A NOTE ON THE PRODUCT OF CONSECUTIVE ELEMENTS OF AN ARITHMETIC PROGRESSION

Yuan Jin (Xi'an, China)

1. Introduction

For an integer x > 1 we denote by P(x) the greatest prime factor of x and by $\pi(x)$ the number of primes $\leq x$. We consider the equation

$$(1.1) (n+d)(n+2d)\dots(n+kd) = y^{\ell}$$

in positive integers d, k, ℓ , n, y subject to gcd(n,d) = 1, k > 2, $\ell \ge 2$.

P.Erdős and J.L.Selfridge confirm in [1] an old conjecture that equation (1.1) has no solution if d=1. Furthermore, Erdős conjectured that equation (1.1) implies that k is bounded by an absolute constant.

R.Marszalek [2] considered equation (1.1) with $d \geq 2$. He showed that k is bounded if d is fixed. More precisely, he proved that for any solution of (1.1) with d > 2 we have

$$k < 2 \exp[d(d+1)^{1/2}]$$
 if $\ell = 2$,
 $k < \max\{30000, (3/2) \exp[1/2d(d+2)(d+1)^{1/3}]\}$ if $\ell = 3$,
 $k < \max[30000, (1/4)d(d+2)(d+1)^{1/2}]$ if $\ell = 4$,
 $k < \max[30000, (3/2)(d+1)]$ if $\ell \ge 5$.

The results in this paper considerably improve the results of Marszalek. We will prove the following result

Theorem. For every integer $d \ge 2$ and $\ell \ge 2$ there exists a constant $k_0(d,\ell)$ such that for $k \ge k_0(d,\ell)$ the equation (1.1) has no solution. For $k_0(d,\ell)$ we can take the following values:

$$k_0(d, 2) = \max[64, 2 \exp(d)],$$

 $k_0(d, 3) = \max[30000, (3/2) \exp(d^{4/3})],$
 $k_0(d, \ell) = \max[30000, d]$ for $\ell \ge 4$.

2. Lemmas

For the proof we need the following results.

Lemma 1. (T.N.Shorey and R.Tijdeman [3]) If d > 1 and $(n+d, d, k) \neq (2, 7, 3)$, then $P(\Delta) > k$, where $\Delta = (n+d)(n+2d) \dots (n+kd)$.

Lemma 2. (R.Marszalek [2]) Let d be a positive integer and let f be a real function for which there exists a positive integer k_0 , such that f is positive and nondecreasing on the interval $[k_0, \infty)$. If the positive integers n and k satisfy

$$gcd(n, d) = 1,$$
 $n + d > kf(k),$
 $k > \max\{k_0, 2\pi[1 + d/f(k_0)]\},$

then

$$\pi[P(\Delta)] > k\{\log[f(k)+d]/[\log(f(k)+d)+\log k]\}.$$

Lemma 3. The equation (1.1) with $d \ge 2$ has no solution if $k \ge \max(d, n)$.

Proof. If the equation (1.1) has solution, by Lemma 1 there exists a prime P > k dividing exactly one factor of Δ . Thus

$$(2.1) n+kd > (k+1)^{\ell} > (k+1)^{2}.$$

On the other hand, if $k \ge \max(n, d)$ we have

$$(2.2) n + kd < k + k^2 < (k+1)^2.$$

However (2.1) contradicts to (2.2). This completes the proof of Lemma 3.

Lemma 3 implies that we may confine ourselves to the case

$$(2.3) d \le k < n$$

to complete the proof of our theorem.

We assume that d, k, n, ℓ and y are positive integers satisfying the equation (1.1). Thus, for $1 \le i \le k$ we can write

$$(2.4) n + id = a_i x_i^{\ell},$$

where a_i is ℓ -th power-free and its prime factors are less than k.

Lemma 4. The products $a_i a_j$ are all distinct provided

$$(1) k \ge d for \ \ell > 3,$$

(1)
$$k \ge d$$
 for $\ell > 3$,
(2) $k \ge (3/2) \exp(d^{4/3})$ for $\ell = 3$.

Proof. By Lemma 1 and (2.3) we have

$$(k+1)^{\ell} \le n + kd \le n + k^2.$$

Therefore

$$(2.5) k^{\ell} < n \text{if } \ell \ge 3.$$

For $1 < i, j, r, s \le k$ and $(i, j) \ne (r, s)$ we have gcd(n + id, n + rd) < k, qcd(n+id, n+sd) < k and by (2.5) $n+id > k^2$. If n+id divides (n+rd)(n+sd), then $gcd[n+id, (n+rd)(n+sd)] = n+id > k^2$. However, this is not possible. So, it follows that n+id cannot divide (n+rd)(n+sd). Hence the products (n+id)(n+jd) and (n+rd)(n+sd) are distinct.

Suppose that for some $1 \le i, j, r, s \le k$ and $(i, j) \ne (r, s)$ one has $a_i a_j =$ $= a_r a_s$. Putting T = (n+id)(n+jd) - (n+rd)(n+sd) (which we may assume to be positive) and $A = a_i a_i$, we get

$$(n+id)(n+jd) = a_i a_j x^{\ell} = A x^{\ell},$$

$$(n+rd)(n+sd) = a_r a_s y^{\ell} = A y^{\ell}.$$

Hence $Ax^{\ell} > Ay^{\ell}$, and therefore $x \geq y+1$. Thus $T \geq A[(y+1)^{\ell} - y^{\ell}] > A\ell y^{\ell-1}$. Since $Ay^{\ell} \ge (n+d)^2$ and A is an integer, so we obtain

(2.6)
$$T > \ell(n+d)^{2(\ell-1)/\ell}.$$

On the other hand

$$T \le (n+kd)^2 - (n+d)^2 = 2kdn + k^2d^2 - 2nd - d^2$$

Using (2.5) we get

$$2nd > 2k^{\ell}d > 2k^{3}d > k^{2}d^{2}$$
.

So

$$(2.7) T < 2kdn.$$

By (2.6) and (2.7) it follows

$$\ell(n+d)^{2(\ell-1)/\ell} < 2kdn < 2kd(n+d)$$

Then

(2.8)
$$\ell^{\ell}(n+d)^{\ell-2} < 2^{\ell}k^{\ell}d^{\ell}.$$

Now we have to consider separately the cases $\ell > 3$ and $\ell = 3$. If $\ell > 3$ and $k \ge d$, then

$$3^{\ell}(n+d)^2 \le \ell^{\ell}(n+d)^{\ell-2} < 2^{\ell}k^{\ell}d^{\ell} \le 2^{\ell}k^{2\ell}.$$

However, this contradicts to (2.5).

In the case $\ell = 3$ by (2.5) we see that $n+d > k(k^2-d)$. This enables us to utilize Lemma 2 for $f(k) = k^2 - d$. Therefore there exists a prime P dividing Δ such that $\pi(P) > 2/3k$. By $x > \pi(x) \log \pi(x)$, this gives

$$P > (2/3)k \log(2k/3) \ge (2/3)kd^{4/3}$$
 for k satisfying (2).

From (2.4) and the fact that P divides only one factor of Δ , we get

$$(2.9) n + kd > [(2/3)kd^{4/3}]^3.$$

Since

$$n + kd = n + d + (k - 1)d,$$

then from (2.8) and (2.9)

$$[(2/3)kd^{4/3}]^3 < n + d + k^2 < [(2/3)kd]^3 + k^2.$$

This implies d < 2, and Lemma 4 is proved.

Let G be the set of primes p dividing Δ with $p \leq k-1$. For every $p \in G$ we choose a $u(p) \in \{1, 2, ..., k\}$ such that

$$(2.10) \qquad \operatorname{ord}_{p}[n+u(p)d] = \max\{\operatorname{ord}_{p}(n+jd)\},\$$

where $1 \le j \le k$. We denote by H the set of all elements from $\{1, 2, ..., k\}$ which do not appear in the range of u. Then we have

Lemma 5.

$$(2.11) \qquad \prod_{i \in H} a_i \mid (k-1)!$$

Proof. For each prime $p \in G$, if $1 \le j \le k$ and $j \ne u(p)$, we have

$$(2.12) \operatorname{ord}_{p}(n+jd) \leq \operatorname{ord}_{p}[u(p)-j],$$

since if $p^m \mid n+jd$, then (2.10) and gcd(n, d) = 1 imply $p^m \mid u(p)-j$. Hence

$$\operatorname{ord}_{p}\left[\prod_{1\leq j\leq k,\ j\neq u(p)}\left(n+jd\right)\right]\leq \operatorname{ord}_{p}\left[\prod_{1\leq j\leq k,\ j\neq u(p)}\left(u(p)-j\right)\right]=$$

$$= \operatorname{ord}_{p}[(u(p)-1)!(k-u(p)!)] \le \operatorname{ord}_{p}[(k-1)!].$$

Thus, (2.11) follows from

$$\operatorname{ord}_p\left(\prod_{j\in H}a_j\right)\leq\operatorname{ord}_p\left[\prod_{j\in H}\left(n+jd\right)\right]\leq\operatorname{ord}_p\left[\prod_{1\leq j\leq k,\ j\neq u(p)}\left(n+jd\right)\right].$$

Note that

$$(2.13) |H| \ge k - \pi(k-1),$$

where |A| denotes the cardinality of set A.

Lemma 6. (P.Erdős and J.L.Selfridge [1]) Let $b_1 < b_2 < \ldots < b_k$ be positive integers such that the products b_ib_j are all distinct. Then for $k \geq 30000$

$$(2.14) \qquad \prod_{i \in D} b_i > k!,$$

where D is any subset of $\{1, 2, ..., k\}$ satisfying $|D| \ge k - \pi(k)$.

Lemma 7. If $k \ge 2 \exp(q)$ and $q \ge 5$, then

$$(2.15) 3^{(k-6)/4}q^{(k-1)/(q-1)} > 2^{(k+6)/3}k^4,$$

where k and q are positive integers.

Proof. First we prove that

(2.16)
$$3^{(k-6)/4} > 2^{(k+6)/3}$$
, if $k \ge 2 \exp(5)$.

If (2.16) is false, then

$$3^{(k-6)/4} < 2^{(k+6)/3}$$

So

$$4(k+6)\log 2 > 3(k-6)\log 3$$
.

This implies

$$(2.17) k(3\log 3 - 4\log 2) \le 24\log 2 + 18\log 3.$$

However it is impossible for $k \ge 2 \exp(5)$. Thus we have (2.16).

Next we prove that if $k \geq 2 \exp(q)$ and $q \geq 5$, then

$$(2.18) q^{(k-1)/(q-1)} > k^4.$$

If $k > 2 \exp(q)$ and $q \ge 5$, then

$$q^{(k-1)^{1/2}} > k$$
.

Thus

$$(k-1)^{1/2} > (\log k)/(\log q).$$

Since

$$(k-1)^{1/2} \le (k-1)/4(q-1),$$

we have

$$(\log k)/(\log q) < (k-1)/4(q-1).$$

Consequently, (2.18) is true.

3. Proof of the Theorem

a) The case $\ell \geq 3$. Lemma 4 enables us to apply Lemma 6 to the set H given by Lemma 5. Thus in the case $\ell \geq 3$, since (2.11) and (2.14) are in contradiction for k satisfying (1), (2) and $k \geq 30000$, we have proved: if

$$k \ge \max\{30000, 3/2 \exp(d^{4/3})\}$$
 for $\ell = 3$, $k \ge \max\{30000, d\}$ for $\ell > 3$,

then the equation (1.1) has no solution.

b) The case $\ell=2$. Now suppose that the theorem is false for $\ell=2$. We shall first prove that if $k \geq 2 \exp(d)$ and $i \neq j$, then $a_i \neq a_j$. Suppose that $a_i = a_j$ for some $i \neq j$. Assuming that $x_i \geq x_j + 1$, we have

$$d(k-1) = (n+kd) - (n+d) \ge (n+id) - (n+jd) = a_j(x_i^2 - x_j^2) > 2x_j a_j \ge$$

$$> 2(n+d)^{1/2}$$
.

Hence

$$(3.1) (n+d) < [d^2(k-1)^2]/4.$$

On the other hand, by Lemma 1, we have n+d>k(k-d). Thus we may utilize Lemma 2 for f(k)=k-d. Therefore there exists a prime P dividing Δ , such that $\pi(P)>1/2k$, which by $x>\pi(x)\log\pi(x)$ gives P>(kd)/2 for $k\geq 2\exp(d)$.

Since P divides only one factor of Δ which is a square, we get $n + kd > P^2 > (k^2d^2)/4$. Thus

$$(3.2) (n+d) > [(k^2d^2)/4] - (k-1)d.$$

By (3.1) and (3.2) we have

$$[k^2d^2/4] - (k-1)d < [d^2(k-1)^2]/4.$$

Thus (3.3) gives

$$2k(d-2) < d-4.$$

However, this is not possible for $d \ge 2$. Thus for $k \ge 2 \exp(d)$ the a's are distinct and square-free. So by Lemma 5

$$(3.4) \qquad \prod_{1 \leq j \leq k} a_j \mid (k-1)! \prod_{p < k} p.$$

Let us for a prime q put $g_q = \operatorname{ord}_q\left(\prod_{1 \leq j \leq k} a_j\right)$ and $h_q = \operatorname{ord}_q[(k-1)!]$. Then

by (3.4) if $g_2 \geq h_2$, then we have

$$\prod_{1 \le j \le k} a_j \mid (k-1)! 2^{g_2 - h_2} \prod_{p < k} p,$$

and if $g_2 < h_2$, then there exists an integer w which satisfies $\operatorname{ord}_2(w) > h_2 - g_2$ and

$$w \prod_{1 \leq j \leq k} a_j = (k-1)! \prod_{p < k} p.$$

So we get

(3.5)
$$\prod_{1 \le j \le k} a_j \mid (k-1)! 2^{g_2 - h_2} \prod_{p < k} p.$$

Similarly, we have

(3.6)
$$\prod_{1 \le j \le k} a_j \mid (k-1)! 2^{g_2 - h_2} 3^{g_3 - h_3} \prod_{p < k} p.$$

If 2 cannot divide d and 3 also cannot divide d, then there is a prime $q \geq 5$ such that q|d. Therefore q cannot divide a_i . Thus

(3.7)
$$\prod_{1 \le j \le k} a_j \mid (k-1)! 2^{g_2 - h_2} 3^{g_3 - h_3} q^{-h_q} \prod_{p < k} p.$$

On the other hand, for a prime q we have

$$g_q \le [k/(q+1)] + \log_q k + 1$$
 (cf. [2] p.221)

and also

$$h_q \ge [(k-1)/(q-1)] - \log_q k$$
 (cf. [2] p.221).

Therefore

$$(3.8) \ g_2 - h_2 \le -(2/3)k + 2\log_2 k + 2, \qquad g_3 - h_3 \le -(1/4)k + 2\log_3 k + (3/2).$$

Further, using the above inequality,

(3.9)
$$\prod_{p < k} p < 3^k, \quad \text{for } k = 1, 2, \dots$$

(see for example [4]) and the fact that the product of k consecutive square-free integers is greater than $k!(3/2)^k$ for $k \ge 64$ (see [1]), we obtain

$$3^{(k-6)/4}q^{(k-1)/(q-1)} < 2^{(k+6)/3}k^4,$$

which is in contradiction with Lemma 7. If 2|d or 3|d, then by (3.6) and (3.8) we get

$$3^{(k-6)/4} < 2k^2$$
 or $3^{(k-1)/2} < 2^{(k+6)/3}k^2$

which also give a contradiction for $k \ge \max[64, 2\exp(d)]$. If 2|d and 3|d, then we get

$$3^{(k-1)/2} < 2k$$
.

This leads also to a contradiction. So we complete the proof of the theorem in the case $\ell = 2$.

References

- [1] Erdős P. and Selfridge J.L., The product of consecutive integers is never a power, *Illinois J. Math.*, 19 (1975), 292-301.
- [2] Marszalek R., On the product of consecutive elements of an arithmetic progression, Monatsh. Math., 100 (1985), 215-222.
- [3] Shorey T.N. and Tijdeman R., On the greatest prime factors of an arithmetical progression III., Diophantine approximations and transcendental numbers, de Gruyter, 1992.
- [4] Hanson D., On a theorem of Sylvester and Schur, Canad. Math. Bull., 16 (1973), 195-199.

(Received November 29, 1994)

Yuan Jin
Department of Mathematics
Northwest University
Xi'an, China