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SOME COMPUTATIONAL PROBLEMS
RELATED TO BOYCE-CODD NORMAL FORM

J. Demetrovics and Vu Duc Thi
(Budapest, Hungary)

Abstract. In the relational database theory the most desirable normal
form is the Boyce-Codd normal form (BCNF). This paper investigates some
computational problems concerning BCNF relation schemes and BCNF re-
lations. We give an effective algorithm finding a BCNF relation 7 such that
7 represents a given BCNF relation scheme s (i. e. K, = K, where K, and
K are sets of all minimal keys of 7 and s). This paper also gives an effective
algorithm which from a given BCNF relation finds a BCNF relation scheme
such that K, = Ks. Based on these algorithms we prove that the time com-
plexity of the problem, that finds a BCNF relation r representing a given
BCNTF relation scheme s. is exponential in the size of s and conversely, the
complexity of finding a BCNF relation scheme s from a given BCNF relation
r such that 7 represents s also is exponential in the number of attributes.

We give a new characterization of the relations and the relation
schemes that are uniquely dctermined by their minimal keys. It is known
that these relations and relation schemes are in the BCNF class. From this
characterization we give a polynomial time algorithin deciding whether an
arbitrary relation is uniquely determined by its set of all minimal keys. In
the rest of this paper some new bounds of the size of minimal Armstrong
relations for BCNF rclation schemes are given. We show that given a
Sperner system K and BCNF relation scheme $ a set of minimal keys of
which is K, the number of antikeys (maximal nonkeys) of K is polynomial
in the number of attributes iff so is the size of minimal Armstrong relation
of s.
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1. Introduction

In the relational datamodel one of the irnportant concepts is the functional
dependency (FD). Several types of families of FDs which satisfy some conditions
are known under the name normal forms (NFs). The Boyce-Codd normal form
has been investigated in a lot of papers. It is shown [4] that every set of
attributes with an associated set of FDs has a decomposition into third NF
which has the loss-less-join property and preserves FDs. However, for BCNF
this does not always exist. The key is an interesting concept in the relational
datamodel. In this paper we present some computational problems related to
connections between sets of minimal keys, relation schemes and relations in
BCNF class.

Let us give some necessary definitions and results that are used in the next
section.

Definition 1.1. Let R = {a;,...,a,} be a nonempty finite set of
attributes, » = {hy,...,hm} be a relation over R, and A,B C R. Then we

say that B functionally depends on A in r (denoted A —i+ B) iff
(Vhi, by € r)(Ya € A)(hi(a) = hy(a)) > (Y6 € B)(hi(b) = h;(b))).

Let F, = {(A,B) : A/B C R,A-LB}. F, is called the full family of

functional dependencies of r, where we write (A4, B) or A — B for A 2, B when

r, f are clear from the context. ’
Definition 1.2. A functional dependency over R is a statement of the

form A — B, where A, B C R. The FD A — B holds in a relation r if AL B

We also say that r satisfies the FD A — B. Clearly, F; is a set of all FDs that
hold in 7.

Definition 1.3. Let R be a nonempty finite set, and denote P(R) its
power set. Let y C P(R) x P(R). We say that y is an f-family over R iff for
all A,B,C,DCR ‘

(1) (4,4 €y,

(2) (A, B) ey, (B,C)ey=(A,C)€Ey,

3)(A,B)yey, ACC, DCB=(C,D)ey,

(4)(A,B)ey, (C,D)ey=(AUC, BUD)ey.

Clearly, F, is an f-family over R.
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It is known [1] that if y is an arbitrary f-family, then there is a relation r
over R such that F, = y.

Definition 1.4. A relation scheme s is a pair (R, F'), where R is a set of
attributes, and F is a set of FDs over R. Let F'+ be a set of all FDs that can
be derived from F by the rules in Definition 1.3. Denote A* = {a: 4 — {a} €
€ Ft}. A% is called the closure of A over s. It is clear that A — B € F*t iff
B C At.

Clearly, if s = (R, F') is a relation scheme, then there is a relation r over
R such that F. = F'* (see [1]). Such a relation is called an Armstrong relation
of s. It is obvious that all FDs of s hold in 7.

Definition 1.5. Let r be a relation, s = (R, F') be a relation scheme, y be
an f-family over R and A C R. Then A is a key of r (a key of s, a key of y) if

ALR (A— R€ F*,(A R) €y). Als aminimal key of r(s,y) if 4 is a key of

r(s,y) and any proper subset of A is not a key of r(s,y). Denote K, (K, Ky)
the set of all minimal keys of r(s,y). Clearly, K,, K,, Ky are Sperner systems
over R (i.e. A,B € K, implies A ¢ B).

Definition 1.6. Let K be a Sperner system over R. We define the set of
antikeys of K, denoted by K ~!. as follows

K'={ACR:(BE€EK)=(BZ A)and (ACC)= (3B € K)(B C C)}.

It is easy to see that K ~! is also a Sperner system over R.

It is known [6] that if K is an arbitrary Sperner system over R then there
1s a relation scheme s such that K, = K.

In this paper we always assume that if a Sperner system plays the role of
the set of minimal keys (antikeys), then this Sperner system is not empty (does
not contain R). We consider the comparison of two attributes as an elementary
step of algorithms. Thus, if we assume that subsets of R are represented as
sorted lists of attributes, then a Boolean operation on two subsets of R requires
at most |R| elementary steps.

Definition 1.7. Let I C P(R), R€ I, and A, Be = ANB €I Let
M C P(R). Denote Mt = {NM’' : M’ C M}. We say that M is a generator
of I iff M+ = I. Note that R € M7 but not in M, since it is the intersection
of the empty collection of sets.

Denote N={A€l: A#n{A'el: AC A'}}.

In [6] it is proved that N is the unique minimal generator of I. Thus, for
any generator N’ of I we obtain N C N'.

Definition 1.8. Let r be a relation over R, and E. the equality set of r,
ie. B, ={E;; : 1<i<j<|r|}. where E;; = {a € R : hi(a) = hj(a)}.
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Let T, = {A€ P(R) : 3Ei; = A, BE,y A C Epg}. Then T; is called the
maximal equality system of r.

Definition 1.9. Let r be a relation, and K a Sperner system over R. We
say that r represents K iff K, = K.

The following theorem is known ([8]).

Theorem 1.10. Let K be a non-empty Sperner system and r a relation
over R. Then r represents K iff K~! = T,, where T, is the mazimal equality
system of r.

Let s = (R, F) be a relation scheme over R, K, is a set of all minimal keys
of s. Denote K;! the set of all antikeys of s. From Theorem 1.10 we obtain
the following corollary.

Corollary 1.11. Let s = (R, F) be a relation scheme and r a relation over
R. We say that r represents s if K, = K,. Then r represents s iff K[! = Ty,
where T, is the mazimal equality system of r.

In [7] we proved the following theorem.

Theorem 1.12. Let r = {hy,...,hy} be a relation, and F an f-family
over R. Then F, = F iff for every A € P(R)

E;; of 3E;; €E. . AC Ej,
HF(A):{AgrEJ.] ! ! !
R

otherwise,

where Hp(A) = {a € R : (A, {a}) € F} and E; is the equalily set of r.
We say that a relation scheme s = (R, F) (a relation r) is in BCNF if
VA C Reither At = Aor AT = R (Hp,(A) = A or Hp,(A) = R).

2. Results

All relations and relation schemes investigated in this section are in BCNF.
First we construct two combinatorial algorithms concerning minimal keys of
relations and relation schemes. We estimate these algorithms. After that we-
present two problems the worst-case time complexity of which are exponential.

Let s = (R, F') be a relation scheme over R. From s we construct Z(s) =
= {X* : X C R}, and compute the minimal generator N, of Z(s). We put

T,={A€e N, : BBeN, : AC B}.
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It is known [1] that for a given relation scheme s there is a relation r such
that r is an Armstrong relation of s. On the other hand, by Corollary 1.11 and
Theorem 1.12, the following proposition is clear.

Proposition 2.1. Let s = (R, F) be a relation scheme over R. Then

1\";1 =Ts.

Definition 2.2. Let s = (R, F) be a relation scheme. We say that s is a
k-relation scheme over Rif F = {K| —» R, ..., K, — R}, where {K1,..., Kn}
is a Sperner system over R. It is easy to see that K, = {K;,...,Kn}.

Clearly, if s = (R, F) is in BCNF then using the algorithm for finding
a minimal cover in polynomial time we can construct a k-relation scheme
s' = (R, F') such that F* = F'F | see [10]. Conversely, it can be seen that
an arbitrary k-relation scheme is in BCNF. Consequently, we can consider a
relation scheme in BCNF as a k-relation scheme.

Remark 2.3. It is known [10] that s = (R, F) is in BCNF iff its
minimum cover is a k-relation scheme. Consequently, the BCNF property of s
1s polynomially recognizable.

Let r be a relation over R. From r we compute E,.. We construct the
maximal equality system T, of r. By Theorem 1.10 we obtain 7, = K !.
Denote elements of T, by A;, ..., A;.

Set M, = {4; —a : a € R, 1 = 1,...,t}. Denote elements of M, by
Bi, ..., B;. We construct the relation 7' = {hg, hy, ..., hs} as follows:

for alla € R, ho(a) =0, foreachi=1,...,s hij(a) =0if a € B;, in the
converse case we set h;(a) = 1.

By [10] 7' is in BCNF and K, = K, (1). It is easy to see that M, and r’
are constructed in polynomial time in the size of r.

Set Hr,(A) = {a € R : (A, {a}) € F};}, Zp, = {A Hr (A) = A}
Denote by Nr, the minimal generator of Zp, .

Based on definition of BCNF relation and from (1) we can see that a
relation r is in BCNF iff Np, = Np,. Because for an arbitrary relation r Np,
is computed in polynomial time, the BCNF property of r can be tested in
polynomial time.

We give the following algorithm that from a given relation scheme s
constructs a relation r such that r represents s. It is known [15] that there
1s an algorithm that finds a set of all antikeys from a given Sperner system.

Algorithm 2.4. (Finding a set of antikeys)

Input: Let K = {Bj,...,Bm} ke a Sperner systems over R
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Output: K~!

Step 1: Weset K; = {R—{a} : a € B;}. It is obvious that K; = {B;}~!

Step ¢+ 1 : (¢ < m) We assume that K, = F, U{X,,..., X, }, where
X1,..., X, containing Byyy and Fy = {A € K; : Bgy1 € A}, For all
i (i =1,...,t;) we construct the antikeys of {Bg41} on X; in an analogous
way as K. Denote them by A},..., AL (i=1,...,1,). Let

Kgy1 =F,U{A} : AeFp= A, ¢ A, 1<i<t, 1<p<n}.

We set K~1 = K,,.

Theorem 2.5. Foreveryq (1< q<m), K, ={B1,...,B;}7}, i.e. K, =
=K1

It can be seen that K and K~! are uniquely determined by one another
and the determination of K~! based on our algorithm does not depend on the
order of By, ..., By. Denote K, = F,U{X;,..., Xy, }andletl; (1 < g <m-1)
be the number of elements of K.

Proposition 2.6. [15) The worst-case time complezity of Algorithm 2.4

m-—1
OORPE:%%),
g=1

where
gty if 1y >t
Y= if 1, =t,.

Clearly, in each step of our algorithm Ky is a Sperner system. In the cases for
which {; < I, (¢ = 1,...,m — 1) it is easy to see that the time complexity
of our algorithm is not greater than O(|R|?|K||K~!|?). Thus, in these cases
Algorithm 2.4 finds K~! in polynomial time in |R|,|K| and |K~!|. It can be
seen that if the number of elements of A is small then Algorithm 2.4 is very
effective. It only requires polynomial time in |R].

By Algorithm 2.4 we construct an algorithm that finds a relation such that
this relation represents a given relation scheme. By Remark 2.3 it is simple that
we can consider an arbitrary relation scheme in BCNF as a k-relation scheme.

Algorithm 2.7.

Input: s = (R, F ={K; — R,...,K,;, - It}) be a k-relation scheme

Output: a BCNF relation r such that K, = K,

Step 1: From K = {Ki,...,Kn} we contruct K~ = {By,...,B;} by
Algorithm 2.4
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Step 2: Set M = {B;—a a€R,i=1,...,t}

Step 3: Denote elements of M by Aj,..., A;, construct a relation r =
= {ho,h1,..., i} as follows: foralla € R : hg(a) =0. Fori=1,...,] we set
hi(a) = 0 if a € A;, in the converse case h;(a) = 1.

By Remark 2.3, Corollary 1.11 we obtain K, = K;, and r is a BCNF
relation.

Clearly, set M and relation r are constructed in polynomial time in
the size of K~1!. Consequently, the time cornplexity of this algorithm is

m—1
0] (IRIs > tquq>, for meanings of 1,, u, see Proposition 2.6. In many cases
g=1

this algorithmn requires polynornial time in the size of s (see Proposition 2.6).

Now we construct an algorithm which finds a BCNF relation scheme such
that a given BCNF relation represents this relation scheme. First we give the
following algorithm.

Algorithm 2.8. [8] (Finding a minimal key from a set of antikeys)

Input: Let K be a Sperner system, H & Sperner system, and C =
={by,...,bm} C Rsuch that H~! = K and 3B€ K : BCC.

Output: D e H

Step 1: Set T(0) = C

Step i+ 1: Set T'= T(3) — bij1.

) T ifVBeK : T¢ B,
T(i+1) = { T'(i) otherwise.

We set D = T'(m).

Lemma 2.9. [8] If K is a set of antikeys, then T(m) € H.

Lemma 2.10. [8] Let H be a Sperner system over R, and H™! =
= {B1,...,Bm} be a set of antikeys of H T C H. Then T C H, T # 0 if
and only if there is a B C R such that BE T}, BZ B; (Vi : 1<i<m).

Based on Lemma 2.10, Algorithm 2.8 we have the following algorithm.

Algorithm 2.11. (Finding a set of minimal keys from a set of antikeys)

Input: Let K = {By,...,Bx} be a Sperner system over R.
Output: H such that H~! = K
Step 1: By Algorithm 2.8 we compute an A;, set K(1) = A;
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Step i+ 1: If there exists a B € K[ ' such that BZ B; (Vj : 1< j<k),
then by Algorithm 2.8 we compute an A;;,, where A;4; € H, Aiy1 C B. Set
K(i+1) = K({) U Ai41. In the converse case we set H = K ().

Proposition 2.12. [16] The time complezity of Algorithm 2.11 is

m-—1
0 (n( > (kly + ntgu,) + k* + n)> ,

q=1

where |R| = n, |K| =k, |H| = m, for meanings of l;,t,,uy see Proposition
2.6.

Clearly, in cases for which [, < k (Vg 1 < ¢ < m—1) the time
complexity of our algorithm is O(|R|?|K|?|H|). It is easy to see that in these
cases Algorithm 2.11 finds the set of minimal keys in polynomial time in the
size of R, K, H. If |H| is polynomial in |R| and |K’|, then our algorithm is
effective. It can be seen that if the number of elements of H is small then
Algorithm 2.11 is very effective.

Algorithm 2.13.

Input: Let » be a BCNF relation over R

Output: a BCNF relation scheme s such that Ky = K,

Step 1: From r compute F,

Step 2: From E, compute the maximal equality system T,

Step 3: By Algorithm 2.11 we construct a set of all minimal keys H of r

Step 4: Denoting elements of H by A;,..., A,, we construct a relation
scheme as follows: s = (R, F), where FF = {4, - R, ..., Am — R}.

Based on Theorem 1.10, Algorithm 2.11 and Definition 2.2 we have
K, = K,. It is clear that the time complexity of this algorithm is the time
complexity of Algorithm 2.11. In many cases this algorithm is very effective
(see Proposition 2.12).

Theorem 2.14. [14] Let K a Sperner system over R. Denote s(K) =
=min{m : |r|=m, K, = K}. Then (2|K~|)}/? < s(K) <|K~'|+1.

Remark 2.15. Let us take a partition R = X;U,...,UX,, UW, where
|R|=n, m=[n/3], and |X;| =3 (1 < i< m). We set

H={B:|B|=2, BC X; for some i} if |W| =0,

H={B:|B|=2, BC X, forsomei:1<i<m-1lor BC X,, UW}if
wl=1,

H={B:|B|=2 BCX;forsomei:1<i<mor B=W}if |W|=2.
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It is easy to see that

H '={A:|ANX;|=1,Vi}if [W| =0,

H'={A:|[AnXi|=1,(1<i<m-1)and [AN(Xm UW)| = 1} if
W|=1,

H'={A:|[AnX;|=1,(1<i<m)and [ANW|=1}if |W|=2.

Ifset K= H™'"' i.e. H™!is a set of minimal keys of K, then we have

K={C:|C|=n-3, CNnX; =0 for some i} if |W| =0,

K={C:|ICl=n-3 CnX;, =0 forsomei(l<i<m-1)or
[Cl=n-4,CN(Xn UW) =0} if [W|=1,

K={C:|Cl=n-3,CnX; =0 forsomei (1 <i<m)of|C|=
=n-2,CNW =0}if |W|=2.

It is clear that n—1 < |H| < n+2, 31*/4 < |H~!|, |[K| < m+1. Based on
this partition, Theorem 2.14 and Algorithms 2.7, 2.13 we obtain the following
theorems.

Theorem 2.16. in the BCNF class of relations and relation schemes the
time complezity of finding a relation r from a given relation scheme s such that
r represents s is ezponential in the size of s.

Proof. We have to prove that:

(1) There is an algorithm finding a BCNF relation r from a given BCNF
relation scheme s such that r represents s and the time complexity of this
algorithm is exponential time in the size of s.

(2) There exists a BCNF relation scheme s = (R, F') such that the number of
rows of any BCNF relation representing s is exponential in the size of s.

For (1): we have Algorithm 2.7.

For (2): According to Theorem 2.14 we have (2|K~*|)}/2 < s(K). We
construct a k-relation scheme s = (R, F), where F={B—> R : BeH}. It
is obvious that H~! = K[!. Hence, (21/23["/8]) < s(K,) holds. It can be seen
that BCNF relation r that is constructed in Algorithm 2.7 has the number of
rows at most |U||H~!| + 1. Thus, we always can construct a BCNF relation
scheme s such that the number of rows of any BCNF relation representing s is
exponential in the size of s. The proof of complete.

Theorem 2.17. In BCNF class of relations and relation schemes over R,
the time complezity of finding a relation scheme s from a given relation r such
that K, = K, is exponential in the number of cttributes.

Proof. It is clear that the worst-case time complexity of Algorithm 2.13
is exponential in the size of R. In Remark 2.15 we have |[K| < m + 1. We set
M ={C—-a:Va,C:a€ R, C€ K}. Denote elements of M by Ci,...,C;.
Construct a relation r = {ho, hi,...,h:} as follows: for all ¢ € R hg(a) = 0,
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fori =1,...,t hi(a) = 0if a € Cj, in the converse case h;(a) = i. Clearly,
|r] < (m + 1)|R| + 1 holds. We construct a relation scheme s = (R, F') with
F={A— R:AE€H"'} Itis obvious that 3"/ < |F| and K, = K,.
Clearly, a minimum cover of any BCNF relation scheme is a k-relation scheme.
Thus, we always can construct a BCNF relation r in which the number of rows
of r is at most (m + 1)|R| + 1, but for any BCNF relation scheme s = (R, F)
such that K, = K, the number of elements of F' is exponential in the number
of attributes. Our proof is complete.

It is known that in the BCNF class a relation r represents a relation scherne
s iff  is an Armstrong relation of s. Consequently, our two algorithms and two
problems are still true when r is an Armstrong relation of s.

Proposition 2.18. Let s = (R, F) be a relation scheme. Then s is in
BCNF iff VBe K;'ae B:(B—a)t =B —-a.

Proof. It is easy to see that if s is in BCNF then (B —a)t = B —a for
B € K;! and a € B. Conversely, assume that s is not in BCNF. Consequently,
there is an A — {a} € F*t, where A* # R and a ¢ A. By Proposition 2.1
there is a B € K[! such that A" C B. Clearly,a € B and A C B — a. Hence,
(B —a)* = B holds. The proof is complete.

Proposition 2.18 was independently discovered in [17].

Definition 2.19. Let K be a Sperner system over R. We say that K is
unique if K uniquely determines a relation scheme s = (R, F), i.e. for every
relation scheme s’ = (R, F') such that K, = K we have Ft = F'*.

It is easy to see that s is a BCNF relation scheme.

It is known [6] that for given a Sperner system K there exists a relation
scheme s (a relation r, respectively) such that K, = K (K, = K, respectively).
We say that s (r, respectively) is unique if K; (K, respectively) uniquely
determines s (r, respectively), i.e. K; (K, respectively) is unique.

Now we give a necessary and sufficient condition for a given relation scheme
to be unique.

Theorem 2.20. Let s = (R, F) be a relation scheme over R. Then s is
unique iff foralla€ A, A€ K;' :A—a=n{Be€K;!:(A-a)C B} holds.

Proof. It is known [5] that a Sperner system K is unique iff for all
BC A, A€ K™, Bis an intersection of antikeys. Denote P, = {A —a: A€
€ K;1, a € A}).

It can be seen that if s = (R, F) is unique then B € P, implies B is an
intersection of antikeys, i.e. B = N{4A € K;!: B C A}. Conversely, assume
that for every B € P, we have

(%) B=n{AeK;':BC A}.
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By Proposition 2.18 and according to Proposition 2.1 we have N, C
C (P, UK;1). It can be seen that s is in BCNF. Based on definition of N,
and Proposition 2.1 K;1 C N, holds. According to (*) we obtain K[! = N,.
Because s is in BCNF we can see that for all B C A, A€ K;! : Bt = B holds.
Thus, B is an intersection of antikeys of s. The proof is complete.

By a polynomial time algorithm finding a set of all antikeys of a given
relation (see [14]) and according to Theorem 2.20 we obtain the following
proposition.

Proposition 2.21. There exists an algorithm deciding whether a given
relation r is unique. The time complezity of this algorithm s polynomial in the
sizes of R and r.

Theorem 2.20 immediately implies

Corollary 2.22. Let K be a Sperner system over R. Then there erists
a polynomial time algorithm deciding whether a Sperner system H is unique,
where H™1 = K.

The size of minimal Armstrong relations was investigated in some papers
(see [2,5,6,12,14]). Now we present some new bounds for the size of minimal
Armstrong relations.

Definition 2.23. (minimal Arsmtrong relation) Let F' be an f-family
over R. Let M(F) = min{m : |r|=m, F, = F}.

Denote Hp(A) = {a € R: (A,{a}) € F} and Z(F) = {A: Hp(A) = A}.

Proposition 2.24. [6] Let F be an f-family over R. Then (2|N(F)|)}/? <
< M(F) < |N(F)|+ 1, where N(F) is the minimal generator of Z(F).

According to the definition of unique Sperner system and based on Theo-
rem 2.20 we have the following

Proposition 2.25. Let s = (R, F) be a relation scheme. Then if K, 1s

unique then
QIETNY? < M(F¥) < |K7Y + 1

Theorem 2.26. Let K be a Sperner system, s = (R, F) a BCNF relation
scheme over R. Let

M(F*) =min{m: |r| = m, F, = F*,s = (R, F) a relation scheme};

K*=K'U{B-a:BeK ' aeB,B-a#n{C:CeK'B-aC
Cc C}}.

Then if Ky = K then

(%) (2|K*|)? < M(F*) < |K*| + 1.




130 J. Demetrovics and Vu Duc Thi

Proof. For an arbitrary Sperner system K we can construct a BCNF
relation scheme s = (R, F = {A— R : A € K})suchthat K, = K. According
to the definition of BCNF relation schemes we can see that for all BCNF
relation schemes s’ = (R, F’) such that Ky = K Ft+ = F't holds. Denoting
the elements of K* by A;,..., Ay we construct a relation r = {hg, hy, ..., h}
as follows:

foralla € R, ho(a)=0, Vi=1,...,t

_ _ 0 ifae€A;,
hia) = {i otherwise.

By Proposition 2.18 we obtair: K, = K and r is in BCNF. According to
the definition of BCNF we have F, = F*. Hence, N(F;) = N(F*) holds.
According to Theorem 1.12 we have N(F;) C E,. Based on Proposition 2.18
and the construction of K*, and N(F,) = {B € E, : B # N{B' € Lk, :
B C B'}}, we obtain N(F,) = K*. According to Proposition 2.24 we have
(2|K*)}/? < M(F*) < |K*| + 1. The proof is complete.

Let K be a Sperner system over R. We say that an attribute a is prime
of K if it belongs to an element of K and nonprime otherwise.

Based on Proposition 2.25 and Theorem 2.26 we obtain the following

Proposition 2.27. Let K be a Sperner system over R = {ay,...,an}. Let
K=! = {A;,..., Ak} and K, = {ai1,...,a;.} be a set of nonprime attributes
of K. Then for every BCNF relation scheme s = (R, F) such that K; = K

(%) E(s +1) < [N(F4)| < kn.

Proof. Clearly, if B € K~! then |B| < n— 1. Hence, in Theorem
2.26 |K*| < kn. By the proof of Theorem 2.26 K* = N(F%) holds. Thus,
N(F?*) < kn holds. It is known [7] that K, is the intersection of elements of
K~1. According to definition of minimal generator we can see that if B € K~!
then for every a € K, : B—a € N(F?). Clearly, if B€ K~! then B € N(F*).
Consequently, we have k(s + 1) < [N(F*)| < kn. The proof is complete.

According to Theorem 2.26 and Proposition 2.27 we can see that for all
BCNF relation schemes s = (R, F) such that K, = K, |K~!| is polynomial in
the number of attributes if and only if the size of minimal Armstrong relation -
and the number of elements of the minimal generator N(F*1) (sometimes it is
denoted by GEN(s)) of s also polynomial in |R|.

It can be seen that the bounds (*) and (**) are especially interesting when
the number of antikeys of K is polynomial in the number of attributes.
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