Annales Univ. Sci. Budapest., Sect. Comp. 19 (2000) 75-92

ABSTRACTION STRATEGIES IN PRACTICE

A. Féthi, J. Nyéky-Gaizler and E. Harangozé
(Budapest, Hungary)

Abstract. When qualifying a program, one puts the emphasis more
and more on its reliability. The abstract approach to problems may mean
a significant help to achieve this reliability. In this paper we would like to
present two possible abstraction strategies: the data abstraction” and the
”function abstraction” - through the solution of a concrete problem, the
updating of sequential files.

I. Introduction

From the factors of software quality the reliability of programs has come
to the centre of interest with the development of large systems. The aim is
to write ”correct” programs which exactly perform their tasks, as defined by
the requirements of the specification, thereby enabling a given relationship to
be treated by means of computers. This goal is of course more easily stated
than achieved. Here the first and fundamental step 1s - as it was pointed out
by Naur [4] - that the programmer should set up his own theory on the given
problem. Everything else (the structure of the system, etc.) follows from this
start. Many things can be taught of the skills and tricks of programming but
nobody will become a good programmer unless he/she is able to integrate all
available relevant knowledge in a creative way to build up his/her own theory
to solve the problem in question. Studying various programming methods,
Floyd [5] stated that - at least for the time being - a programming method as
a system of rules which would mechanically lead to the correct solution of any
problem is a mere illusion.

Nevertheless, programming methods are extremely important in the edu-
cation of programmers. Skill in solving typical problems and the knowledge of
possible ways of approaches are determinative for the quality of the program-
mers’ work. In the present paper the authors wish to contribute to this training

Supported by the Hungarian National Science Research Foundation under
grant OTKA 2045.

76 A. Féthi, J. Nyéky-Gaizler and E. Harangoz6

by presenting widely applicable programming methods. In the following we
shall show on a concrete example how abstraction as a technique of thinking
can manifest itself in the solution of programming tasks. Qur approach is
twofold: we shall

- analyse the level(s) and depth of abstraction and its effect on the
specification of the problem and

- demonstrate the effect of abstraction types on the solution of the problem.

The solution of a programming task is essentially based on abstraction.
The depth of this abstraction depends on how general the concept is that was
created by the programmer for modelling the problem. One should find the
appropriate level of abstraction which is still informative for the given task
and a further abstraction would be too general. In specifying a problem by
determining the components of the state space and the pre- and postconditions,
the above factors are already taken into account. The final, correct program
is then worked out by some chosen methods - e.g. by top-down iterative
refinement, or by constructing it from available components bottom-up, or
by combining these two techniques.

In the process of abstraction, adequate concept-formation is extremely
important. One should try to generalize the problem, i.e. to find a class of
problems containing it. The correct solution of this wider class of problems
obviously provides a more efficient tool, since the wanted concrete solution -
as a special case - can be deduced from the general one. The application of
the obtained higher level concept allows more transparent treatment (both
theoretically and practically) compared to the specification written for the
problem in first approximation.

The concrete strategy of solution can also be influenced by altering the
specification. This can be done in two ways: by data abstraction or by function
abstraction.

The first method, ”data abstraction”, means that a new data type will be
defined for the exact description of the problem. Then, instead of using the
initial state space, the problem is described by means of the new data type
after state space transformation, and the operations of the new data type will
be performed by the help of the initial data type.

The alternative method, ”function abstraction”, consists of the definition
of an appropriate function to describe the postcondition. The solution of the
concrete problem will be given by the value - or a series of values - of this
function.

The above principles and methods can best be illustrated by an example.
The updating of sequential files is one of the basic programming tasks. In the
remaining of the paper the application of the above principles for the solution

Abstraction strategies in practice 77

of a concrete problem of this type is presented. (Concepts and notations see in

(2,3])

II. The definition of updating

Let us consider a data file consisting of a sequence of records of the same
type. We shall call this the "master” file:

T =it(E)

to :T
Furthermore there is given a file, called ”modifier” file, which is a sequence of
transformations:

M=4i(F) F={f|f:T— T relation}
m: M
The task is to update the master file by the help of the modifier file, i.e. to

produce a new master file by performing the sequence of transformations given
in the modifier file. Let us denote this transformation by t = upd(tg, m).

This description is still too general, for the actual evaluation of the function

it needs to be specialized by further restrictions.

1. Updating by means of key-values
Let to and m be sequential files with key-values. What does it mean?

T = seq(E) where E = (K, D)

M = seq(F) where F = (K, V),
where K is an arbitrary ordered set, the key part of the record, D is the type
of the data component and V specifies the transformation to be performed.

Let us assume that both files are ordered in nondecreasing way with respect to
key-values.

2. Let ty be a single-valued file with respect to key-values, i.e. let it contain
any key-value only once:

to: T Vi, je[l,todom]: t; K =t; K <= i=}
3. Let us introduce restrictions for the individual:

transformations:

V =(W1,W2;,W3),”;” denotes the union-type, where
W1 = {deletion}

78 A. Féthi, J. Nyéky-Gaizler and E. Harangozé

W2 = ({insertion}, D)

W3 = ({modification}, M")

M' = seq(G), where g€ Gif g: D — D

Let us define the effect of these modifier transformations on the master

file (we shall give the definiton for sets - this is sufficient because of the single-
valuedness of ¢t with respect to key).

Let us define for an arbitrary m; € M:
the effect of the transformation ”deletion” (case m;.W1):

{m;(t)} = {tjltj ctnt; K # m,-.K}
The effect of the transformation ”insertion” { case m; W2):

' . 0, if 3k € [1,t.dom]:ty. K = m; K
{mi(0)} ={t}u { {(mi. K, mi.D)}, if Bk € [L,t.dom): ty.K = my. K

The effect of the transformation "modification” (case m;.W3):

' el e e @, if Bke [l,tdom]:ty. K =m; K
{mi(t)} = {t;1t; € tAt; K # m;. K }U{ H, if3ke [Lt.dom]:tx K = mi K

where H = {(m; K, m; M'(tx.D)) |ty €t Am; K =t; . K}

Definition. An updating is called ordinary if it satisfies restrictions 1, 2
and 3.

Definiton. An ordinary updating is called simple if G is a single-
element and constant transformation. Then a correction is a single constant
transformation, in fact a change.

III. The case of the single-valued modifier file

Definition. A file is called deterministic, if it is single-valued with respect
to key. If the key-values are not unique, the file is called nondeterministic.

Let us assume that the modifier file is also deterministic.
The specification of the problem:
The state space:
A: T x M x T
to m i

Abstraction strategies in practice 79

B: T x M
o m’
The precondition:
Q : (to = ty Am = m' and update is simple and m’ is deterministic)
The postcondition:
R (t = upd(ty, m'))

II1.1. Deduction of the problem to the union of sets

What key-values will be contained by t, the new master file? Certainly only
the values contained by t{ or m’ cr both. Let us try to deduce the problem to
the union of two sets! Let K(fg), and K(m) denote the sets of key-values in tg
and m, respectively, and k(¢y) and k(m) the elements in t; and m, respectively,
the key of which is k.

Let us define an extension of the set of items: D' = (D U {”empty”}).

Both the domains of definition and the ranges of the individual transfor-
mations can be given by means of D':

W1:D — {"empty”’} - deletion
W2: {"empty’} — D - insertion
W3:D—-D - modification

If the data part of an element turns into "empty”, then this element actually
does not exist and will not be contained by the new master file.

Remember the program z =z U y:

program:
z:=0
while z 20V y # 0 loop
e:€(zVUy)
case when
eczhegy—z ::zCJ{e}

z:=z ~ {e}
e¢rAe€y-—>z::zO{e}
y:=y={e}

e€.’L‘/\8€y-—>z::zO{e}
z .=z~ {e}
y:=y={e}

endcase

80 A. Féthi, J. Nyéky-Gaizler and E. Harangoz6

endloop
end

Program 1.

The problem of updating can be deduced from the above with the corre-
spondence:

z = 1
Y = m
z =
t£OVy#0 = to#0vm#0D
e:€(zVUy) = k:€ (K(to) U K(m))
eET = k€ K(t)
ecy = k€ K(m)
The corresponding program:
program:
t:=0
while to £ 0 v m # 0 loop
k€ (K(to) U K(m))
case when
ke K(to)) ANk g K(m) — 51
kg K(to) ANk € K(m) — 52
ke K(to) Nk € K(m) — S3
endcase
endloop
end

Program 2.

Let us consider the programs corresponding to the individual choices:

1. If the k key-value occurred only in t¢ - in the old master file - and in
the file of transformations did not, this means that m contains no modification
for this element. Then k() should be added unchanged to the new master file
and omitted from the old one:

S1:

t:=tU{k(to)}

to = to - {k‘(io)}

Abstraction strategies in practice 81

end

Program 3.

2. If the k key-value occurred only in modifier file and in the old master
file did not, then only the ”insert” transformation can be performed correctly,
and the transformation with key & is to be omitted from m:

S52:
case when
k(m) W1 — —— error
k(m).W2 —t :=tU{(k kim).D)}
k(m). W3 — —— error
endcase
m =m — {k(m)}

end
Program 4.

3. If the k key-value occurred both in the old master file and in the file of
transformations, then the ”deletion” and the ”modification” transformations
can be performed and the element with key & has to be omitted from both files:

S53:
case when
k(m)W1— SKIP
k(m).W2 — — —error
t:=1tU {k(to)}
k(m).W3 —t :=tU{(k k(m).G(k(te).D)}
endcase
to :=to — {k(to)}
m:=m— {k(m)}
end

Program 5.

Should the program also issue error signals, these are to be realized in the
indicated branches. Let us come back to the original problem where the master
file and the modifier file are treated as sequential files and not as sets. Let us
assume that the elements of both files are ordered with respect to key-values

82 A. Féthi, J. Nyéky-Gaizler and E. Harangoz6

and the end of the file is marked by a key-element, called extremal, which is
greater than any other key-value.

The program in this case will be:

program:
t:=0
dto, to : lopop
dm, m : lopop

while dtg. K # extr.V dm.K # eztr. loop
case when
dtg. K < dm.K — t : hiezt(dto)
dty, to : lopop
dtg.K > dm.K — case when
dm.W1l — -~ —error
dm.W2 — 1 : hiext(dm.K,dm.D)
dm.W3 — — — error
endcase
dm,m : lopop
dtg. K = dm.K — case when
dm.Wl — SKIP
dm W2 — — —error
t: hiext(dty)
dm.W3 —t : hiext(dto.R, dm.D)
endcase
dtg, g : lopop
dm, m : lopop
endcase
endloop
t : hiext(extr.)
end

Program 6.

Both this solution and the method used essentially agree with those described
by Dijkstra.

Abstraction strategies in practice 83

III.2. Deduction to the problem of elementwise processing

Generalizing the set-theoretical operations - e.g. the union above - and
increasing the level of abstraction, one can arrive at the concept of elementwise
processing [2]. In this way we can determine the common feature of these tasks
which explains why the programs computing the substitution value of functions
processable elementwise are always the same. The above task can be deduced
to the problem of elementwisc processing in two ways:

III.2.A. Deduction to the problem of single-valued elementwise pro-
cessing

The state space of the problem of updating can also be conceived by
forming the union of the sets of keys in the master file and in the modifier
file. Then there will be key-values with only one data part belonging to them
in the master file, there will be key-values that do not occur in the master file
and there will be key-values that cccur in both files. From the master file and
the modifier file we can thus conceive a file whose elements consist of three
components:

a key-value - from ty or from m,
a data part - from to (which may be "empty”) and
a transformation part - from m (which may be "empty”, meaning the

identical transformation).
Of course, the two latter fields cannot be "empty” at once. That is:
X = seq(DX), where
DX = (K,D', V")
D' = DU {"empty”}
V' =V U {"empty’}
Let z € X. Then K(z) = K(t;) U K(m).
Let us denote by dz an arbitrary element of z. Then:

de D = "empty”, if dz.K ¢ K(to)
T Z de K (to).D, if dz.K € (to)

dz V' = Yempty”, if dz.K ¢ K(m)
TV T Vde.K(m).V, if dz.K € K(m)

Thus applying a state space transformation, we may conceive the task on
this state space as a single-valued elementwise processing with the following
f function:

f({e}) = (e.K,e.V'(e.D"))

84 A. Féthi, J. Nyéky-Gaizler and E. Harangozé

That is, the transformation part is applied to the data part:

e.V' ”empty”(e.D') = e.D'

e VW1(e.D') ="empty” if e D' # " empty”
e V.W2(empty’) = e.V.W2.D

e VW3(e.D') =e.V.W3.D if e D' # ”empty”

The specification on this state space:
The state space:

A: Xx T
T t
B X
1,"

The precondition:

Q : (z = &' and update is simple)
The postcondition:

R:(t=f(z")

The solution:

program:
t:=0
while z # 0 loop
e :€ (z)
LET(d, f({e}))
t =t U{d}
z:=z~{e}
endloop
end

Program 7.

LET(d, f({e})):
case when
e.D' #”empty” Ne.V' ="empty” — d .= (e.K,e.D’)
e.D' ="empty” Ae.V' #”empty” — case when
eWl — — —error
d:=0

Abstraction strategies in practice 85

e W2 —d:= (e K, eV'D)

eW3— — —error
d:=0
endcase
endcase
end
Program 8.

Let us come back to the original state space:

z£0 = to£0Vvm#Dd

e:€(z) = k€ (K(to) U K(m))

e.D' £7empty” ANeV' ="empty” = ke K(to) Ak & K(m)
e. D' =7empty” Ne.V' g empty” > k¢ K(to) Ak € K(m)
e.D' ¢”empty” NeV' & empty” = k& K(to) ANk € K(m)

~ t ifd=
t = 0{d} ét::{t’u{d}, iM#g
r:=z ~ {e} = ifke K(to) ANk & K(m) :
to :=1to — {k(to)}
if k¢ K(to) Nk € (m):
m:=m~— {k(m)}
ifke K(to) Nk € R(m):
to :=to — {k(t0)};
m:=m— {k(m)}

The programs ¢ :=¢ G{d} and z := z ~ {e} are independent of each other, so
they are interconvertible. Making use of the fact that the branches of conditions

in the programs realizing the d := f({e}) (LET(d, f({e}))) and z = z =~
{e} instructions are identical, and building the union into the branches not
containing d := 0, we obtain exactly the same program as above.

II1.2.B Deduction to the problem of bivariable elementwise process-
ing
It is probably the simplest way of solution to deduce our problem to

the problem of bivariable single-valued elementwise processing [2] (or to the
problem of bivariable bivalued elementwise processing if we also want to handle

the error signals).

The specification:

86 A. Féthi, J. Nyéky-Gaizler and E. Harangozé

The state space:
A: T x M x T

1o m t
B: T x M
ty, m

The precondition:

Q@ : (to =ty and m = m' and update is simple and m’ is deterministic)
The postcondition:

R : (t = upd(ty, m'))

Because of the special conditions, the updating function is processable elemen-
twise with respect to key-value. It can be given as [ollows:

upd(k,0) = k(to)

0, if k(m).W1

upd(0, k) = < (k,k(m).D), if k(m).W2
, if k(m).W3

0, if k(m). W1

upd(k, k) = ¢ k(to), if k(m). W2

(k, k(m).D), if k(m). W3

The program solving this problem is obtained by a trivial substitution.

IV. The case of multivalued modifier file

If we cannot assume that the modifier file is single-valued, the problem
will not be processable elementwise. What can we do? There are two possible
ways of abstraction for the solution: (Again, we make use of our files being
ordered with respect to key-values.)

IV.1. The data abstraction approach

We perform a state space transformation, and assume that the modifier
file has elements of type:

(key-value, sequence of transformations).

That is: M’ = seq(F"'), where F' = (K, V"), where V” = seq(V).

Abstraction strategies in practice 87

With this modifier file we again arrive at an elementwise processing, with
the only difference that the appropriate sequence of transformations have to
be performed on the original state space:

upd(k,0) = k(to)
upd(D, k) = (k, k(m).V” ("empty”))
upd(k, k) = (k, k(m).V” (k(to). D))

(The composition of transformations is meaningful only for an appropriate
sequence of transformations because of the domains of definition and the actual
ranges of the individual transformations.)

program:
t:=10
dto, o : lopop
dm, m : lopop
while dtg. K # extr.V dm.K # extr. loop
case when
dtg.K <dm.K —t: hiext(dty)
ditg, tg : lopop
dtg.K > dm.K — TRANSF(”empty”)
dty. K = dm.K — TRANSF(dtq.D)
dty, g : lopop
endcase
endloop
t : hiext(extr.)
end

Program 9.

TRANSF(par):

d := par

ak :=dm.K

while ak = dm.K loop

case when
dm.W1 — if d = "empty’ then - - error
else d := "empty”
endif

dm.W2 — if d = "empty’ then d := dm.D

88 A. Féthi, J. Nyéky-Gaizler and E. Harangozé

else - - error

endif
dm.W3 — if d = "empty” then - - error
else d := dm.D
endif
endcase
dm.m : lopop
endloop
if d # 7empty” then t ;= hiczt((ak.d))
endif

end
Program 10.
IV.2. The function abstraction approach

As a rule, the solution of a given problem is inevitably influenced by its
specification. If the modifier file is nondeterministic, we can define, starting
from the above single-valued elementwise processing, a recursively defined
function to evaluate the appropriate sequence of transformations.

The solution with this approach:

The state space:

A: X x T the definition of X see above, the only

T t difference is that the key-values are not unique
B: X

r/

The preconditon:

Q@ : (z = 2’ and z is ordered according the key-values)
The postcondition:

R:(t = f(z'.dom)s)

The definiton of the function f:
f:Z2—-K x D x T
f(0) == (min(z.low.K, extr.), z.low.D’' <>)

Abstraction strategies in practice 89

(f()1, zit1. V' (f(3)3), if f()1 =zip1 K
fi+1) =

(zit1-K, zi41.V' (2i41.D"),

cone(f(i)s, < (F(D)1, f(i)2) >), if f(i)1 # megr K

The corresponding program will Le:
program:
OPEN(z)
LOPOP'(dz,)
t:=0
while dz. K # ertr. loop
if fi = dz.K then ASSIGN(f2,dz.V'(f3))

f3 =<>
else k.= f;
fi =de K

fa =< (k f2) >
ASSIGN(f2,dz.V'(dz.D"))
endif
HIEXT'((t, f3))
LOPOP!(dz, x)
endloop
HIEXT'(t, f3)
end

Program 11.

LOPOP'(dz,z) :
if dm.K = extr. Adty.K = extr. then dz. K := ezir.
else case when

dtg. X < dm.K — de.K :=dlg. K
dz.D' := dtq.D
dz.V' .= "empty’
dto,to : lopop

dts. K >dm K — dz. K := dm.K
dz.K :=dm.K
dz.D' := " empty”
dz.V' :=dm.V
dm,m : lopop

90 A. Féthy, J. Nyéky-Gaizler and E. Harangozé

dtg. K =dm.K - dz. K .=dm.K
dz. D' = dty.]D
dz.V' :=dm.V
dto, to : lopop
dm,m : lopop

endcase
endif
end

Program 12.
This program essentially differs from the above ones.

OPEN((z):
dm, m : lopop
dto, to : lopop
fi = min{dm.K,dty. K)
if fi = dto.K then fy := dty.D
else fy := "empty’
endif
fza=<>
end

Program 13.

ASSIGN (fa,dz.V'(p)) :
if de.V' = "empty” then fs :=p
else case when
dz.V''W1 -+ if p ="empty” then - - error
else fy :="empty”
endif
dz.V'W2 — if p = "empty” then f; :=dr.D
else - - error
endif
dz.V'W3 — if p = "empty” then - - error
else fo .= dz . V(p)
endif
endcase

Abstraction strategies in practice 91

endif
end

Program 14.

HIEXT'(t, f3) :
if f3 # ”empty” thent : hiezt(f3)
endif

end

Program 15.

V. Summary

Comparing the above methods of solution we can see that a higher level
concept usually enables the problem to be treated in a more uniform way.
The more efficient the used tool is (in our example the bivariable elementwise
processing), the simplier the solution.

In many cases (e.g. with listing problems), the application of data and/or
function abstraction offers parallel methods of solution. Of course, the two can
also be combined (as illustrated by our latter solution). The choice depends on
the programmer, who must be aware of the possibilities and should prefer the
solution which can better be generalized.

References

(1] Dijkstra E.W., A discipline of programming, Prentice-Hall Inc., Engle-
wood Cliffs (N.Y), 1976.

(2] Féthi A., Bevezetés a programozdshoz, Tankonyvkiadé, Budapest, 1983.

[3] Féthi A., A mathematical approach to programming, Annales Univ. Sci.
Bud. Sect. Comp., 9 (1988), 105-114.

4] Naur P., Programming as theory building, Microprocessing and Micro-
g
programming, 15 (5) (1985), 253-261.

92 A. Féthi, J. Nyéky-Gaizler and E. Harangozé

[5] Floyd C., Eine Untersuchung von Software-Entwicklungsmethoden, Pro-
grammierumgebungen und Compiler, Tagung I/198{ des German Chap-
ter of the ACM, eds. H.Morgenbrod und W.Sammer, Teubner Verlag,
Stuttgart, 1984, 248-274.

[6] Kozma L. and Varga L., A methodology for the development of shared
object classes, Proc. of Int. Conf. on Applied Informatics, Eger, Hungary,
23-26 Aug. 1993, 5-14.

(Received December 14, 1993)

A. Féthi, J. Nyéky-Gaizler and E. Harangozd
Department of General Computer Science

Eétvos Lordnd University

Pazmany Péter sét. 1/D.

H-1117 Budapest, Hungary

