Annales Univ. Sci. Budapest., Sect. Comp. 19 (2000) 143-154

ON THE MONOTONE CONVERGENCE
OF A CHEBYSHEFF-HALLEY TYPE METHOD
IN PARTIALLY ORDERED TOPOLOGICAL SPACES

LK. Argyros (Lawton, OK, USA)

Abstract. We provide sufficient conditions for the monotone convergence
of a Chebysheff-Halley-type method in a partially ordered topological space
setting.

1. Introduction

In this study we are concerned with the problem of approximating a
solution z* of the nonlinear operator

(1) F(z)=0
in a lincar space Ey, where F is defined on a convex subset D of E; with values

in a linear space Ej.

We showed recently that if [’y and Eo are Banach spaces, then under
standard Newton-Kantorovich hypotheses the Chebysheff-Halley-type method
of the form

(2) Yn = Tn ~ F'(zn) 7 F(z0),
(3) Cn = ‘FI(-"’n)_l([Im Yn] = [Zn, z4)),
(4)

Tnyl1 = yn’—Fl(xn)—l(-[_cn)_l([l'myn]‘—[zmrn]) (yn"zn), To € l), n>0
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converges with order almost three to a locally unique solution z* € D of
equation (1), [1]. Here [z, y] denotes a divided difference of order one, which is
a linear operator.

We introduce and study the monotone convergence of the iterations {vy }
and {z,} (n > 0) given by

(5) F(vn) + [2n, zn)(wn — v,) =0,

(6) F(zn) + [Zn, Ta)(y2 — £r) = 0,

(7) [z, Zn)([Zn, Yn] = [Zn, Tn])(Wn = vn) + [Tn, Yn)[Zn, Zn)(Vntr — wn) =0
and

(8) [2n, l’n]([zn: yn] - [:cn, xn])(yn ~Zn)+ [z, yn][:cn, Sn)(Tng1 —Yn) =0

to approximate a solution z* of equation (1). We note that in order to compute
the iterates in (2)-(4), we usually result to solving (5) and (7) or (6) and (8).

The Chebysheff-Halley method (or the method of tangent hyperbolas)
converges with order three [5]-[9]. However, with the exception of some special
cases, this method has no practical value in a Banach space setting because
it requires an evaluation of the second Fréchet-derivative at each step (which
means a number of function evaluations proportional with the cube of the
dimension of the space). Discretized versions of the Euler-Chebysheft (which is
similar to ours) method were considered by Ul’m [8] and Potra [7]. UP’m used
divided differences of order one and two, whereas Potra used divided differences
of order one only. However, Potra used hypotheses on divided differences of
order two in his convergence theorem [7, p.91]. The order of convergence of
their iterations is 1.839... . The order of convergence of our iterations is almost
three. Moreover, we use hypotheses on divided differences of order one only.

II. Monotone convergence

We will assume that the reader is familiar with the meaning of divided
difference of order one and the notion of partially ordered topological space
(POTL-space) (1], [2], [7], [9]. Moreover, from now on we will assume that E,
and F, are POTL-spaces.
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We can now prove the main result.

Theorem 1. Let F be a nonlinear operator defined on a conver subset D
of a regular POTL-space E, with values in a POTL-space E5. Let vy and z
be two points of D such that

(9) vo < To
and
(10) F(Uo) S 0 S F(l’o).

Suppose that F has a divided difference of order one on Dy = (vo,zo) = {z €
€ E, | vo<z<zo} C D satisfying

(11) Ao = [z0,20], Ao = [r0,yo][z0, 0], for some yo € (vo, zo)

have continuous nonnegative left sub-inverses By and By respectively,

(12) [zo,y] 2 0 for all vo <y < zo,

(13) [z, 0] <=y if v<y,

(14) [z, z)([z,2] = [z.9]) < [z, 4][z.2] if y <=,

and

(15) BpAnLyBnlvn,zn] + Bplvn,zn] < I for all n >0,
where

(16) Lp = [2zn,Ta] = [Tn, yn],

(17) An = [xnvl’nll An = [Inayn][rmxn]

and By, B, are continuous left sub-inverses of A, and A, respectively for all
n > 0.

Then there ezist two sequences {vp},{zn} (n > 0) satisfying the approzi-
mations (5)-(8),

(18) wo<wo<v1<...<Wn SUny1 STrg1 SYn <o S 21 S Yo < To,
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(19) lim v, =%, lim z,=2" and v",2* €D with v* <z".
n—00 n—oo

Moreover, if the operators A, are inverse nonnegative, then any solution u of
the equation F(x) = 0 in (vo, zo) belongs to (v*. z*).

Proof. Let us define the operator
b (0,1’0—U0)—>E1, Pl(.’l?):l'—Bg(F(vo)—}-Ao(l‘)).
This operator is clearly isotone and continuous. We can have in turn

Pl(O) = —B[)F('Uo) Z 0,
Pl(:L'o - vg) =Ty — Vg — BoF(iL’o) + BQ(F(J’:[)) — F(’UO) - Ao(:ﬂg - ‘U())) S
< zo — vo + Bo([zo, vo] — [xo, zo])(zo —v0) < (by (10))

< &g — vo,

since [zg, vo] < [z0, zo] by (13).

By Kantorovich’s theorem [4], the operator P; has a fixed point z; €
€ (0,20 — vo) : Pi(z1) = z1. Set wg = vp + 21, then we have the estimates

F(’Uo) + Ao(wo —vy) =0,

F(’U)o) = F(wo) - F(‘Uo) - Ao(‘wo - vo) S 0

and
vo < wo < To.

We also define the operator
Py : (0,20 —wo) — E1, Po(z) = z+ Bo(F(zo) — Ao(x)).
This operator is isotone and continuous. We can have in turn
P2(0) = BoF(z0) >0,
Py(zo — wo) = ¢ — xo + BoF'(wo) + Bo(F(z0) — F(wo) — Ao(zo — wp)) <

< o — wo + Bo([zo, wo] = (20, z0])(zo — wo) < (by (10))

< zg — wy,

since [zg, wo] < [0, zo] by (13).
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By Kantorovich’s theorem, there exists z; € (0, zo—wp) such that Py(23) =
= zg9. Set yg = ¢g — 21, then we have the estimates

F(z0) + Ao(yo — z0) = 0,

F(yo) = F(yo) — F(zo0) — Ao(yo — z0) 2> 0

and
vy < wy < Yo < Ig.

We now define the operator
P3 <0,I0—U0) — Fh, P3(1‘) = I—Bo(AoLoBoF(UQ)+A0(I)).
This operator is isotone and continuous. We have in turn
(20)
P3(0) = — BoAgLoBoF(vo) >0,
P;‘;(Io - ’Uo) =Xg — Vg — BQAOLO B()F(.’EQ) + BQ[AQLQBQ(F(:L'O) - F'(vo))—

= [0, yo][zo, Lo)(z0 — vo)].
By (10) we get
(21) —ByAgLoBoF(z0) <0
and by (14)
AoLyBo[zo, vo)(zo—vo) < AgLoBoAo(zo —vo) < AoLo(zo—vo) < Ao(zo—v0),
which together with (20) and (21) gives
Ps{zq — vo) < o — vo.

By Kantorovich’s theorem there exists z3 € (0, zo — vo) such that P3(z3) =
= 23. Set v; = wg + z3, then we have the estimate

[z, zo) Lo(wo — vo) + Ao(v1 — wo) = 0.
Furthermore, we can define the operator

P4 . (0, o — Uo) d El, Pq(l‘) =z+ BO(A()LQBQF(.’E()) - fig(l‘))
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This operator is isotone and continuous. We have in turn
(22)
P4(0) :BQA()LQB()F(:C()) Z 0,

P4(£L'0 - ’Uo) =g — Vo + BvoLoBoF(‘UQ) + Bo[AoLoBg(F(l’o) - F(Uo))-—

— Ag(zo — o))
By (10) we get
(23) ByAoLoBoF(vp) <0
and by (14)
(24) AoLoBo|zo, vo] < AoLoBoAo < AoLo < Aq,

which together with (22) and (23) gives
Py(zo — vo) < 1o — vg.

By Kantorovich’s theorem there exists z4 € (0, zo —vo) such that Py(z4) =
= z4. Set ©; = yog — 24, then we have the estimate

AoLo(yo — o) + Ao(x1 — yo) = 0.
We also have by (10) and (15) (for n = 0)

v — wo = wo + BoAoLo(wo — vo) — wo = BoAoLo(wo — vg) >0,
T1 = Yo = Yo + BoAoLo(yo — ®o) — Yo = BoAoLo(yo — o) <0,
vy — x1 = wo + BoAoLo(wo — vo) = (yo + BoAoLo(yo — z0)) =
= wo — yo — BoAoLo(vo) + BoAoLo(vo — BoF(v0))—
— BoAoLo(zo — BoF(z0)) + BoAoLo(zo) =
= (I — Bo[vg, zo] — BngLoBo[un,zo])(vg —z9) <0.

Hence, we get vp < wg < vy <21 < yo < zo.

By hypotheses (13) it follows that the operators A,, A, have continuous
nonnegative left sub-inverses B,, and B, for all = > 0. Proceeding by induction
we can show that there exist two sequences {v,}, {z,} (n > 0) satisfying (5)-(8)
and (18) in a regular space F1, and as such, they converge to some v*,z* € D.

That is, we have lim v, = v*, lim z, = 2* and v* < z*.
n—0o0 n—00
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If vg < u < xg and F(u) = 0, then we can immediately have in turn

Ao(yo — u) = Ao(ro — BoF(z¢)) — Ao(u) =
= Ao([ - Bo[:Co, u])(:co - u) Z 0,

since By[zo,u] < BoAo < 1.

Similarly, we show Ag(wo—u) < 0. Since the operator Ag is inverse nonneg-
ative, then it follows from the above that wg < u < yo. Proceeding by induction
we deduce that w, < u < yp, from which it follows that w, < v, < wpy1 < u <
< Ynp1 < zp < yn for all n > 0. That is, we have v, < u <z, foralln > 0.
Hence, we get v* < u < z*, which completes the proof of the theorem.

Remark. Let us assume:
(1) There exists ¢ € [0, 1] such that

(25) [z, 2]([z.z] = [2,4]) < c[e,y][z,2] ify<e

(i) Bo is a continuous nonnegative sub-inverse of Ag.

Under hypotheses (1) and (ii), condition (15) reduces to showing that
(26) BoAoLoBu[ve, 2o] + Bo[ve, zo] < 1.

But by (14) and (25) we get
(27)
ByAoLg Bo['l)o, :L‘o]—}-B() [Uo, I()] < CBJAQBQ[’U(), 1:0]+Bo[vo, 1:0] < (C+ I)BQ[UQ, 1’0].

Then by (ii), (26) will be true if
(28) (c+ 1)[z,z] < [z,z] forz< .

Therefore, conditions (14) and (15) can be replaced by the stronger (but easier
to verify) (25), (ii) and (28).
Moreover, we can do even better.

Theorem 2. Let F' be a nonlinear operator defined on a convez subset D
of a regular POTL-space, E;, with values in a POTL-space, E,. Let vy and 2o
be two points of D such that

vo <z and F(vg) <0< F(zo).
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Suppose that F has a divided difference of order one on Dy = (vo,zq) C D
satisfying Ao = [zo,y0] has a continuous nonnegative left sub-inverse Bg, the
operators Ap, M, = [z, yn] are inverse nonnegative,

[zo,y] >0 for all vy <y < zo,

(29) [z,v] = [z,y] <0 if v<y,
[z, w]+ [w,q] — [z,2] = [v,2) >0 if v <w <z for some q € (v,2).

Then

(i) the points vp41 and xn41 > 0 are solutions of (7) and (8) respectively
if and only if they are solutions of

(30)  ([£nsyn) — [2n, Zal)(Wn = va) + [£n, 20l (vnps = wa) = 0
and

B ([n vnl = 2, 2al)(Un = 20) + [0, 20 (@ng1 = 9a) = O
for alln > 0;

(1) there ezist two sequences {vn}, {xn} (n > 0) satisfying the approrima-
lions ('5)'(8); 1 Sw Lv <. S Wy SV CZpgl SYn ... <2 <

<yo<zp, lim v, =v*, lim z, = z* and v™,z* € Dy with v* < z*.
n— 00 n— oo

Moreover, any solution u of the equation I'(z) = 0 in (vo, zo) belongs to
(v*, z*).

Proof.

(1) Let v,41 be a solution of (7), then by (13)

[zn, yn] [([zn, yn) = (20, 2a])(Wn = v} + [€n, Ta) (Vg1 — w,)] <0
from which it follows that since M, = [z,, yn] are inverse nonnegative
(32) ([zn, yn] = [Zn, Tn])(wn = va) + [Tn, T2](Vn41 — wa) < 0.
Also, by (13) we get

[Zn, Zn] [([£n, Yn] = [2n, 2a])(Wn = vn) + [0, Za)(Vn41 — wa)] <O
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from which it follows that since A, = [z, z,] are inverse nonnegative
(33) ([zn, yn] = [T, Tn))(wn = vn) + [Zn, Ta](Vns1 — wa) > 0.

From (32) and (33) we deduce that v,41 be a solution of (30).

Conversely, let vn4; be a solution of (30). Then we have in turn

0= My [([Zn, Yn] = [Tn, ) (W = vn) + An(vn41 — wn)] <
< An([Tn, yn] = [Zn, 20])(wn — vn) + MpAn(Vngr — wn),

(34)

0= An [([zn, yn] = [2n, 2n])(wn = vn) + An(vn41 — wn)] 2

35
( ) Z A"([xﬂl yﬂ] - [zn’ z"])(wn - Un) + MnAn(vn-H - wn)-

From (34) and (35) we now deduce that v,y is a solution of (7). The proof
for approximations (8) and (31) follows similarly.

(ii) The proof of this part, as almost 1dentical to the proof of Theorem 1,
is omitted.

The proof of the theorem is now complete.

In what follows we shall give some natural conditions under which the
points v* and z* are solutions of the equation F(z) = 0.

Theorem 3. Undcr the hypotheses of Theorem 1 (or 2), suppose that F
is continuous al v* and z*. If one of the following conditions is satisfied

(a) 2" =y",

(b) E, is normal and there ezists an operator Q@ : Ei — E; (Q(0) = 0)
which has an isotone inverse continuous at the origin and such that A, <T
for sufficiently large n;

(c) Ey is normal and there exists an operator R : Ei — E; (R(0) = 0)
continuous at the origin and such that A, < R for sufficiently large n;

(d) the operators A, are equicontinuous for alln > 0;
(e) E3 is normal and [u,v] < [z,y] if u <z and v < y.

Then we have

Proof.

(a) Using the continuity of F and F(v,) < 0 < F(z,) we get F(v*) < v <
< F(v*). That is, we obtain F(z*) = F(v*) = 0.
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(b) By (4) and (6)
0 Z F('Un) = An(vn - “)n,) 2 Q(’Un - w")’

0< F(2n) = An(2n — ¥n) < Q(zn — ¥n).

Hence, we get
OEQ_IF('U”)Z’U”-—U)H, 0< QMIF(In)Sl'n"yn-

Since E) is normal and lim (v, — wy) = lim (zp — ya) = 0, we have
n— 00 n—00

lim Q'F(v,) = lim Q@ !F(z,) = 0. Hence, by continuity, we get F(v*) =
n-—oo n—0oo
= F(z*)=0.

(c) As above we get

0> F(va) > R(vn —wn), 0< F(zn) < R(zn — yn).

Using the normality of Ey and the continuity of F and R we get F(v™) =
= F(z*)=0.

d) From the cquicontinuity of the cperator A, we have llm Ap(vn—

(
—W,) = 1m Ap(zn — ya) = 0. Hence, by ‘4) and (6), F(v*) = )_ 0.
(

€) Usmg hypotheses (11)-(15) we get in turn

0< F(yn) == F(yn) - F(mn) — An (yn - T,) =
= (An = [yn, zn])(zn — yn) < ([0, 20] = 27, 2"])(zn — ¥n).

Since E3 is normal and lim (¢, — y,) = 0, we get lim F(z,) = 0.
n—oo n—oo

Moreover, from hypotheses (13)
[z",2%)(zn — 2*) < [27, 20)(zn — 27) = F(70) = F(2") < [0, 2o)(2n,27)

and by the normality of E3, F(z*) = hm F(x,). Hence, we get F(z*) = 0.
The result F(v*) = 0 can be obtained smn.arly.
The proof of the theorem is now complete.

As in Theorems 1 and 2, we can prove the following result (see also [7,
Th.6.2]):

Theorem 4. Assume that the hypotheses of Theorem 2 are true. Then
the approzimations
Yn = Tn — BnF(-Tn):
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Tpn4l = Yn t+ BnLn(Z/n - 1'71); L, = [znxxn] - [xn - yn]1
Wp = vy, — Bp F(vp)
and
Un4l = Wn + B, + Ln(wn - Un),

where the operators By, which are nonnegatlive subinverses of An, generate two
sequences {v, } and {z,} satisfying approzimations (5)-(8) and (18). Moreover,
for any solution u € (vo, o) of the equation F(z) = 0 we have

u € (vn,zq) n>0.

Furthermore, assume that the following are true:

(a) Ey is a POTL-space and E, 15 a normal POTL-space;
(b) nli_‘rglo T, =z* and nli'rgo vy = V%

(c) F s continuous at v* and z*

and

(d) there exists a continuous nonsingular nonnegative operator T' such that
B, > T for sufficiently large n.

Then
F(w)=F(z*)=0.

Remarks.

(a) Similar results can iminediately follow if the divided difference [zo, zo] is
replaced by [zo, z0], vo < 20 < zgin (11), [zn, z,] is replaced by [zn, Yn-1] (n >
>'1) in (5)-(8).

(b) Our conditions coincide w:th (49) and (50) in [7, p.98]. In case E; =
= E, = IR, our conditions are satisfied if and only if F' is differentiable on Do
and F, F' are convex on Dp.

(c) It follows from all the above that our method uses similar or sim-
pler conditions than the ones in all previous results [4]-[9] and the order of
convergence is faster [3]. Note that the results in [6] have been obtained for
Euler-Chebysheff method only.
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