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ON THE POSITIVITY OF ITERATIVE METHODS

R. Horvath (Sopron, Hungary)

Abstract. In this paper we study the positivity of some vector sequences
produced by given vector-iteration. In our investigation we apply the well-
known power method (e.g. [5]). We give some sufficient conditions of the
positivity of the generated vector sequence depending both on the initial
vector and on the matrix of the iteration. Applying this result we formulate
a sufficient condition of the power-positivity of a given quadratic matrix.
Furthermore, we consider the numerical solution of the one dimensional heat
conduction equation. Considering the results of [1] we give a condition that
guaranties the positivity of the approximating vector sequence. Finally, we
obtain some bounds for parameters of the discretization scheme. In the
case of n > 2 we get a well-known sufficient condition, which was obtained
by use of the Lorenz criterion ([4]).

In this paper we use the following notations:

N, :={1,2,...,n} is aset of indices; S(R™*") is the class of the symmetric,
real matrices of order n; (A)y is the k-th column of the matrix A; (v); is the
I-th element of the vector v; || v ||, denotes the maximum norm of the vector
v. We denote by A; (k € N,,) the eigenvalues of the matrix A (A € S(R**™))
and we suppose that |A;| > [Az] > ... > |As] is valid. We shall say that an
eigenvalue A, is dominant if [A._;| > |A;| > |Ar41] is fulfilled. It is obvious
that we can choose orthonormal eigenvectors. These eigenvectors are denoted
by vi (k € Nn).

1. The power method

Lemma 1. Let A € S(R™*") be an arbitrary matriz with the eigenvalues
and eigenvectors A\, and vk (k € N,,), respectively. Let y©@ e R, y(© £0, be
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an arbitrary vector. Let us denote by o € N, that index for which (y(o), vi)=0
for every r < o (r € N, ) and (y®,v,) # 0. If the eigenvalue A, is positive
and dominant then the procedure

ZGi+1)

G+1) _ A o). (i+1) _ -  —
(1.1) =z = Ay'Y; y = T 1=0,1,2,...

is convergent and the vector sequence y(*) has the limit

(1.2) lim y@ = sign((y(%). v,)) “_va__
1— 00 A4

o [loo

Remark. The index o depends both on the matrix A and on the vector
y(®, too. Since for an arbitrary A € S(R"*™) the vectors (vi) (k € N,) form
a basis in R" so there exists such index o € N,, for which (y(®),v,) # 0.

Proof. (Compare e.g. [5]) We can write the vector y(%) in the basis (vi)
in the form

n
(1.3) y @ = Z(Y(C)'Vk)vk-
k=1
From the iteration (1.1) it follows immediately that

140

14 yo = _2¥ - i=1,2,....
(14) TAyO ],

Applying the formula (1.3) we have

YO, Vk)Vk) =3O viivie =

Aiy(O) — Ai <
k=1 / k=1

i ~ A\
(1.5) =2 (vove + Y v w) (Tk) Vi),

k=o+1

HAYO o=l - (v, vi) A vic o=

k=0
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; % A
= |’\a' ” (y(O))vU)VU + Z (y(o)ka) (/\—k) Vk ”00 .

k:a+1
Using (1.5) the expression (1.4) can be rewritten in the form
. n _ 1_
Yo (O vova+ 5 (v, vi) (5) i)
k=o+1 v

DL, volve + 30 (79, i) (3) 'Vic [leo
k=041

(1.6) y =

Finally, aproaching ¢ — oo we obtain the statement of the Lemma 1.

2. Application of the power method in vector-iteration

In general the power method (1.1) is used to obtain the eigenvector
corresponding to the eigenvalue A,. Further we will use this method to the
investigation of vector sequences (1.1). For the sake of brevity we introduce
the following definitions.

Definition. An arbitrary matrix A € R™ " is called positive if all
clements of the matrix are positive. In notation: A > 0.

In a simnilar manner we can define and introduce the notion of a negative matrix.
(Obviously, we can apply these definitions also to the vectors.)

Definition. An arbitrary A € R**" is called a power-positive matrix if
there exists such natural number M that A™ > 0 for allm > M (m € N).

(Obviously any positive matrix is power-positive, too.)

Definition. Let {a,,} be any numerical, vector or matrix sequence. The
sequence {a;,,} is called quasi-positive (or quasi-negative) if there exists a
natural number mg such that a,, > 0 (or am < 0) for every m > mg (m € N).
(If mo = 1 then we call the sequence positive (or negative).)

Let A € S(R"*™) be an arbitrary matrix, y(® # 0 € R™ an arbitrary vec-
tor and ly € Ny, be a fixed index, respectively. We denote by 7 = n(lo, A, y(?)
the smallest index in N, for which (y(®),v,) # 0 and (v,);, # 0. The value

of 7 depends on the index ly, the matrix A and the vector y(9). It is easy to
see that n > 0. However we remark that the index 7 may not exist for certain
indices lp. (For this case we shall give an example later.)
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Lemma 2. Let us consider the iteration
(2.1) yith) = Ay i=0,1,2,...

where A is a matriz from S(R"*") and y'©) # 0 is an arbitrary vector. Let
lo € N,, be a fized indez for which the n € N, index ezists. Furthermore, we
suppose that the eigenvalue ), is positive and dominant. If (y(® v,)(v,)1, > 0

then the number sequence (y("));, is quasi-positive and if (y(,v,)(vy)i, < 0
then 1t is quasi-negative, respectively.

Proof. From the definition of the iteration (2.1) it follows directly that
y®) = Afy(®) So the sign of the elements of the vector y(*) is identical with
the sign of the elements of the vector

14,(0
2.2) wi) o AV

_“—A—l}m’ L—_—O,l,z,....

Corresponding to Lemma 1 if i — oo then the vector sequence w(*) (i € N)
converges to its limit, that is

Vg

Vo lleo

(2.3) Jim w(®) = sign((y(”, v,))

If 7 = o then the statement follows directly from the expression (2.3). If n > o
then it can be seen from (2.3) that the numerical sequence (w(¥));, converges
to zero. In this case let us consider directly the values of (y());,.

n

(24) (y(i))lo = Z (y(O)rvk)Afc(vk)lo =

k=n

i 0 )’
=3 (6D v+ 3 6w (r) Vi,

k=n+1

It can be seen that for i — oo the multiplier (y(%), v,)(v,);, determinates the
sign of the elements of (y());,. This completes the proof of the lemma.

Corollary. Let us suppose that v, > (. Then in the case of (y(o), vy) >0
the vector sequence y(*) is quasi-positive and in the case of (y(©, vy) <0, it is
quasi-negative, respectively.
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Remark. If the index 7 does not exist (that is for every r € N,, we have
(y(o), vr) =0 or (vi)i, = 0) then

n

25 (o =D, V)AL (vi), =0, i=0,1,2,...
k=1

i.c. the lo-th element of the vectors y() is zero for every i = 0,1,2,....

We give now a condition for the power-positivity of a real, symmetric
matrix.

Lemma 3. Let A € S(R"*™) with a dominant and positive eigenvalue
Ar. If vy > 0 then the matriz A 1s power-positive.

Proof. (A%)i, the k-th column of the matrix A, can be written in the
form (A'), = Afer, where e, denotes the k-th unit vector. Since A, > 0
and (ex,vy) > 0 for any k € NV, we have iterations with the starting vectors
y(® = e, (k € N,). By applying the corollary of the previous lemma it is clear
that A is power-positive.

3. Analysis of the numerical solution of the heat conduction equation

Let us consider the parabolic problem having the form

Ou  0%u

57_5_62’ t>0, £€(0,1),
(3.1) u(0,t) = u(l,t) = 0, t>0,

‘U;(f,O) = uO(E)) { € [0, 1]

The numerical solution of this problem can be obtained in every grid-point of
an equidistant (7, h) mesh by solving the following systems of linear algebraic
equations (see e.g. [3])

32  (E+6rQyUtY =(E-(1-0)rQ)yY), j=0,1,2,... .

Here 7 and h = nl? are the step-sizes of the discretization in the time and
space variables, respectively; E denotes the unit matrix and Q is the uniformly

continuant matrix h—’,tridiag[—l. 2,—1]. The vector y(®) is an approximation
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of the initial function ug(€). The parameter 6 characterizing the discretization
is a fixed number in [0, 1]. Introducing the notations ¢ := 75 and

1+ 26q
6q

(33)  z=0¢; s=(1-0g p=1-20(1-6); =z=

the system of the linear algebraic equations (3.2) can be written in the following
form

(3.4) X;yUt) = Xy W), i=01,....
Here the matrices

X3 = z - tridiag{-1,z, 1],
(3.5) . :
X2 = tridiag[s, p, s

are symmetric, uniformly continuant matrices. If # = 0 then X; = E. Since
X is invertable, so introducing the notation

K = X7'X;
(3.4) can be rewritten in the form

(3.6) yUh = Ky, j=0,1,2,. ...

We shall examine the following problem: under which conditions produces
the iteration (3.6) a quasi-positive (quasi-negative) vector sequence? To this
aim let us apply Lemma 2 checking that for the matrix K all conditions of the
lemma are satisfied.

a) The matrix K i1s symmetric because it can be written in the form
1 :
K = —[(zs+ p)G — sE],
z

where the matrix G is a symmetric matrix ([1]).

b) The eigenvalues and eigenvectors of the matrix K are given by

TWg
14 01w ’

2 . tkm .
(vk)i—”n-{-lsm(n+1)’ i,k € Ny,

(3.7) Ar=1
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km

—_— k ] : .
Ant 1)) (k € Nyp) are the eigenvalues of the matrix Q

where w; = }—:lisin2 (

(see e.g. [2]).
Notice that it is doubtful that the indexing of the eigenvalues in (3.7)
satisfies the conditions |A;| > |Az| > ... > |[An|. But it is easy to sce that

(38) A > Ay > . > A,

From the expression (3.7) it can be seen directly that the eigenvector v; is
positive. Now let y(®) be such an initial vector for which ¢ = 1. For the quasi-
positivity (or quasi-negativity) of the vector sequence (3.6) it is sufficient to
show that the eigenvalue A; is positive and dominant. The inequality A; > 0
is assured under the condition

1-(1-80)Tw;

14 0w, > 0.

(3.9)

Substituting here the value of w; we obtain the following inequality

1

(3.10) g< : —
4(1 —0)s1n2(:m)

if 9€[0,1].

Notice that for § = 1 (3.10) holds for any q.

To ensure that A; is a dominant eigenvalue we require A; > [A,| . If
A, > 0 then this condition is automatically fulfilled. In case of A, < 0 we get
the condition A; > —A,. Due to

4, T
(3.11) Wy = o sin (2(n+1)>’

_ 4 cos® T
“n = 2(n+1)/)’

the above requirement gives the following condition with respect to g:

~1)sin? | —— ] ¢* —1> if 00,1
(3.12)  46(6 — 1)sin (n+1>q +4<0 3 g+1>0, if6e(0,1].

In case § = 1, no condition arises.

We can summarize our results as follows:
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Lemma 4. If the parameters q and 0 satisfy the conditions (3.10) and
(3.12) and y(©) is such an initial vector for which o = 1 then the vector-sequence
y() defined by (3.6) is

a) quasi-positive if (y(°),v1) > 0,

b) quasi-negative if (y(°),v1) < 0.

Remark. It was stated earlier that n may not exist to every index lp € N,
(see before Lemma 2). For example let the initial vector be pvz, (0 # p € R)
and n an arbitrary odd natural number. Then in the case of lj = "—'2L1 the index
7 satisfying the prescribed conditions does not exist. This is easy to see since
(v2)i, = 0 and (pvz,vk) = 0 if k # 2. Consequently for every j = 0,1,... we
have (Kj(uvz))hJ =0.

Notice to Lemnma 4 that (y(®), v;) > 0 ((y(”,v;) < 0) forany 0 # y(® >0
(0 # y(©® < 0) vectors since v; > 0. Furthermore we consider the power-
positivity of the matrix K.

Lemma 5. If the conditions (3.10) and (3.12) are fulfilled then the matriz
K s power-positive.

Proof. It is sufficient to show that the matrix K satisfies the conditions
of Lemma 3. Since v; > 0 the statement of the lemma is trivially valid.

Let us consider the conditions (3.10) and (3.12) in more detail. We want
to obtain sufficient upper bounds for 7 in terms of § and n+1 (where 6 € [0, 1],
n > 0) which are more practicable for use than that of (3.10) and (3.12). Since

sin(;37) < ;%7 for every n > 0 (3.10) leads to the condition

1

< —- ) .
T—7r2(1—0)’ 6 €0,1]

(3.15)

For # = 0 and § = 1 the expression (3.12) is linear in g, therefore we obtain
the following upper bounds

. 1
(?) T< ——2(n+1)2
(37) T < 00 if 6=1.

if 0=0,

Now suppose that 8 € (0,1). If ¢ is between the two roots of the quadratic
expression (3.12) then (3.12) is satisfied. These roots are

20— 1)+ \/1 —46(1 — 6) cos? ;15

3.16 -
(3.16) 2 46(1 — 0) sin?

T
n+1
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Since the absolute value of 20 — 1 is smaller than the square root of the
discriminant and since g is positive we obtain the bound

20 - 1)+ \/1 —46(1 — 6) cos? -T—

n+1
in2 W
49(1 - 0)sm fl—+l

(3.17) 0<g<

From (3.17) the following sufficient upper bounds can be derived for .

20 -1 .
< — .
(312) T < 31— )2 if 6 €(0.5,1),
] O — 1 =0.
(2v) T <  E—— if §=0.5,
1
(v) < if 6 €(0,0.5).

= 21-0)(n +1)?

Notice that the upper bounds (i)-(v) obtained from (3.12) are for any
6 € [0,1) smaller than (3.15) which is obtained from (3.10). Therefore, the
matrix K is power-positive for every n if the parameters 7 and 6 satisfy the
adequate inequality from (i)-(v).

Finally we formulate a sufficient condition for the positivity of the matrix
K having order greater one.

Lemma 6. The matrizc K of order greater than one is positive if the
parameters q¢ and 0 satisfy one the following conditions

a) ¢<05, if 6=0,
b) foranygq, if 6=1,

~1+426+4/1-6(1-10)
¢ a< 36(1 = ) !

(3.18)

if 6€(0,1).

Remark. This means that under condition (3.18) the iteration (3.6) for
n > 2 preserves the positivity.

Proof. In the case n = 2 it can be seen that the condition (3.17) gives a
stronger bound than (3.10). From this follows immediately that the matrix K
of order greater than one is power-positive if

g<05 if 6 =0,
forany ¢ if6 =1,
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and

-14204\/1-0(1-6) f0e)

(3.19) g < 36(1 = )

Using the results of [1] we know that the matrix K can contain nonpositive
elements only on the main diagonal. But such K matrix cannot be power-
positive. So, under the condition (3.19), the matrix K of order two is positive.
It follows immediately from [1] that every matrix K of order greater than two
is also positive. This completes the proof.

Remark. The bound (3.18) for n > 2 was obtained by Stoyan using the
Lorenz criterion ([4]). Using the results of Faragd ([1]) this bound can also be
derived.
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