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INFIX AND POSTFIX NOTATIONS

A. and D. Popovici (Timigoara, Roumania)

Abstract. Let (A4,Q) be a universal algebra having finite operators
domain. Evaluating the infix (postfix) expressions over (A, §2) we obtain a
characterization for the closure operator associated to this universal algebra.
Using a recursive method it proves that the language of all infix (postfix)
expressions is unambiguous. Finally, constructing a matrix grammar, it
obtains an isomorphism between the languages of the two expressions types
mentioned above. It is also presented an example in which we apply the
most important results obtained in this paper.

1. Introduction

The compilers are necessary parts of any computer. The compiler con-
struction is an important research domain in computer science. A compiler is,
in fact, a program written in a certain language.

There exist situations in which the compiler transforms the source program
in an internal form easier tc process by the computer. For example, we can
mention here the existence of a limited space of memory or of a source language
too complicated.

Usually, in the most internal forms, the operators appear in the order in
which they are to be applied on the operands, which has a big utility in code
generation, subsequent analysis, and also in interpreting (that is the realization
of a program which is able to execute the source program as it is represented
in its internal form).

Among the more frequently used internal forms we mention here the Polish
notation, quadruples and triples (to see for example [1], [3]). Also, for the code
optimization are used blocks and a program graph (for example we can see in
[5] how FORTRAN H on the IBM 360 uses such a scheme with quadruples),



212 A. and D. Popovici

and, in several translator writing systems, syntax trees in a list-structured form
(to see in [2] how the ALGOL W compiler uses them). Generally the compiler
uses a mixture of several such internal forms and not only a single internal
form exclusively. All the internal forms have in common the operators and the
operands, the difference being in how these are connected.

In this paper we refer to one of the internal forms mentioned above, namely
the Polish notation (postfix notation or reverse Polish string or suffix notation).

The Polish notation was introduced for the first time by Lukasiewicz in
order to obtain the recognition of correct sentences in formal logics. Later, this
technique proved to be useful for a larger class of context-free languages, those
generated by operator grammars (to see [4]).

There is not a general way to approach the postfix concepts and techniques.

In this paper we propose ourselves to deal with the problem of writing
some infix expressions in a unique postfix form.

2. Notations and preliminaries

The Polish notation is useful for the representation of arithmetical and
logical expressions in order to simplify and specify the exact evaluation order
of operators.

In both notations, the infix one (the usual notation in which the operators
appear between the operands) and the postfix one (the operators can be found
immediately after their operands), the operands appear in the same order, but
in addition, in the last notation, no parentheses are needed.

We shall mention now a few methods to obtain the postfix version of an
infix expression:

o in the syntactical analysis method we attach to each grammar rule which
generates the infix expression a semantic routine, construct the derivation tree
associated to this expression and successively reduce the simple left sentence; to
each reduction we appeal the corresponding semantic routine thus generating
the postfix form of the infix expression.

o In the technique of parantheses we associate to each operator a weight and
we put between parentheses each operation (to be clear the order of application
of the operators), we shall read the expression from left to right ignoring the
left parentheses, putting the operands in a list and the operators in a stack,
and, when we find a right parenthesis, the operator in the top of the stack goes
to the list.



Infix and postfix notations 213

o The technique of the operators stack uses two linear lists (one for the infix
expression, and the other for its postfix version) and a stack (where we put the
operators). Reading the first list from left to right, we write the operands
directly in the output string (the postfix form}, and the operators go in and
out from the stack according to some rules which depend on their associated
weights.

For the method, which we shall present in this paper, we shall define
recursively the postfix version of an infix expression.

Let (A,Q) be a universal algebra having the domain of operators finite.
For an operator w : A™ — A, n is said to be its arity and is denoted by 7(w).
We say that 7 is the type of the universal algebra (4, Q).

Forw € Q, 51,52, --,5-(w) symbols and £, an alphabet of symbols which
describe the operator w, we define W(Sy, Sz, -, Sr(w)) € ({Sl, S, Sy U

+
UEw) . We shall suppose that each of the symbols 51, S2, -+, Sr(w) appears

exactly once, in this order, in &(S5).S3,- - -, Sr()). This word will also contain
the symbols of X,,. For example, if 7(w) = 2 we can define &(S51,S2) = S1wSs.
The infiz expressions over the universal algebra (A,Q) can be presented
recursively in the following way:
e if a € A, a is an infix expression;
o ifw€Q, e1,e, -, €r) are infix expressions then (G(el,eg, . eT(w)))
1s an infix expression.

Eliminating the parentheses and taking, for w € Q and 51,52, -+, Srw)
symbols,

w(51a521" 7(w ):SISQH‘ST(W)M)
we shall obtain in the same way the posifiz ezpressions over (A, 2).
We can now define the postfiz version of a given infix expression:

e if a € A, a is the postfix version of the infix expression a;
o ifw € Qandforeach k € {1,2,---,7(w)}, e’; is the postfix version of the

infix expression ef then eje? -- -e5™)w is the postfix version of the infix
expression ( (e}, e, T(w))>

For an infix or postfix expression e we denote by Op(e) the number of
operators which are used in the description of the expression (at each operator
we shall calculate its number of appearances).
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3. Infix and postfix expressions

in the following we shall present other construction methods for infix and
postfix expressions over the universal algebra (A4, 2).

Let
Vv ={S}, Vr ={s} and the grammars

Gi = (VN,VT U{(,)}UQ,S,P,-),
Gy = (Vi, V2 UQ,5,P;)

having the productions

Pi={s— (35,5 5)), weQ}u{S—s} and

Pp={5-85  Swwealuis—s}
7(w)
The words of the language L(G;) are simply called infiz ezpressions, and those
of the language L(G,) postfiz expressions.
For each subset B C A we shall define the mapping

op: Vr U{(,)}UQ —PlAU{(,)} UL,
op(s)=B, og(z)=z (r#59)

+
which can be extended to £ = (VT u{(,)tu Q) using the relation

op(zy) = op(z)op(y). z,ye Xt

Without difficulty we can observe that

Proposition 3.1. 04(L(G;)) (respectively 6 4(L(Gp))) represents the set
of all infix (respectively postfiz) expressions over the universal algebra (A, ).

Remark 3.2, If F is a finite set of symbols (variables over A) with the
help of the mapping
op Ve U{()}UQ = P(FIU{(,)}uQ,
orp(s)=F, or(z)=z (z#s)
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we can obtain all the infix or postfix expressions having at most cardF' elements
of A. More exactly

U o (L(G;)) (respectively U oB(L(Gp)))

BCA BCA
cardB=n cardaB=n

represents the set of all infix (postfix) expressions over (A4, Q) having at most
n symbols from A.

We consider a sequence (L™ (G;))nen of languages recurrently defined by
the relations

L%(Gi) ={s},
0 LG =L (G { (e, e, o))
wEQ, e € LMNG), k = 1,T(u)}.

Denote by Op™(G;) the set of all infix expressions e; € L(G;) with Op(e;) = n.
Obviously, with these notations,

LG, = JOr"(Gy).

Remark 3.3. If ¢; € L™(G;), n #0, then

Op(e;) <1+m+ -+ m(*=1 where m = max T(w).
wE

For this purpose, let =, = max )Op(ei), n € N*. Obviously 2o =0, z; =
e, €L™(G,

= 1. Because for e; € L™(G;) with Op(e;) = &n, € = (J(ei)ei’...’ei)) has
m(w)
Op(e}) = Tny1- We deduce the recurrent relation

Tn4l =MIp + 1, ne€ N.

The conclusion it obtains easily.
Proposition 3.4. L(G;) = U L"(Gi).
neN
Proof. Obsewve for the beginning that Op™(G) C L"(G;), n € N.

We shall verify this property by induction. It is obvisus that Op'(G:) ¢
L'(G;). In order to make the induction step observe thatif e € Op"t(G;),
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then there exists w € Q, e1, ez, -, er(,) infix expressions such that e =
= (5(61,62,"'yer(W)))' Since Op(ex) < n, k = I,T—(cu) the expressions ey
will be words in L*(G;) which shows that e € L"t(G;).

So, we obtained that

LGy = |J or(Gi) c | L7(Gy)

neEN neN

and the conclusion follows immediately.

Definition 3.5. The closure operator J : P(A) — P(A), associated to
the universal algebra (4, Q) of the type 7, can be defined by the relation

=|J7"B) BcC4

neN
the sets J”(B), n € N being recurrently built with the help of the formula
J°(B) =B,
@  ITB)=TMB) U {wler e o)l
weQ, e €JYB), k=1r@)}, neN.
For an infix or postfix expression e over the universal algebra (A4, Q) we

shall denote by Ewv(e) the element of A obtained by the evaluation of the
expression.

Proposition 3.6. For each B C A

J(B) = Ev(ap(L(Gi)))-
Proof. Using the result presented in the Proposition 3.4

L(G;) = LJNL )} we obtain og(L(G;)) = U op(L™(G;)), B C A.
ne neN

Acting inductively, with the help of the formulas (1) and (2), we find J™(B) =
= Ev(op(L*(G;))), n € N. Consequently

J(B)= |J J*(B) = |J Ev(es(L"(Gy))) = Ev(oa(L(G)))).

neéN neN
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Remark 3.7. We can obtain for the grammar G,, likewise, results similar
to those presented for the grammar G;.

4. The postfix notation

In this section we shall build an isomorphism between the languages of
infix, respectively postfix expressions over a universal algebra (A,). Let us
recall (to see for example {7]) that a grammar is unambiguous if each generated
word has a unique leftmost derivation. The language generated by it is also
called unambiguous.

Lukasiewicz introduced the postfix notation in order to obtain for an
expression a recognized form without delimiters. The property of G, to be
unambiguous proves that. For the sake of completion we give here an original
proof. Also we verify this property for the language of all infix expressions.

Proposition 4.1. L(G;) is unambiguous.

Proof. We shall demonstrate by induction after n € N the proposition
(3) e; € L(G;) with Op(e;) < n has a unique leftmost derivation.

For the beginning let us observe that there exists exactly one expression e;
with Op(e;) = 0, namely e; = s, that for which the only leftmost derivation is

S = s. Furthermore, if Op(e;) = 1, e; will have the form e; = (G(s, S, s))
e ——r

7(w)
for some w € §. Applying the production S = s for the first leftmost symbol
S, the only leftmost derivation is

S = (a(s,s,.-.,S)) = (G(s,S,---,S)) LY (a(s,s,.-.,s) =
() r(w)-1 @)

Suppose now that (3) is true for a certain n. Let ¢; € L(G;) with Op(e;) = n+1.
The derivation of e; will have the form

4 S= (G(S, S, - -,S)) > (G(elieg, o er(w))) =¢;, forsomew € Q,
7(w)

ex, k =1,7(w) being infix expressions with Op(eg) < n. Using the induction
hypothesis and applying for each e; the corresponding leftmost derivation, (4)
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becomes a leftmost derivation for e;. We shall see in the following that this is
the only one.

Let us suppose that there exists another leftmost derivation for e;,

()

S= (Jf(s,s,'-.,s) 2 (J'(e;,s,---,S)) 2 (J(eg,e;,.-.,e;(w,,)) = &

7(w) T{w)-1

We shall prove firstly that w’ = w. Starting from the form of the expression
W(e1,e2, -, er@w)) we shall obtain &(S51,82,--+,Srw)), Sk, £k = 1,7(w)
being symbols, using the following recursive proceeding:

e because we do not know the arity of w we shall consider, for the begin-
ning, a number of symbols Si,S3, - equal with the length of the word
[‘;(el) €2, - ye'r(w))i

e put the symbols 51,55, - - - in a stack, this order being that of going out;

o search, from left to right, for the first terminal belonging to the set {s, (};

o if this terminal is s we replace it with the first symbol from the stack,
symbol which will be taken out from this;

o if this terminal is a left parenthesis wec shall replace the expression
contained between this parenthesis and the corresponding right one, so
a word of the form (e), with the first symbol from the stack which will be
taken out from this;

e repeat this process beginning with the third step until we finish all the
terminals of the word G(ey,e2,- -+, er())-

On the place of the expression &(e1, ez, - -, ¢r(w)) it obtains &(Sy, Sz, - -,
Sr(w))- Since
E":;('Sl) 52) T S'r(w)) = ‘;I(S;, ) ‘Sléa Ty S‘lr(w))

ffw=uw and Sy =S, k=1r1w)=11w)
it obtains the conclusion.

The derivation will have the form

S = (a(s,s,..-,s) 3 (&(e’l,S,--~,S)) 2 (a(e;,e;,...,e;(u))) = e

T(w) T(w)-1

The equality ex = e}, k = 1,7(w) can be proved in a similar way with that
described above. For example e; (and €}) represents the first terminal s found
or the expression of the form (e) found between the first left parenthesis and
the right corresponding one.
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Finally observe that we cannot have two different derivations of the type
(4) because, in this case, we obtain for at least one infix expression ey, k =

= 1, 7(w) two different leftmost derivations. But, in this manner, we contradict
the hypothesis.

Example 4.2. If in the infix expressions definition we do not use
parentheses, the unambiguity of G;, proved in the previous proposition, can
be easily lost. An example is the following;:

Q={+}, T(51,5) = 51452, G:= ({5}, {5,4},5{S—s, S— 5+5}).
The word s + s + s has two different leftmost derivations, namely

S=>5+5=23s5+S=2>s+S+S=>s5+s+S=>s5+s5+s,
S=2>S5+5=2>5454+45=>s5+54+S=2>s+s+S=>s5+s+s.

Proposition 4.3. L(Gp) is unambiguous.

Proof. We shall act inductively, in a similar way with that presented in
the Proposition 4.1 proving, for n € N, the proposition

(6) ep € L(Gp) with Op(ep) < n has a unique leftmost derivation.

Insist only on the induction step. Suppose that (6) is true for a certain n € N.
Let e, € L(Gp) with Op(e,) = n+ 1. A leftmost derivation of e, will have the
form

S=>8S- - SwHer S - SwDerer )W = €p,
(7) T(w) T(w)=1

for a certain w € Q,

ex, k = 1,7(w) being postfix expressions with Op(ex) < n obtained from a
leftmost derivation.

In order to prove the uniqueness of the expressions e, e, - -, €,(,) which
describe the postfix expression e, in (7) we shall use, as in the Proposition 4.1,

a recursive algorithm. We shall present in the following this algorithm using a
Pascal sequence.

We shall read the word e, from the right to left separating the expressions
€r(w)) €r(w)-1, " * *» €1, for this taking into acount the arity of each operator found

(the arity being specified by a function A). Each expression e, & = 1,7(w),
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different from the s symbol, is built in the procedure PROC with the help of
the variable ez.

procedure PROC (a:string; var ez:string);
var j:integer;

op:char;
begin
op = a,;
for j :=1 to A(op) do begin
ti=1— 1,
a := stfi;
er '=a-+ ezx;
if a <>’s’ then PROC (a, ez),
end;
end;
begin
write(’The string to analyse:’);
readln(st);
1 :=length(st);
i=1-1,
a = st[i];

for k := A(st[l]) downto 1 do begin
if a =5’ then elk] :=’s’

else begin

elk] := a;
er ;= elk];
PROC (a, ex);
elk] := ex;
end,

t:=1- 1,

a = st[i];

end;

end.
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We cannot have two differcnt derivations for e, of the form (7) because,

in this case, at least one expression ex, k£ = 1,7(w) will admit two different
leftmost derivations. But in this way we contradict the induction hypothesis.

Theorem 4.4. Every infiz ezpression e; € L(G;) admits a unique postfiz
version e, € L(Gp).

Proof. Consider the matrix grammar
Gip= (15,515} {5, £} U{() U, S, Pi,)
with the productions
Pip={S > SikS,, [Si— 5,5 =,

(50 = (85,8, 59).5 — Spsp-.-spu]wen}.
r(w) (@)

The main properties of the matrix grammars can be found, for example, in
[6]. Let e; € L(G;) be an infix expression such that e,-&e:7 € L(Gip). Applying
the productions which generated the expression e; we obtain that there exists
e, € L(Gp). The productions of the form

[5i = (350,50 +.8)),Sp = 55+ Sy, we
T(w) (w)

keep the recursive modality of the postfix version definition of an infix expres-
sion and consequently e, is a postfix version for e;.

Because the grammars G; and G, are unambiguous, for a word of the form
e;&e, € L(Gip) there exists a unique leftmost derivation. Let us suppose now
that e, is another postfix version for e;. Obviously ei&e, € L(Gip). Writing a

leftmost derivation for ei&e; we obtain a leftmost derivation for e;. The last
one being unique we obtain in fact that e;, = e,.

Corollary 4.5. The mapping ¢ : L(G:) — L(Gp), ¢(ei) = €}, defined
by the relation e;&e), € L(Gip), is an isomorphism.

Proof. Using the Theorem 4.4 ¢ is well defined and injective. This
mapping is also onto. Let us observe that if e, € L(G,), using a leftmost
derivation for e, we obtain a leftmost derivation for an expression e;&e, €
€ L(Gip). Obviously e, = e}, = w(e;) and the proof is finished.
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If & is an »fiX expression over the universal algebra (4, 2) replacing all
the operar-s With the s symbol we obtain e; € L(G:).
neplacing now each s symbol of the expression e;; = (e;) with the

elements of A used for €, in the same order, we obtain an expression e;',, the
postfix version of €. Associating this e;', to each € we obtain

Theorem 4.6. There ezists an isomorphism between the set of all infiz
expressions over a universal algebra with the domain of operators finite and the
set of the postfic expressions.

Finally we shall present an example in which we apply the results obtained
above.

Example 4.7. Consider a universal algebra (A4,Q), A being a set of
sequences (simple sequences like conditions, arithmetical and logic expressions,
certain Pascal sequences and also the empty sequence), and the operators set

Q= {i)wablrxf;:}

corresponding respectively, to the instructions of the Pascal language if ,
while, begin-end (the compound instruction), repeat, for and the instruction

of assignation.

If S1,5;, S5 are symbols we have

1(S1,S2,S3) =if Si then S, else Ss;
W(S1,S2) =while Sy do Sy;
b(S;) =begin Sy end;
7(S1,S,) =repeat Sy until Sp;
F(51,52,83) =for Si to Sy do Ss;
=(51,52) =51 := Sa.

Consider the following Pascal sequence:

for 51 to s do
if s3 then while s4 do s5
else if s¢ then begin s7 end
else sg 1= sg

which can be written as an infix expression by
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(for s1 to sy do (if s3 then (while sq4 do s5) else
(if se then (begin sy end) else (sg:= sg)))).

The postfix version of this expression it obtains in the matrix grammar
presented in the Theorem 4.4, using the following direct leftiost derivations:

S = S5;&S, = ( for SitoS; doS; )&SpSpS, f =
= (for sto S;do S; )&sSpSpf = ( for stosdoS; )&ssSpf =
= (for stosdo (if S;then S;clse S; ))&ssS,SpSpif =
= (for stosdo (if sthen S; else S; ))&sssSpSpif =
= ( for stos do (if sthen (while S; do S;) else S;))&sssS, SpwSpif =
= ( for stosdo (if sthen (while s do S;) else S; ))&ssssSpwSpif =
= ( for stosdo (if sthen (while s dos ) else S; ))&ssssswSpif =
= ( for stosdo (if sthen (while s do s) else (if S; then S; else S;)))
& ssssswSpSpSpiif =
( for sto s do (if sthen (while s dos) else (if sthen S; else S;)))
& ssssswsSpSpiif =
= ( for stosdo (if sthen (while s dos) clse (if sthen
( begin S; end ) else S; )))&ssssswsS,bSpiif =
= ( for stosdo (if sthen (whiles dos)else (if sthen
( begin s end ) else S; )))&ssssswssbSyitf =
= ( for stosdo (if sthen (while s dos) else (if sthen
( begin s end ) else ( S; := S; ))))&ssssswssbS, S, = iif =
= ( for stosdo (if sthen (while s dos)else (if sthen
( begin s end ) else (s = S; ))))&ssssswssbsS, = iif =
= ( for stosdo (if sthen (while s dos)else (if sthen

4

( begin s end ) else (s == s ))))&ssssswssbss = iif.

Replacing the s symbols it obtains the postfix version of the given expres-
sion:

5152535453 wsgS7bsgsg = uif.
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