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LYAPUNOV TRANSFORMATION AND STABILITY
OF DIFFERENTIAL EQUATION
IN BANACH SPACES

Tran Thi Loan (Hanoi, Vietnam)

Abstract. Lyapunov transformation [1] conserves the stability of solutions
of linear differential systems. vd-transformation in R™-space ([2]-[6]) is a
generalization of Lyapunov transformation, it conserves, too, the stability
of differential systems. In the article we will give the concept of vd-
transformation in Banach space and apply it to study the stability of
differential systems.

1. vd-transformation

Let E be a Banach space, G an open simple connected domain containing
the origin O of E

H=GxR={n=(z,t): z€G, t e R}.
Let us consider the continuous, monotone, strictly increasing function
Vo = IR+ — IR+

for which
vo(0) = 0; vo(t) —» +oo0 as t — +oo.

Let be given a real function d of two variables
d: Rt xRt - R,
(717 72) - d(71 ) 72))

satisfying the following conditions for all ¥ > 0, v3 > 72 > 71 > O:
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(d1) d(72,7m) = =d(m,72);

(d2) d(v2,7) > d(11,7);

(ds) d(v3,72) +d(v2,71) > d(73,71);
(da) veLJ{H {d(v,m)} =R.

Suppose that [ is a diffeomorphismn from H to H

l: H — H,
n=(z,t) — 7' =(z',t)

satisfying the following equalities

1(0,t) = (0,1),

l(z,t) = (2", 1)
for all t € R. It is easy to prove that L = {{} is a group for the composition of
maps.

Let v be a real function
v: H* — RT,
n=(z,t) — v(n) = vo(llz|])

(where H* = G* x R= (G \ {0} x R).

Definition. The transformation ! € L is called vd-transformation iff

sup |d{v(n), v[I(n)]}} < +oo,
neH*

(1) / -1/,
sup |d{v(n’), v[I”"(n")]}| < +o0,
nleH.

i.e. lis vd-transformation iff I=! is vd-transformation. Therefore the L,4-set
of vd-transformation is a subgroup of L.

Examples. 1. Let be given vo(z,t) = ||z||, do(71,72) = In(11/72) and
l(z,t) (with a fized t) is a linear transformation having bounded partial deriva-
tive with respect to t. Then | is vodp-transformation if and only if it is a
Lyapunov transformation [1].

Proof. I(z,t) is a linear homogeneous transformation for z iff

L(t) € L(E); I(z,t) = (L(t)z,t)
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is a diffeomorphism, where

sup [|Dql(z,t)]| < 00 <= sup [|L(?)]] < o0

(z.1)

(Dyl(z,t) is the second partial derivative [7]). Then

sup |In ﬂill%flﬂ[ < 400 sup ||L(t)|] < +o0
H* 1
le Lyya, &= € -1
° sup [In L0zl < oo sup ||L=}(t)]] < 400
neH* t

2. Let be given v(z,t) = |z|%, £ = R,

VIt=Vr2 it v 21,
d(y1,72) =

All conditions d; ) —d4) are satisfied, it can be proved by immediate verification.
Especially, here is the case when the inequality d3) holds strictly. For instance
when v173 < 1, 7273 < 1 (and therefore y192 > 1, where v1 > 72 > 73 > 0),
we have

1

da1,92) + dlra,20) = A1, 19) = VT = VT + = = e VS =

(V72 = va) (1 = 7275)

= > 0.

V273

Suppose
1
l(z,t) = (1’ + §sintsir12:c, t> .

It is clear that | € L,4. Indeed,

611 811 . . . » 1
9z ot | _|1—3sintsin2z Fcostsin®z| . 1 . ..

g_lz_ % “l 0 1 =1 2s1ntsm2z;£0,
dz Ot

this deduces the existence of differentiable I=1(z, ).

It is clear that 1(0,t) = (0,t), I(z,t) = (y,t) and

(*) sup |d{v(I(n)), v(n)}| < +oo.
z#0
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In order to prove (*) we can immediately verify as follows

1 . . 2
T+ —sintsin“zc
d{v(l(x’t)): v(z:t)} = 1 1

=l |z + 1 sintsin®z]

=zl for v(i(n)) - v(n) > 1,

for v(I(n)) - v(n) < 1.
On the other hand, it is easy to find that

< 1 ]sin tsin® z’

-2

1,
:c+§smtsm z| — |z|

and
1 1 % |sintsin2 :cl <
|z| |:c+-;-sintsinzx| - Izi‘z-i-%sintsinle -
1 |sintsin’ z| sin? z
= z2|1 - Llsintsin z|| = z?
Consequently,

sup |d{v(I(n)), v(n)}| < +o0.
T#0

2. Properties of vd-transformation

Consider in Banach space E the differential equation

dz
f(0,t) =0.

We denote by z(2; £) the solution of (2) satisfying the initial condition z(tg; ) =
= € and
A= lim sup [|z(¢;€)]],

e—=0+ gl
1>

A1 = lim sup wv(z(t;§).

e—0%jgf<e
t>tg

Proposition 1. A=0 <= X; =0.
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Proof. By continuity of v we immediately find that éim v(€) = 0. Since
=0

v(]|z||) is monotone, strictly increasing

lin =0.
b((')—'of
Hence
(3) klim =0 = klim v(€) = 0.

We assume that A = 0, then
le"nlc Jz(te; &)l =0

for all sequences {ex} C RY :ex — 0; {€x} C EF: & — Oand {tx} C R :tx > to.
Because of (3) we have

Jim [lz(t; &)l =0 = lim v(z(tk; &) = 0.

It follows that A =0 <= A =0.

Proposition 2. vd-transformation conserves the stability of solution ¢ =
= 0 of differential equation (2).

Proof. By vd-transformation
(z,t) — lz,t)=(y,1)
the cquation (2) is transformed to

(4) B = o)

By assumption the solution = 0 of (2) is stable, that means

lim sup ||z(t;zo)|]| =0 <= lim sup v[z(t;z0)] =0.
€—0% |zgli<e €—0% y(xg)<e
1210 t21tg

If this is false the solution y = 0 of (4) is unstable and then

lim sup v[y(t;y0)] > 0.
e—0% v(uo)<e
t2tg
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It means that there exists a positive number § such that
(5) Hom}CE: nu—yo; Hta} CR, VREN; v[y(tn;nn)] > 6.

By means of
v[z(tn;€n)] = 0 as n — oo,

where (£,,t0) = 171(na, to), one could say
(6) ve(tn;€n)] <6  VneEN.
From (5) and (6) we deduce
|ld{vlz(tn; €n)], vly(tn; mn)I}H = d{v[y(tn;mn)), vlz(tn;€a)]} >
> d{8, v[z(tn;&n)]} - 400 as m— o0
Consequently
sup [d{v[z(tn, &n)], v[I(z(tn,€n))]}] = +oo,

that contradicts to the definition of d.

Proposition 3. The vd-number
Q*vd 2 := lim ~ sup d{vlz(to + )], v[z(to)]}
t—oo t to£0

is vd-invariant, i.e. Q*vd y = Q*vd z for alll € L4, (y,t) = I(z,1).
Proof. We have

d{vfy(to +1)], v[y(to)]} = d{v[i(z(to +1)), v[l(z(t0))]} =

= d{vla(to + 1)), vla(to)]} + d{oll(z(to +1))], vli(x(to))]}-
=d{v[z(to+1)], v[I(z(t0))]} +d{v[z(to+1)], v[i(z(t0))]—d{v[z(to+1)], v[z(t0)]}}
= d{v[z(to + 1)), v[z(to)]} + A+ B,
where
[Al = [d{v[l(z(to + 1), v[i(z(t0))]} — d{v[z(to + t)], v[I(z(t0))]} <
< 2ld{v(i(z(to + 1)), v[z(to +1)]},
|B| = |d{v[{(z(to + 1)), v[I(z(t0))]} — d{v[z(to + )], v[z(to)]}] <
< 2ld{v[i(z(to + )], v[z(to + 1)1},
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therefore A, B are bounded. Consequently,

Q" vdy = Q*vdz.

Proposition 4. The vd - small number

Qudz =

- max{ﬁ%d{v[x(toﬂ)], ox(to)]} - lim %d{v[:c(to-i-t)], v[z‘(to)]}}

1s vd-invariant.

Proof. Because of
d{v[y(to +t)], v[y(to)]} = d{v[z(to +1)], v[z(to)]} + A+ B

and A, B are bounded, we immediately find that
——1 . —1
T s d{vly(to + ), iv(to)l) = T 5 d{oli(to + 1)), vlz(to)]}.
On the other hand
d{vfy(to —1)], v[y(to)]} = d{v[z(to — 1)), v[z(to)]} + C+ D,

where

ICl = ld{v[{(z(to = t))], vil(z(to))]} = d{v[z(to — V)], v[I(z(ta))]}] <
< 20d{v[l(z(to = )], »[z(to — )]},

|D| = |d{v[z(to — t)], v[I(z(to))]} — d{v[z(to — )], v[z(to)]}| <
< 2|d{v(i(z(t0))], vlz(to)]}].

i.e. C, D are bounded. Therefore, the following equality is true

tl_Lr& -tl—d{v[y(to—t)], v(y(to)]} :zl—iglo %d{v[m(tg—t)], v[z(t0)]} = Qudy = Qudz.
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3. Regular system

Definition. The transformation y = 7.(t)x is a generalized Lyapunov one
if
(7) X[L(®)] = x[L™ ()] = 0.

Remark. By definition we immediately find that generalized Lyapunov
transformation conserves Lyapunov exponents.

Theorem. A necessary and sufficient condition that the system

dz
(8) - = Al

where A(t) € C(t,R"?), z € R", 1o be regular one ([1]) is that there exists a
generalized Lyapunov transformation which carries the system (8) to the systemn
wilh constant matriz

dz
— = Buy.
9) 7 By

Proof. Let y = L(t)z be a generalized Lyapunov transformation, X (t)
a normal fundamental matrix of (8). It follows that Y (t) = L(t)X(t) is a
fundamental matrix of (9) and

detY (t) = det L(t)det X (2)
t
&detY (to) exp(t — to)SpB = detL(t)detX(to)exp/SpA(tl)dtl
to

t
@exp/SpA(tl)dtl = |C(to)||detL " (¢) exp(t — to)Sp B,

to
where

C(to) = det[Y (to) X 1 (t0))

i
1 ] .
:?/SpA(tl)dtl = 7 In|C(to)] + 5 In|det L~ 1(¢)| + (1 _ tTO) SoB
to

t
—-—1
:>t11n;102 / SpA(t;)dt, = SpB + x[detL™'(1)].
to
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Because of x[L~1(t)] = 0 we have
x[detL=*(1)] < nx[L7'(t)] = 0.
Analogously from x[L(t)] = 0 it follows that
x[detL(t)] < 0.
On the other hand, since
det L(t) - detL™'(t) = 1,
the following holds

x[detLZ(t)] + x[detL~1(¢)] > 0.
Therefore x[detL(t)] = x[detL~'(t)] = 0. It follows from these equalities that

1
tlim 7111 |detZ™(t)| = 0

and finally
t

. .
tl—l-IEo ; ~/ f)pA(tl)dtl = SpB

‘o

Since the Lyapunov transformation conserves Lyapunov exponents and the
normality of X, Y, and

13
1
ox =0y =SpB = o0x :tlim ?/SpA(tl)dt],
to

i.e. the system (8) is regular.

Let the system (8) be regular. We will denote by X(t) the fundamental
normal matrix of (8) which has the exponent numbers A; < Ay < ... < A,.
Consider the Jordan matrix B in which A;,..., A, are the diagonal elements.
Denoting by Y (¢) the fundamental normal matrix of the system (9) we constate
that it has the column of same exponent numbers as (7) A1, Az, ..., An.

Putting L(t) = Y(t)X~!(¢) we will prove that y = L(t)z is a generalized
Lyapunov transformation. Suppose that

yii(t)  yi2(t) Yin(t)
Y(t) = yzxz(t) yzzz(t) y2n.(t)

b

yn{(t) yn2.(t) ym;(t)



196 Tran Thi Loan

z11(t)  z12() z1n(t)

X-1(t) = en(t)  z2l) 220 (1)

zn1(t) Tna(l) Zrm( )
then x[y®)] = A, where y*) = colon(yik(t),. .., ynk(t)). Because of the
regularity of (7) we have x[z(*)] = -\, whcre t®) = (z41,...,2kn). We

consider now the diagonal matrix
A = diag(Ay, As. ., An).

We find then
L(t) = Y(t)e BB X1 (1) = O(t) - W(t)

in which ®(¢) = Y (t)e~'4, ¥(t) = "X ~'(¢). It follows that

x[@(1)] = max x[yjue™ ] = 0,
I

x[¥(1)] = max x[zjce™'] = 0.
I

Consequently
X[L@)] < x[2(®)] + ([¥(1)] = 0.
1

Analogously we can prove that x[L~ ( )] < 0. But from L(t) - L7'(t) = E we
immediately find that x[L(¢)] + x[L~1(¢)] > 0, i.e. x[L(t)] +x[L ') =o0.
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