fin+i)=0 (mod 1)

§=0

foralln € IN. Then f;j(n) =0 (mod 1) for every n € IN and for every j.

In [2] Katai proved it for the case of k == 3. The idea can be extended to
the Gaussian integers, as was done in [5, 7]. It was examined the analogy of
the conjecture for three completely additive [4], as well as for two [3] and three
[6] additive functions.

2. Group theoretical approach

We extend the domain of an arbitrary real valued completely additive
function f(n) for the set of positive rational numbers @. by f(a/b) := f(a)—
~f(b). Let us do it for fo, f1, f2...., fr (k € IN) and let us define the set

k
Qi = { (a0, a1,az,...,ax) € QFF! Zfi(a,-) =0 (mod1)}.
1=0

Performing the multiplications component-wise it is easy to see that (@**!; ) is
an abelian group. Hence, it follows from the additivity that if (a¢, a1, ...,ax) €

€ Q and (b, by, ...,b) € Qi then (agho~ ', a16;7%, ..., axbr™') € Q. Thus,
the following assertion is obvious.

Assertion. (Qy, -) is an abelian group with respect to the above defined
multiplication.

In fact, we think that the next conjecture is true:

Conjecture III. If(A, ") is a subgroup of the group (Q"; -), where h € IN
and (n,n+1,...,.n+h—1)€ A foralln € IN, then A = Q".

It is clear that the first conjecture follows from the second one and the
second from the third one. It seems to be hard to prove each of them in
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general. The main result of this note is to prove that the first conjecture is
true for k = 4.

3. The main theorem

Theorem. Let P(z) = 1 + Ajz + Azz? + A3z + Aqz* be a polynomial
with real coefficients, P(z) & @|z]. If f € A* satisfies the congruence relation

(1) Ln:= P(E)f(n)=0 (mod 1)

for every n € IN, then f(n) is identically zero.

In order to prove the theorem we shall use an induction-like rmethod.
3.1. Induction step

Lemma 1. If (1) holds for every n € IN and f(m) = 0 is satisfied for
every positive integer m < 23 then f(n) = 0 for every n € IN.

Proof. We prove the lemma indirectly. Let
Ky ={neIN : f(n)=0}.
Assume that K; # IN, i.e. there exists a smallest positive integer S such that
(2) 7(S) #0.
By the assumption of the lemma it is pretty obvious that
(3) SeP

and S > 29. First we shall prove that for each V satisfying the relations
Ve{S+2S5+6,5+8,S+12}and V=1 (mod 6) we have

(4) f(V)=0 or f(V)¢Q.

Suppose that (4) does not hold. Then for some U for which U € {S + 2,5+
+6,S+8,5+12} with U =1 (mod 6), we obtain

() fU)#0 and f(U)e@.
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By the fact U =1 (mod 6) it is easily seen that
(6) {U£1-6k,U+2-6k,U+3-6k2U%2 : k=0,1} CKy.

By using (1) and (6) we get that Ly—; = A, f(U) =0 (mod 1), which with
(5) implies that

(7) AL €@.

Let us observe that

(8) fU-2)¢@,

since in the opposite case, by using (1) and (6) we get
Ly-a=A2f(U~-2)+ A f(U) =0 (mod 1),

Ly_3 = Alf(U - 2) +A3f(U) =0 (mod 1),
Ly_= fU=-2)4+Af(U)=0 (mod 1),

which with (5) and (7) would imply that P(z) € @[z]. In virtue of (5), (8) and
of the equation Ly 9 it is obvious that

9) A2 ¢ Q.

Since 3 | (2U +1) and (2U +1)/3 < S, we have f(2U +1) = 0, hence by using
(5), (6), (7), (9) and the equation

Lyy—2=A1f(2U = 1)+ A2 f(U) =0 (mod 1)
we obtain
(10) AL#0, FQU-1)g Q.
Consider the equation
Low-1=f2U - 1)+ A1 f(U)+ Asf(2U +3) =0 (mod 1),
which with (5), (7) and (10) implies that

(11) As #0, Asf(2U +3) ¢ @.
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By using relations (5), (8), (10) and (11) it is easy to see that U, U —2, 2U -1,

2U + 3 € P, consequently U = 4 (mod 5). Since U =1 (mod6), U =4
(mod 5), U < S+ 12 and S > 29 tac following statements hold:

312U -5, (2U-5)/3< S, 5|20 -3, (2U-3)/5< S.
It means that f(2U — 5) = f(2U — 3) = 0. Hence, using (5), (6) and the

equations

L2U—6 = Agf(U - 2) =0 (mod 1),
Ly-4=Asf(U —2)+ Asf(U)=0 (mod 1)
we have
(12) As € Q.

On the other hand, using (5), (6), (7) and (10) the equation Ly_7 = A f(U -
—6) = 0 (mod 1) gives that f(I' —6) € @, which with (11), (12) and by
Ly_¢ = f(U=6) + Asf(U —2) =0 (mod 1) implies f(U —2) € @. This
contradicts to (8). Thus, we have proved (4).

Now we are able to prove Lemma 1. We distinguish two cases:

(I) S=1 (mod§6),
(1) S=5 (mod6).

Case (1). In this case we have
(13) {S+146k,S+2+6k, S+3+6/.S+5+61 : k=10,1,2,3 1=0,1,2} C Ky,
and by virtue of the equations Ls..;, Ls_2, Ls_3, Ls—4 we get

AL f(S) = Axf(S) = A f(S) = A4f(S) =0 (mod 1).

If f(S) € @ then A; € @ (j = 1,2,3,4) but this is a contradiction, since P(z)
¢ @Q[z]. Then we have

(14) I(5)¢ Q.
Observe that if A; € @ for some 1 < j < 4 then A; = 0. It means that
(15) A;g®Q or A;=0 (=1,2,3,4).

Let i = 0. It follows from (14), (15) and from the equation Lsys; = f(S+
+61) + Aaf(S+4+6/) =0 (mod 1) that

(16) As @@, f(S+4+6i)#0.
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The reader can readily verify that f(S + 6 + 6i) # 0 since in the opposite case
using the equation Lsyayei = f(S+4+6i) =0 (mod 1) we get f(S+4+67) €
€ @. This with (13), (15), (16) and by Ls+1+6:, Ls+2+6i, Ls+3+6i implies A; =
= Az = A3 = 0. Hence the equation Lys44.+12; would infer A4 f(S+4+6i) =0
(mod 1), i.e. A4 € @ which is a contradiction. So we have f(S + 6 + 67) # 0.
By similar arguments for i = 1,2 and by using (4) we obtain f(S+4) # 0 and
f(S+6:)#0(:=0,1,2,3). It means that §,5+4,5+6,5+12,S + 18 are
primes which is impossible since S > 29 and one of these numbers is a multiple
of 5. So we proved that Case (I) cannot occur.

Case (II). In this case it is no hard to see that
{S+1+6k,S+3+6k,S+4+6k,S+5+60 k=0,1,21=0,1}CKy.

Let i = 0. Because of P(z) ¢ @[z] it is easily seen that f(S + 2+ 67) # 0 and
by (4) we have

(17) f(§+2+61) ¢ @
Hence by using the equation
LS+2+61Z = f(S + 2+ 61) + A4f(.,(; + 6+ 61) =0 (mod 1)

it follows f(S + 6 + 6¢) # 0. Suppose that f(S + 8 + 6¢) = 0. Then from
Lsiet6i we get f(S + 6+ Gi) € @, theretore by Lsi3syei, Lstatsi, Lst5+6i
we infer A;, A3, A3 € @. Moreover, by the equations Ls_i46i, Ls+146: and
by (17) immediately follows that 4; = Az = 0. Since 25 + 8 4+ 12¢ € Ky,
25+ 10+ 127 € Ky, the equation

Lzs+g+12,‘ = A4f(2S + 12+ 12l) = A4f(5 + 6+ 61) =0 (mod 1)

gives Ay € @ which is contradiction. So f(S + 8 + 67) # 0. Similarly, for
i = 1 using (4) we obtain S,S + 2,5 + 6,5 + 8,5 + 14 are primes, but this is
impossible since S > 29 and one of these numbers is a multiple of 5. The proof
of Lemma 1 is finished.

The proof of the theorem will be completed by proving the following

Lemma 2. If(1) holds for every n € IN then f(m) = 0 for every positive
integer m < 23.

To verify this lemma we discuss the next conjecture which is a step-by-step
approach of the second one.
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3.2. Algorithm for the bounded case

Conjecture IV. Let fo, f1,. ., fr € A*. Given any e € IN there exists a
number d € IN such that if L,, := :>:f=0 fi(n+37)=0 (mod 1) holds for every
n<d(n€lIN) then fj(n) =0 (mod 1) for everyn<e(j=0,1,...,k).

We introduce some notations.
Let us denote the n-tuple £, := (n,n+1,...,n+k) € Q. Let furthermore

[ := {(ao,a1,...,ax) : a; are squarefree integers,a; > 1 (0 < j < k)}.

For an arbitrary v = (ao,a;,...,ax) € 'y we define the vector v = v(y) as

follows. Let the prime decomposition of a; be a; = p(lj)p(zj) . .pg), where the

factors are written in ascending order. Then

v(v) = o@$™), - fo@™), @), @), f @), )] =
:[’U],'Ug,...,‘l)y}, /J:lo+11++1k

Example. Let k =4,v = (6.30,10,15,3).
Then v = [f0(2), fo(3), £1(2), f1(3) f1(5), f2(2), f2(5), f3(3), f3(5), fa(3)].
Let Af = {[b1,b2,...,b,] }:Jfleijj =0 (modl), b € Z}. Let b =
=[b1,...,b,] € Aj. Then

bufo®) + . 4 big fuP) + o+ bufe(pf) =0 (mod 1),
which can be rewritten as

fo(Bo) + fi(B)+ ...+ fi(Be) =0 (mod 1),

where B, = [Tv_, (p$)b+*, s = lo+. . .+1i-1. Let f(= (b)) = (Bo, B, -- -, Br).
Clearly, 8 € @%. Let A; = {B(b) be Aj}.
Remarks.

1. It follows from our construction that there is a one-to-one correspon-
dence between A¥ and Ak.

2. A;C Q.
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Example. Let k,v,v as before. Suppose that b = (1,2,3,1,-2,~-3,1,

~2,3,1) € A Then § = (18,258,125 3) c AL

Algorithm to verify Conjecture IV.

Input k,e € IN

1. Let 7y be an arbitrary element from I'y and let v be the vector generated
by v as before.

2. By using the equations L;, Lo, ..., L; and the fact that fo, fi,..., fx €
€ A* express all the possible Fy, Fy, ... F; € A;. The corresponding vectors
G1,Gs,...,Gj € AE can be considered as rows of a matrix M € IR**¥.
Examine so many equations that the rank of the matrix M will be equal to p.

3. Using Gaussian elimination over the integers it can be solved the linear
equation My = 0 (mod 1). If the only solution is v = 0 (mod 1) then go to
the next step, otherwise go to the step 2, incrcase i and find a new matrix M
or go to the step 1 and choose a new 7.

4. Investigate so many equations Lq, Ly, ..., L;,... while all f;(p) can be
expressed in the form f;(p E, yhivp (mod 1) (p<e,peP,by €Z,0<
< j < k). Then the conJecture is true for k,e and d is equal to 7, which is the
number of the examined equations.

If the conjecture is true, the algorithm terminates.

Remark. For a given k, e the d is not unique, it depends on the selection
of 7.

4. Examples

Implementing this algorithm the experiments with a simple Maple! program
show the following results:

Example. Let k =4, = (210, 210,210,210, 2310). Then we have

L3LE L30L3 L1781 L35 L30 L3, La3La7 L35 L3, Lo8LesLo1 L1a1Lras

Fy =
b LeL80L13L15L16L18L59 L3, L35 Lo Lo L LaalarLaglroLral?yL117L010

31975 313 2335275 21033 3205
_(28512’5‘1—2’ 327 72 ’2577)

! Maple is a registered trademark of Waterloo Maple Software.
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L3L3,L3,L15L2L3 sﬁ'vsﬁgr£27C29Cao531£38544ﬁ45£47548£57559

Fy=
2 L3L2,L84L29L21 L3, L28L32L33L54 L8, L01Lo2L116L118L120L 25,
L65£70 _ ( 512 232 314510 21275 5477
L141L143 - 9334710’ 34515’ 94374 ’ 31356 2213811
= L3L33L3,L10L21L22L3,L3,L3 2L34L37Ls5Lo6LssLe2L91L92L132

L30L31L£12L35L35L56L27L29L30L31 LagLasLasLarLisLsaLles

L140L141L142L143L144 _(21776 5° 24335 5% 29314)
Le9Lr0L71L7aL11aL11sL117L119  \ 313587 21432 76’ 3474’ 5573115

Egﬁflﬁszﬁs E%sﬁ 3E 15331: 5C54£62£55E115[,141[:143[:152 -
LELS L2 L2 L10L3,L5,L55Lo8 L3 La7L56L70L3,L132

( 335 311 5.7 23953710 24310 314116)

Fy=

217511’ 210 ! 339 ’ 5 72 ! 285475
L9L14L18L21L30L33L45LagL54 L2, L1 L115L121L141L143L 168

Fys = =
s LsL3,L11L13L15L16L%,Loa L35 Lg% La9LasLlarlssLeoL70Lo2

3117 78 2753 2635 52113
= 91356 912 3 5’ 314 ' 5574’ 9233

L3L3, L2333 L06Lo7 L3 L3 Laa L35 L3 L2 L74L11aL117L119L174

Fg = - =
6 ﬁsﬁgﬁmﬁhﬁigﬁ19[32[«34[:%5£32£37£55£56£58£§2ﬁgsﬁgz
26319 215713 51875 31074 5672112
= (5379 139515 * 931315’ 91157’ 94315 ) ,
F L8, L12L15L16L35L33L26L29L30 L3 L5 LarL8 L2, Lo5L70L74
e =

L3L303, LB 1L L2, L5 LasCoylasLaalarlss Lsalool iy L2y
E114£1176119£132_ 31155 94076 51575 9 77 5117211>
' Li3sL141L1a3  \ 220711 314525 96138 39514° 935317
L3L2,03,L18C33L54L3,L92L115L141L143C 183 _
L10L%)L13L16L33L55L28L3 LasLasLarLssLe1Lro
23312 345672 2307 31054 210115
= ( 577 ' 923 31652’ 91473’ 5773 >’

Fs:

L8L30L33L34L15L19L59L54 L35 Lo8LaalssLosLrL132L180

Fy = — =
® L8, L2,L24L33L26L30L32L36L35L5L3 L5 L0 Lo1L11aL11s
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2215476 522 22032.3 310511 23277
= ( 323 ' 9183376’ [1375 ° 9678 ’35510112)’
L8L3)L13L14L10L21L22L3,L33L48L54Ls5Le2L132L141L143L185
LoL}L16L18L35L26L30L31 L33 L aala7LesLroLl7aL114 B
29377 5476 255572 2431653 21175
:< 55 2735’ 37 '—79—"3_357>’

Fig=

Froo= L4L12L34L22L24L32L54 L3, L1s6 _
! L30L11L15L16L25L3 LasL3g

B (3679 315516 25372 3457 28322113>

- 92577 92477 7 311510° 94 ° 5578

_ L3LILLIALT9 L3, L2 LaaLos L La3La7Lls5 56 L8 Lo1LaL31LE
L10L3 L35L15L23L56 La7La9 L30 L3 Las L5 Lo LarLliglesLEs LosLroLra

5%32£141£143£200£202£204 _ 21171’[' 313513 24237 21058 217326 )

Lo9L101L114L115L117L119L122  \ 32157 ' 22675 7 514737 36727 5. 711113 ]

EgcfliOE?1£lS‘C16£%8£%2£24£35£27L:29L§]E44£Z7£38£49£65£%0£74£84 )

LEL3,L15L19L5) L33L50L3,L53L37La1L55L3,Ls5L58LE5Lon

.[:326114[:117[:119‘6205 _ 96515 927 33555 78 5376
L102L152L3 41 L2455 32676 316512 97776 2831955’ 94330 ) °

_ L15L18L20L33L56L30L3:£53La4LE5L38L53L84LooL11s ,
LILIL10LT LI5L15L16L51L35L24 LT Lo7LosLazlirL56LE5L50 Lo

C%41£%43£213£215 _ 212333 26714 522713 329 23)714

£91£32£106£142 - 55719 ’ 310514’ 931339 9851177’ 32054113 / ’

_ _ L3LT5L1aL35 L35 L35 L30L35L0a L5 £52L84 L3, LosLrrsLazy
L3L10L3L33L36L21L5,L55L08L5 L35 La0La2LarLsalseLo1 LF,
Lo1L3,L105L107L132  \ 217512777 2437" 338 9779’ 510 ’

o= Lo®L1L13L35L L, L35L7aL30 L35 L3 L3 L34 L2 L36LEILE Ly
LRI L1 L5 L6 L8 LS5 L6 L7 L350 L3 L34 Las L7 LI LE Lo LSy L

.£140£<1141E142£‘1143£217 _ 26320724 31!0539 212074 25325517 228352

£g4£108£§14£%17£%19 - 534’ 97378 3455140 7720’ 522711 )°

_ L3LT0L13L1sL19L5 LT L35 L9 LY LaaLlasl3yL132L03s
L3L1L3,L14L18L21L35L30La2L35 LaslL3a L2 LesLr6Ls1Lare

Fiy

Fi3 =

Fi4

Fis

Fiq
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2656 324 31054 220714

22357
= (32176’ 31672’ 23874’ 21478’ 32258115) )

L10L] L3 L35 Lo3L35 Lo L7 L30L3 LagLas L7 L3 L25L20L74L 114 L0242
£9£?2C13£I4/-::129E:%2£‘214£§3E37£54£55£22C92£120£rf32£:1"41£%43
511 92634 31455 92716 g1l
= (214357s’ 51672 93374 32359 230327) J
LILT4L19L91 LosL35LE Lo1Lo2L132Loaz
L10L25L18L23L30L3, L3sLaalasLisLsaleoLes
2.7% 3857
= (3355 ' 91373
_ L3L13L15L3, L3, L5 L08L5 LaaliglscLooLoaloas
T L3L11L3LY,L18L01 Lo7LarLas L4 Le1 L3 Lo1L115L121
21558 21575 31459 3 21678
= (31879‘ 317510’ 25175’ 21554’ 32352116) )

Fig =

Fig =

2203272 2.557 3135.11
59 7 36 7 2.76 '

Fap

Fyy = LELILT5L1aL36L21L35L06L50L32LasLe5 La8L34Le1L5,LE5Lon

L8L30L33L15L24L20L 5, L3305 Log L3 L1al52Ls5L 56
L114L115L158L0a5 _ (37077 210321
L79L3,L120L%,, — \ 24659 518 7"

22051079 232711 329511117
344 ’ 317516’ 952716 )

From these we can give a non-singular matrix M corresponding to the

algorithm. Going to the step 4 the next chart shows the appropriate d values
belonging to the different e-s.

e 1-97 98-137 138-179 180-191 192-239 240-269
d 245 299 411 721 788 954
e 270-419 420-431 432-439 440-599 600-659
d 1076 1674 1725 1765 2401

The attentive reader can observe that by this example Lemma 2 (even
more) is proved and so the proof of the theorem is completed.

Without giving the exact vectors Fy, Fy, ..., F; € A¥ we insert some com-

puter tests verifying Conjecture IV for higher degree. For brevity let us denote
P, = Haj,aj €P,a; <n.
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Let k = 5,7 = (P23, P23, Pas, Po3, Pa3, P23). Then

1-109 110-179 180-191 192-229 230-307 308-313
624 815 853 960 1145 1240
314-397 398-419 420-431 432-439 440-457
1252 1587 1674 1726 1768
458-599 600-643
1833 2401
Let k = 6,y = (Pa7, Pa1, Pa1, Pa3, Pa3, Pas, Fya). Then
1-227 228-419 420-431 432-541 542-599
1336 1589 1674 2154 2164

Our method 1s clearly not appropriate for large number of completcly
additive functions, for large e or p. Even if we could prove Conjecture IV for
a given k to prove the induction step seems to be very hard.
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