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A NOTE ON THE PRODUCT
OF CONSECUTIVE ELEMENTS
OF AN ARITHMETIC PROGRESSION

Yuan Jin (Xi’an, China)

1. Introduction

For an integer £ > 1 we denote by P(z) the greatest prime factor of  and
by m(x) the number of primes < z. We consider the equation

(1.1) (n+d)(n+2d)...(n+kd) =1

in positive integers d, k, £, n, y subject to ged(n,d) =1,k >2,£> 2.

P.Erdés and J.L.Selfridge confirm in [1] an old conjecture that equation
(1.1) has no solution if d = 1. Furthermore, Erdés conjectured that equation
(1.1) implies that k is bounded by an absolute constant.

R.Marszalek [2] considered equation (1.1) with d > 2. He showed that k
is bounded if d is fixed. More precisely, he proved that for any solution of (1.1)
with d > 2 we have

k < 2expld(d + 1)'/?] if £=2,
k < max{30000, (3/2)exp[1/2d(d + 2)(d + 1)/} if£=3,
k < max[30000, (1/4)d(d + 2)(d + 1)*/?] if £ =4,
k < max[30000, (3/2)(d+ 1)] if £>5.

The results in this paper considerably improve the results of Marszalek.
We will prove the following result

Theorem. For every integer d > 2 and € >~ 2 there exists a constani
ko(d,£) such that for k > ko(d,?) the equation (1.1) has no solution. For
ko(d, £) we can take the following values:

ko(d, 2) = max[64, 2exp(d)],
ko(d, 3) = max[30000, (3/2) exp(d*/?)],
ko(d, £) = max[30000, d} for £> 4.
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2. Lemmas

For the proof we need the following results.

Lemma 1. (T.N.Shorey and R.Tijdeman [3]) Ifd > 1 and (n+d, d, k) #
#(2, 7, 3), then P(A) >k, where A = (n+ d)(n+2d)...(n + kd).

Lemma 2. (R.Marszalek [2]) Let d be a positive integer and let f be a real
function for which there ezisis a positive integer ko, such that f is positive and
nondecreasing on the interval [ky, 00). If the positive integers n and k satisfy

ged(n, d) =1, n+d > kf(k),
k > max{ko, 27[1+d/f(ko)]},

then
7[P(A)] > k{log[f(k) + d]/[log(f(k) + d) + log k]}.

Lemma 3. The equation (1.1) with d > 2 has no solution if k >
> max(d, n).

Proof. If the equation (1.1) has solution, by Lemma 1 there exists a prime
P > k dividing exactly one factor of A. Thus

(2.1) n+kd>(k+1) > (k4 1)2
On the other hand, if k¥ > max(n, d) we have
(2.2) n+kd <k+k*<(k+1)>

However (2.1) contradicts to (2.2). This completes the proof of Lemma 3.
Lemma 3 implies that we may confine ourselves to the case

(2.3) d<k<n

to complete the proof of our theorem.
We assume that d, k, n, £ and y are positive integers satisfying the

equation (1.1). Thus, for 1 < < k we can write

(2.4) n+id = a;zt,

where a; is £-th power-free and its prime factors are less than k.
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Lemma 4. The products a;a; are all distinct provided

(1) k>d for £>3,
(2) k> (3/2)exp(d¥?)  for £=3.

Proof. By Lemma 1 and (2.3) we have
(k+1)f<n+kd<n+k?
Therefore
(2.5) k< n if £>3.
For 1 < 1,5,r,s < k and (4,5) # (r,s) we have ged(n + id, n + rd) < &k,
ged(n+id, n+sd) < k and by (2.5) n+id > k%. If n+id divides (n+rd)(n+sd),
then ged[n +1id, (n+rd)(n+sd)] = n+id > k?. However, this is not possible.

So, it follows that n + id cannot divide (n + rd)(n + sd). Hence the products
(n + id)(n + jd) and (n + rd)(n + sd) are distinct.

Suppose that for some 1 < 7,j,7,5 < k and (¢, 7) # (r,s) one has a;a; =
= a,a,. Putting T = (n+id)(n+ jd) — (n+ rd)(n + sd) (which we may assume
to be positive) and A = a;a;, we get

(n+id)(n + jd) = a;a;z* = Az,
(n + rd)(n + sd) = a,a,y° = Ay’.

Hence Az? > Ay’, and therefore z > y+1. Thus T > A[(y+1)* —¢¢] > Ayt~ 1.
Since Ay? > (n+d)? and A is an integer, so we obtain

(2.6) T > f(n + d)2E-1/¢,
On the other hand
T < (n+ kd)? — (n + d)* = 2kdn + k*d®* — 2nd - d°.

Using (2.5) we get
ond > 2k*d > 2k3d > k2d2.

So

2.7) T < 2kdn.
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By (2.6) and (2.7) it follows
£(n + d)?EV/t < 2kdn < 2kd(n + d).

Then
(2.8) #(n + d)? < 2%td
Now we have to consider separately the cases £ > 3 and £ = 3. If £ > 3 and
k > d, then

31(Tl+ d)2 < _el(n+d)l—2 < 2lk£dl < 2£k2£.
However, this contradicts to (2.5).

In the case £ = 3 by (2.5) we see that n+d > k(k? —d). This enables us to
utilize Lemma 2 for f(k) = k% — d. Therefore there exists a prime P dividing
A such that 7(P) > 2/3k. By z > m(z)log7(x), this gives

P > (2/3)klog(2k/3) > (2/3)kd*/®  for k satisfying (2).
From (2.4) and the fact that P divides only one factor of A, we get
(2.9) n+ kd > [(2/3)kd*/3)3.

Since
n+kd=n+d+ (k- 1),

then from (2.8) and (2.9)
[(2/3)kd*3)P < n+ d + k% < [(2/3)kd]® + k2.

This implies d < 2, and Lemma 4 is proved.

Let G be the set of primes p dividing A with p <k — 1. Forevery pe G
we choose a u(p) € {1,2,...,k} such that

(2.10) ordy[n + u(p)d] = max{ord,(n + jd)},

where 1 < j < k. We denote by H the set of all elements from {1,2,...,k}
which do not appear in the range of u. Then we have
Lemma 5.

(2.11) IT ai 1 (k= 1y

jEH
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Proof. For each prime p € G, if 1 < j < k and j # u(p), we have
(2.12) ordy(n + jd) < ord,[u(p) — Jl,

since if p™ | n+ jd, then (2.10) and ged(n, d) = 1 imply p™ | u(p) — j. Hence

1<j <k, j#u(p) 1<j <k, j#u(p)

ord, I: H (”+jd)] < ordy |: H (u(p) —j)} =

= ord,[(u(p) — 1)!(k — u(p)!] < ord,[(k —1)1].
Thus, (2.11) follows from

ordp H aj | <ordy H (n+jd)| <ordp H (n+3d)| .
JeH jeH 1<j <k, j#u(p)

Note that

(2.13) |Hi> k= (k- 1),

where |A| denotes the cardinality of set A.

Lemma 6. (P.Erdés and J.L.Selfridge [1]) Let by < by < ... < by be
positive integers such that the products bib; are all distinct. Then for k > 30000

(2.14) IT &> &,

i€D

where D is any subset of {1,2,...,k} satisfying |D| > k — n(k).
Lemma 7. If k > 2exp(q) and ¢ > 5, then

(2.15) 3(k=6)/4,(k=1)/(g=1) 5, o(k+6)/3)4

where k and ¢ are positive integers.

Proof. First we prove that
(2.16) 3(k=6)/4 5 9(k+6)/3, if k> 2exp(5).

If (2.16) is false, then
3(k=61/4 < o(k+6)/3
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So
4(k + 6)log2 > 3(k — 6)log3.

This implies
(2.17) k(3log3 —4log2) < 24log2 + 18log3.

However it is impossible for k > 2exp(5). Thus we have (2.16).
Next we prove that if k£ > 2exp(q) and ¢ > 5, then

(2.18) gE=1/(a-1) 5 g4,
If £ > 2exp(q) and ¢ > 5, then

q(’“_l)l/2 > k.

Thus
(k—1)'? > (log k)/(log q).
Since
(k= DVE< (k=1)/4(g - 1),
we have

(logk)/(log q) < {k - 1)/4(q — 1).
Consequently, (2.18) is true.

3. Proof of the Theorem

a) The case £ > 3. Lemma 4 enables us to apply Lemma 6 to the set
H given by Lemma 5. Thus in the case £ > 3, since (2.11) and (2.14) are in
contradiction for k satisfying (1), (2) and & > 30000, we have proved: if

k > max{30000, 3/2exp(d*/?)} for £ =3,
k > max{30000, d} for £ > 3,

then the equation (1.1) has no solution.

b) The case £ = 2. Now suppose that the theorem is false for £ = 2. We
shall first prove that if k > 2exp(d) and i # j, then a; # a;. Suppose that
a; = a; for some 1 # j. Assuming that z; > z; + 1, we have

dk—-1)=(n+kd)—(n+d)> (n+id)-(n+jd):aj(:c?—x?) > 2zja; >
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> 2(n +d)Y/2.
Hence
(3.1) (n 4 d) < [d*(k — 1)?]/4.

On the other hand, by Lemma 1, we have n +d > k(k — d). Thus we may
utilize Lemma 2 for f(k) = k — d. Therefore there exists a prime P dividing
A, such that m(P) > 1/2k, which by ¢ > 7(z)log7(x) gives P > (kd)/2 for
k > 2exp(d).

Since P divides only one factor of A which is a square, we get n + kd >
> P? > (k%d?)/4. Thus

(3.2) (n+d) > [(k*d?)/4] — (k — 1)d.
By (3.1) and (3.2) we have
(3.3) [k2d%/4] — (k — 1)d < [d*(k — 1)?)/4.

Thus (3.3) gives
2%(d—2) < d—A4.

However, this is not possible for d > 2. Thus for k& > 2exp(d) the a’s are
distinct and square-free. So by Lemma 5

(3.4) II & lG-0r]]e

1< <k p<k

Let us for a prime ¢ put g, = ord, ( I1 aj) and hy = ordg[(k — 1)1]. Then
1<5<k

by (3.4) if g5 > hs, then we have

H aj l (k— 1)!292'h” H P,

1<j<k p<k

and if go < ha, then there exists an integer w which satisfies orda(w) > hy — g2
and

w H a; = (k-1)! Hp.

1<5<k p<k

So we get

(3.5) II o | (k—1)120ete II~»

1<5 <k p<k
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Similarly, we have

(36) H a; l (k — 1)!292—"123%'}13 H p.

1<i<k p<k

If 2 cannot divide d and 3 also cannot divide d, then there is a prime ¢ > 5
such that g|d. Therefore.q cannot divide a;. Thus

(3.7) H aj | (k — 1)1292=h2ges=hsg=hs H p.

1<i<k p<k
On the other hand, for a prime ¢ we have
9o < [k/(q+ 1)) +log, k + 1 (cf. [2] p.221)
and also
hg > [(k—1)/(g — 1)} — log, k (cf. [2] p.221).
Therefore
(3.8) ga—ha < —(2/3)k+2log, k+2, gz—hs < —(1/4)k+2logs k+(3/2).
Further, using the above inequality,

(3.9) Hp<3k, for k=1,2,...
p<k

(see for example [4]) and the fact that the product of k consecutive square-free
integers is greater than k!(3/2)* for k > 64 (sec [1]), we obtain

(3.10) 3(k-5)/4q(k—1)/(q—1) < 2(k+6)/3k,4’

which is in contradiction with Lemma 7. If 2|d or 3|d, then by (3.6) and (3.8)
we get
3k-6)/4 £ 92 o g(k=1)/2 _ o(k+6)/3)2

which also give a contradiction for k > max[64, 2exp(d)]. If 2|d and 3|d, then
we get
3112 < 9k,

This leads also to a contradiction. So we complete the proof of the theorem in
the case £ = 2.
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