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NONNEGATIVITY OF THE NUMERICAL SOLUTION
OF ONE-DIMENSIONAL HEAT-CONDUCTION
EQUATION WITH VARIABLE COEFFICIENT

H.A. Haroten (Basrah, Iraq)

1. Introduction

In this paper we study the nonnegativity of the numerical solution of one-
dimensional heat-conduction problem with special polynomial heat-diffusion
coefficient. We also consider this problem with any strictly positive function,
which can be well approximated by piecewise-linear functions. The problem is
considered with constant diffusion coefficient in [3], [5]. Tn this paper, using
linear finite elements for space discretization and the one-step method for the
time discretization, we give a new sufficient condition of the nonnegativity for
the approximation function.

2. Formulation of the problem

We consider the linear parabolic problem in one dimension having the form

ou O Ju
(21) a—(—?'; <p(1‘)5;> -—-0, 0<I<L, t>0,
(2.2) u(z,0) = uo(z), 0<z <L,
(2.3) u(0,t) = u(L,t) =0,

where (L € RY),

(2.4) p(z) = ag+ a1z + asz’ 4 ...+ amz™, ag,a,az,...,am > 0.
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Under some natural conditions (i.e. the initial function ug is sufficiently
smooth and nonnegative) the solution of the problem (2.1)-(2.3) is nonnegative
on the whole domain Q x RF; [4], [7], where Q = [0, L] C R, R{ nonnegative
real numbers. This property plays an important part in applications, i.e. (2.1)-
(2.3) describes the process of heat conduction. Our goal is to formulate the
conditions of conservation of this property to the Galerkin type’s numerical
solutions. We apply to the space-discretization the standard one-dimensional
linear FEM'’s basis functions and one-step method for time discretization. We
give some sufficient conditions for the conscrvation of the nonnegativity of the
fully discretized scheme.

The weak form of the problem (2.1)-(2.3) is

L
Ou Oudvy 1
(2.5) / (-3—tv + p(z)é—x-a—x) dz =0; Yve Hy(Q).
0

Let us divide the domain Q into the subdomains ; = [z;_1, z;], where z; =
L . . .
=1th, 1=1,2,...,n, h= —. Denote by ®,(z) the usual linear spline function
n

at the point z; [9], we seek the numerical solution in the form

n-1
(2.6) Un(z,t) = Y ai(t)®i(z),
i=1

where a;(t) (i =1,2,...,n—1) are unknown functions to be determined later.
Substituting (2.6) into (2.5) we get the Cauchy problem for the vector a(t) =
= [a;(t)]75) of the form

(2.7) Md'(t)+ Qa(t) =0; t>0,

where «(0) is a given vector being an appropriate nonnegative approximation
of the initial function ug.

Here we have used the following notations:

a(t) € RSV forall fixed t € Rf, M € R"-1x(r-1),
M = tridiag % (1,4,1, Qo,Q1,Q2,...,Qm € R-Dx(n-1)
Q=0aQo+a1Q1+a2Q2+0a3Q3+ ...+ anQm,

N | .
Q,-:trldlagﬁ[f,-,c,-,g,-], 1=0,1,2,3,...,m,



Nonnegativity of the numerical solution of heat-conduction equation 43

where
fi= ht ((k—1)* k) k=123 1
1—Z+1 ) - ) :"')n— )
P (e k- k=123 1
Cl_i-}-l ) ( - ) ) =14,49...,n—1,
L kP —(k+1)*Y); k=1,2,3 2
g,—l+1 ) =1,49...,n— 2.

Using the one-step method to the discretization of (2.7) we get the
following system of linear algebraic equations

(2.8) X9t = Xya!, 5=0,1,2,...,

(2.9) o’ = a(0),

where X; = M +79Q, X = M -1 (1-7)Q, o’ is the approximation of a(t)
at time-level t; = 75, 7 > 0 is the time-step parameter and v € [0,1] is a given
parameter.

3. Nonnegativity of full discretization

We require the nonnegativity of the matrix
X =X7'X,.

The most trivial condition for nonnegativity of X are the conditions Xl_1 >0
. . T .
and X2 > 0. We give some condition for the number ¢ = Wz which guarantees
)

these conditions. For the matrix X2 we can do it directly and it results the
upper bound
(3.1)

g <

2
(LZ (L =2m)7) am( L™~ (L = 2R )]
2k ot (m+ D)h

3(1=7) |2a0 + z
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For the nonnegativity of the matrix Xl"1 1s a sufficient condition to be X,
an M-matrix [1]. With direct computation we get the condition

20 @1 92 _ 12 m m+1 _ 1m+1
6 [1(2 N+ —=h (2 1)+...+m+1(2 1 )]
So, denoting by
a; (L? = (L — 2h)?) @ (L™ — (L — 2R)™H1)
=12
Il { ap + 2h + (m + 1)h )

h 2 h

(L—(L- 2h>)] 42 [Wz RPNl Ut D) ] .\

I = ao [4(2- 1)+

QAm

m m+1 _ ym+l
+oot e [k (2 1)+

(Lm+1 —(L—Qh)m+1) . I_l
h Y P

we have the following

Theorem 1. If vy € [r,1) and the conditions (3.1), (3.2) are fulfilled then
the solution of the numerical scheme (2.8) remains nonnegative for any initial

nonnegative vector o°.

Remark 1. If y = 1 the bound (3.1) tends to infinity which means that
the condition of the nonnegativity of numerical scheme (2.8) depends only on
the lower bound (3.2).

Remark 2. When h — 0 the sequence of the lower bound in Theorem 1

. . . 1
is monotonely increasing to the bound —~—.
Yao
Analogically, the sequence of the upper bound in Theorem 1 is monotonely
decreasing to the bound

1
31—9)[ao+a1 L+azl?+ ... +anl™]

Then the conditions of Theorem 1 turn to the conditions

1 1
<¢g<
=930 Vao+tar Lt asl? + ... Faml™]’

(3.3) o

and
_ [(10 +a L+ a2L2 + ...+ amLm]

"= Bao+a1L +azl?+ ...+ apl™]
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So, in case v € [r, 1) the conditions (3.3) guarantee the nonnegativity of
numerical scheme (2.8) for any initial nonnegative vector a® and for all space
division n. At the same time Theorem 1 gives weaker conditions by any fixed
space division n.

Remark 3. Let us examine the case when p(z) is a nonnegative linear
function, that is m = 1 and a; # 0. Then Theorem 1 yields the conditions
1 1

(34 ——— 7 S9< |
6y [ao+a_;’i3] 3(1 —v)[ao + a1(L — h)]

ag + (ll(L el h)
(3&0 + 01(2}2 + L))

<y<1.

In case h — 0 (3.4) reduces to the conditions

1 1 L
<g¢< LTS

3. )
(3-5) 3(1 = ¥){ao + a1 L] 3ag+a1L —

6700

Obviously the upper bound (3.1) is a sufficient condition for the nonneg-
ativity of numerical scheme (2.8). To get a greater upper bound let us apply
the process, given in [8]. Denoting by

I 0]
~X2 X1’

where [ is the identity matrix of dimension (n — 1) x (n — 1). The problem
(2.8) can be rewritten in the form

JEINT|

So, if under some conditions (3.6) conserves the nonnegativity then under the
same conditions (2.8) also conserves it. Therefore we examine the condition
to have T, an inverse nonnegative (monotone) matrix. For this aim, we are
going to apply Theorem 3 in [6]. We partition T into the diagonal part Ty, the
positive off-diagonal part T+ and two negative off-diagonal parts 72 and 7.
Denoting by

_[1 o +_" 0 o z_ [0 O
n=lo w] =% o) =10 5]
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one can check that in case

all conditions of the above theorem are fulfilled, where we have used the
notations

taz (- (L 28)’) +.. . +am (Lm“(_m(iz)ih)mﬂ)H,
[é —q(1-7) [ag (e 2"); L), (L= 2h)22; (L—h)?)
( — 2h)® —(L D) el ((L—-Qh)';;l;l()i_h)mﬂ)” |
ty = §+ o P (Lh— 2h) | o &2 (g,h— 20)7)
N il (gh_ NN Gl (—m(i;)ih)m“)H ,
= = [é+w . ((L—2h)h—(L—h)) (=2 2;@ hY)

(L= 2y = (L 1Y) (1 = 20y — (1= hy™+)
2 3h tootam m+ 1)k

|

Of course, in condition (3.7) we consider only the positive value of q. At the
same time, for any fixed m and n, this bound is greater than the bound resulted
from (3.1). For the sake of simplicity let us denote by g,os the positive bound
resulted from (3.7)

Theorem 2. If the conditions
1

92— —h 2 _aﬁL__hm m+1 __ ym+1
6 |22 - 1)+ Ph7 =17 44 ST (7 1)

= < ¢ < gpos
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with v € [r,1) are fulfilled, then in case n > 3 the numerical scheme (2.8)

conserves the nonnegativily for any nonnegative vector a°.

Remark 4. Considering Theorem 2 in case m = 0 and ag = 1 gives the
bounds

32y — 1)+ VO — 167(1 —7)]
12v(1 =) ’

1
(3.8) aS‘IS <7<l

W

This bound was obtained earlier in [3].

Remark 5. Considering another case of Theorem 2 if agg = a; =1, m =
=1, h—0, we get

3(2y — 1 9—167(1 —
<q5(7 )+V 7(1=7) L+L

1
B9 &S L+ (-9 ' 34L°

Remark 6. In case ag = a; = | the upper bound in (3.9) is greater than
(3.5) and preserves the nonnegativity of numerical scheme (2.8). So, by using
(3.7), we can always get an upper bSound greater than (3.1).

Under the condition of Theorem 2 T' is monotone and since T[Z] >0,
where e = [1,1,1,...]7 € R~ the maximum principle holds [2]. So, using

the nonnegativity, we have

max al,

max af+ <
1<i<(n-1i) 1<i<(n-1)

which results the maximum ncrm-:nequality

(3.10) le?* ], < [l
where .
”ajH = max |ol].
€ 1<i<(n=-1)

Thus, the conditions of the nonnegativity result the monotone convergence
of the numerical scheme (2.8) in maximum norm, too.
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4. Generalization to the strictly positive function for heat-diffusion
coeflicients

In this part we generalize our result to the problem (2.1)-(2.3) by con-
sidering any arbitrary strictly positive function p(z). We suppose that p(z)
belongs to C2?(2) and satisfies the strong nonnegativity condition 0 < pg <
< p(z) < C, where C is some constant. First of all, we examine the possibility
of approximation p(z) and up by some other sufficiently smooth functions,
which are close to them. Our goal is to determine how far the solution of the
new problem is from the original one when we approximate p(z) by p(z) and
ug by g, we remark that p(z) satisfies the conditions 0 < po < p(z) < C, p(z)
is a continuous piecewise linear function (spline). Let us consider the problem
(2.5) with p(z) € C?(£2), we remark that %, is a good approximation to ug and
the corresponding problem

L
61‘4 _, 0udv e 1
0

with the approximation p(«) instead of p(z}.
Then 4 means the solution of the approximated equation and satisfies

(4.2) u(0,t) = a(L,t) = 0,

(4.3) u(z,0) = ag(z).

Denoting the solution of the original equation (with p(z) € C?%(Q)) by
u(z,t) we want to check whether @ is a good approximation of u or not.

Let w(z,t) = u(z,t) — 4(z,t). Then

(44) ’(](.’L‘,t) = U(l’,t) - ’U)(l‘,t)’
(4.5) w(z,0) = uo(z) - uo(z).
Subtracting (4.1) from (2.5) we consider v = w, integrating over the

interval (0,t) with respect to time we get

(4.6) //(at‘”( 6“‘9“’ ()g“‘;“’)d dt =0, Vuwe H\Q).
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Substituting (4.4) into (4.6) we get

L7, 17, T 0w
ilw (z,t) de — 5-{w (z,O)dm+[{ﬁ(z) (—5;) dz dt =
(4.7) / / (5(z) ~ plz)) oo O de .

Using (4.7), (4.5) and Young’s inequality on the right hand side for

VERE, a(o(e) - x5,

T

where § is arbitrary nonnegative number, one obtains

L L
%/w z t)d93+//( (g‘:) dzdt < %/(uo(z)—ﬁo(r))Edmﬁ-
¢ 0
. t L 9
(4.8) +§3—//(i)(1, - p(z))? (d—> dzdt
0 0
pro—§>%then
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(4.10) +
Since

! t L
ow\?
2 = |2 — | dzdt
(4.11) ||w||v;(an:) tGS[l(l),pT]ZIU(IJ)‘ d:c+Z{ (31:) zdt,

where V(€ x RY) is the Banach space of ail the functions from W, %(Q x RY).
Then (4.10) reduces to

(4.12)

L [ 9
1 g < o1 [ o) = aa(e)dz+ co [ [ (o) plo)? (52 ) doc.
So
(4.13)

2 .
”w“V;(ﬂxH(T) <a

(uo(z) — @o(z))?dz + c2 ||p(z) — p(z)||? ] } (Z—D : drdt.
0 0

oS~ t

This means that a(z,t) is a good approximation of u(z,t).

5. Nonnegativity of the solution of the problem in case of strictly
positive heat-diffusion coefficient function

Our goal is to find some sufficient condition of the nonnegativity of
numerical scheme when we replace p(z) by p(z), where p(z) is piecewise lincar
approximation having the form

(5.1) p(z) =D p(ax)Pe(2).
k=0

The inequalitiy (4.13) and the special approximation of p(z) given in (5.1)
guarantees that the order of the error of the new problem (4.1)-(4.3) is the
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same as for the original numerical problem. By substituting (5.1) into (4.1)
and repeating the same calculation, which was given in Chapter 2, we have

(5.2) /—vdz +/Zp (zk)Pr( x)—ua—vd 0; VYve H}Q).
o k=0
We seek the numerical solution in the form

n—1

(5.3) Un(z,t) = Y ai(t)®i(=).

i=1
By substituting (5.3) into (5.2) we get a Cauchy problem of the form
(54) Mo'(t) + Qua(t) =0; t>0,

where «(0) is a given vector being an appropriate nonnegative approximation
of the initial function ug.

The M matrix, which appears in (5.4), is the same which was defined in
(2.7) and

Q = 5 tridiagl-p(wi-) = p(z0), (i)

+2p(x:) +p(zit), —p(zi)=p(zip)], i=1,2,...,n=1, Q€ RPDx"1)

Using the one-step method to the discretization of (5.4) we get the
following system of linear algebraic equations

(5.5) X1t = X! j=0,1,2,...,

(5.6) a® = a(0),

where X;, X, and o are as we defined earlier. By repeating the calculation,
which was given in Chapter 3 instead of (3.1), we get

4

(5.7) g< 3(1—“;)0—"’

where ¢** = max(p(zi-1) + 2p(z;) + p(zi41)), ¢ = 1,2,...,n =1, and instead
of (3.2) we get

(5.8) - <49,

Syc
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where ¢* = min(p(z;) + p(zi+1)), t = 1,2,....n — 2, or ¢* = min(p(z;_1) +
+p(z:)), ¢ =2,...,n— 1. We have the following
Theorem 3. If the condilions

S

1 :
5. — _<g¢< ,
(59 3yer — 1= 3(1=v)e**’ 4dc*+c

o <<l

are fulfilled then the numerical scheme (5.5) preserves the nonnegativity for

any initial nonnegative vector a®.

Remark 7. We can cstimate (5.9) by choosing ¢** = 4C and ¢* = po,
then we get

(5.10)

where C = {g,z;:)](p(x), po = Egl.iﬁp(f)-

6. Numerical results

In this section we give some numerical examples. First of all, we consider
the problem

ou  O*u
(6.1) T
(6.2) u(0,t) = u(l,t) =0,
(6.3) u(z,0) = sin(7z), =z €(0,1).

The exact solution of (6.1)-(6.3) is u(zx,t) = exp(—(w?t))sin(rz). We
investigate the numerical process for the different values of = taking on the
interval determined by (3.8) for the case z = 0.5, ¥ = 0.5. We notice that with
increasing the number of space division the approximation will be better.
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Table 1

n h T error
1

9 g 0.008 | 1.482046E-2
1

9 5 0.8 3.31485E-5
1

15 TS- 0.008 | 5.334079E-3
1

15 B 0.8 1.038727E-5
1

251 — | 0.008 | 1.920938E-3
25
1

25| — 0.8 2.299581E-6
25

where the error is defined by |u4pp(0.5, 7) — u(0.5,7)|. The second experiment
we have done for the nonhomogeneous problem

(6.4)

g—;‘ - 56; ((.L‘ + 1)%%) =exp(—(z +1))(z3 -4z +z+3) z€(0,1), t>0;
(6.5) u(0,¢) = u(1,1) =0, t>0,

(6.6) u(z,0) = z(1 - z)exp(—z) =z €[0,1].

The exact solution of (6.4)-(6.6) is u(z,t) = z(1 — z) exp(—(z +t)). By using
the value of 7 from interval (3.9) we will check our approximation at z = 0.5
with ¥ = 0.9 by the scheme

(6.7) X109t = Xoad 4 r(yFIT 4+ (1 = ) F),

(6.8) o = a(0),
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Table 2

n h T error
1

9 ;‘ 0.002 | 1.646742E-3
1

9 ; 0.008 | 1.662046E-3
1

9 ‘9‘ 0.2 1.69801E-3
1

9 ; 0.8 9.348467E-4
1

15 l—g 0.002 | 5.920082E-4
1

15 '1‘5‘ 0.008 | 5.953461E-4
1

15 E 0.2 6.068423E-4
1

15 E 0.8 3.260076E-4
1

25| — | 0.002 | 2.12878E-4
25
1

251 — |1 0.008 | 2.151579E-4
25

25 | — 0.2 2.137274E-4
25
1

25 | — 0.8 1.216233E-4
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where FJ = (F; )j

)

1

(F;y = /exp(—(r + i) (2 -4z’ + z + 3)®:(z)dz
0

.,n—=1, 7=0,1,2,....

In the third example we chose the value of T resulted from the inequality (5.9)
to the problem (6.4)-(6.6) for checking the approximation (5.3). We checked if
u was well approximated by @ when p(z) was approximated by p(z). We saw
that the approximation did not change. We got the same result that was given
in Table 2 for the same 7 and h.

Remark 8. The result, which was given in (5.9), can be used better than
all theorems that were given in Chapter 3, because (5.9) can be used for any
function p(z) which fulfills the condition 0 < po < p(z) < C. But the theorems,
which were given in Chapter 3, can be used only when p(z) > 0 is a monotone
increasing polynomial and bounded above.
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