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NONNEGATIVITY OF THE NUMERICAL SOLUTION
OF PARABOLIC PROBLEMS
WITH DIFFERENT BOUNDARY CONDITIONS

H.A. Haroten (Basrah, Iraq)

1. Introduction

In this paper we study the nonnegativity of the numerical solution of
the parabolic problems with second and third boundary conditions in one-
dimensional case. Using the FEM’s linear basis functions for the space-
discretization and the single-step method for the time discretization we for-
mulate a new sufficient condition for the time step which guarantees the
nonnegativity of the numerical scheme.

2. Formulation of the problem

We shall consider the liner parabolic problem in one dimension having the
form

ou o o
(21) W_B—F-](JJ) 0<1'\L, t>07
(2.2) Ulz,t) = us(z); 0<z <L,
2.3) U(0,t) = o g )=0; t>0
( : H )" 61 ) - ) .

It is well known [6] that under some natural conditions (it means that the initial
function ug and the source function F are sufficiently smooth and nonnegative)
the problem (2.1)-(2.3) has a nonnegative solution on the whole domain
G = [0,L] x R [6]. This property plays an important part in applications.
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E.g. if (2.1)-(2.3) describes the process of heat conduction then the boundary
conditions (2.3) mean the following: at the point z = 0 the temperature is given
and at the point z = L there is heat isolation. Our main goal is to examine
the condition of the nonnegativity of the numerical solution when we apply
the Galerkin method with linear basis functions to the semidiscretization and
the single-step method to the solution of the ODE’s system [3]. For the sake
of simplicity we consider the problem (2.1)-(2.3) without the source function,
that is F' = 0. We seek the numerical solution in the form

(2.4) Un(z,t) = )_ai(t)i(z),

where n is the number of the intervals and ¢;(z) are piecewise linear functions
with equidistant spaced nodes z; = ih, defined by

LH'—I,)I—H ;o th<a <(i+1)h,
0 ; elsewhere,

zzhG=l) o p(i— 1) <z < ik,
¢i(z) =

(:1=1,2,3,...,mn—1) and
nte) = { EFE =D <asL

0 ;  elsewhere.

Here h = ;I;- and «;(t) are unknown functicns to be determined later. Using
the Galerkin discretization method with the above spline functions we get
the following Cauchy problem with respect to the vector «(t) having the
components a;(t):

(2.5) Ma'(t)+ Na(t)=0; t>0,
a(0) is a FEM’s interpolation of ug [8].
Here
4 1 0 00
1 4100
h
M=—-1|: & > . oo
6 . . . . )
01 41
001 2
2 -1 0 00
! -1 2 -1 00
N = - : Lo :
h :
0 -1 2 -1
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are given n X n matrices. Denoting by o’ the approximation of a(t) at the
time-level t; = 7; and using the discretization scheme with one parameter
(single-step method) to (2.5) we obtain

it _ i

(2.6) ME———2 N (! 4 (1 - 7)ad) =0,

where a” = a(0), 7 > 0 is a given time-step parameter and v € [0, 1] is some

given parameter, characterizing the time-discretization process. (In case of
o . 1 .

v = 0 1t 1s an explicit scheme. vy = ) results the Crank-Nicolson scheme and

v = 1 yields the fully implicit scheme).

The scheme (2.6) can be rewritten in the form
2.7 (M + 7yN)oit! = (M — r(1=y)N)e?, j=0,1,2,...

It is clear that for the nonnegativity of all a/*! vectors the nccessary and
sufficient condition is the nonncgativity of the matrix

(2.8) X = X7 X,

where X; = (M + 7yN) and X, = ‘M — 7(1 = y)N).
We shall examine the most trivial sufficient condition for the number
T

(2.9) ¢= 33

resulting the nonnegativity both of the matrices X;! and X;. For the matrix
X, the upper bound yields

o 1
(2.10) ¢ < A=)

For the linear FEM the matrix X is symmetric, almost uniformly continuant.
Thus we can give some sufficient conditions for the nonnegativity of its inverse,
using the M-matrix method.

Let us suppose that for some matrix Z the following set of conditions is
valid

(1) Z is a diagonally dominant;
(2) Z;>0,i=1,2,...,m
(3) ZijSO, i,j:l,?,...,n 1#]
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Then Z is an M-matrix and its inverse is nonnegative [1].

Remark 1. For the matrix X; condition (3) is satisfied only in the case
qv > é The conditions 1 and 2 can be checked easily. Hence, we have the
following

Theorem 1. If the conditions

i 1 1
7= 3

1
2.11 — —_— >
(2.11) 6y ~ 3(1—7) T=
are fulfilled, then the solution of the numerical scheme (2.7) conserves the
nonnegativity.
It is the same condition which was given in [2] for the first boundary
condition in both ends. Moreover, there was proved that the upper bound

1 . .- .

g < 5-(1—~—) is not a necessary condition cf the nonnegativity for any n. Our
-7

alm Is also to get a greater upper bound for ¢ by fixed 7.

3. Nonnegativity of the numerical solution of the parabolic problem
with third boundary condition

We shall consider the linear parabolic problem with third boundary
condition in one dimension having the form

ou  o*U "
(31) W-&?_O) <z <L,
(3.2) U(z,t) =up(z), 0<z<L,
. 0
(3.3) 8—zU(L,t) +cU(L,t)=0, t>0,
(3.4) U(0,t) =0,

where ¢ > 0. If we will use the same procedure as in Chapter 2, we get the
Cauchy-problem

(3.5) Mda'(t) + Na(t) + Ba(t) = 0,
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a(0) is a FEM’s interpolation of ug [8].

Here M and N are defined as earlier and

0 0 0 0 0
00 0 0 0
B:‘.: .
0 0 0 0 ¢

1s a given n X n matrix. In this case the nonnegativity of the fully discretized
scheme with one parameter can be found by the following way: from (3.5) we
get

(3.6) Mo (1) + Qa(t) =0,
where @ = N + B. Similarly to (2.10), we get an other upper bound

h2

oo T S by

and at the same time the lower bound does not change
(3.8) — < T

So, we have the following
Theorem 2. If the conditions

) <r< h?
6y = = 3(1—7)(1 +ch)

~
[V

(3.9)

and

3 4 3
d+$c1<

D ey <t
O+3ch =7

(3.10)

are fulfilled, then the solution of the numerical scheme conserves the nonnega-

tivity for the problem (8.1)-(3.4). If y = 1 then the numerical scheme conserves
2

. h
the nonnegativity for the problem (5.1)-(3.4) for any 5 <.

A lot of numerical experiments show that the upper bound in (3.9) is not
a necessary one. In the next chapter we shall consider our problems in general
form.
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4. Nonnegativity of almost uniformly continuant system of linear
algebraic equations

Let us examine our problem in general form

(41) le:XQb)
where
zr -1 0 0
-1 z -1 0
(4.2) Xy=z : Do R : : )
00 -1 =z -1

C 0 0 -1 5+a

(4.3) Xy = Do
0 0 s p s
0 0 0 s %— u

are symmetric, almost uniformly continuant matrices of dimension n x n, b €

R™ is a given vector, y € R" is an unknown vector and a and u are given

nonnegative numbers.

Without loss of generality we suppose that
(4.4) z>0 and s>0.

If the problem (4.1)-(4.3) arises from the discretezition of some continuous
problem having a nonnegative solution, we require the nonnegativity of the
discretized problem. (It is, of course, a natural requirement in the practical
computations.) It implies the condition of the nonnegativity of the solution
y for arbitrary nonnegative vector b. Obviously, this i1s equivalent with the
condition of the nonnegativity of the matrix

(4.5) X=X7'X;>0.

If X, is an M-matrix and X, is nonnegative, then (4.5) is fulfilled. In the casc
a = u = 0 (that is for the uniformly continuant problem) the condition of the
nonnegativity of X, can be relaxed for certain negative p’s, too ([2], [4], [7]).
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We try to do it for the case a # 0 and u # 0 in the problem (4.1). Let
us suppose that p < 0. Making a decomposition of the matrices X; and X, by
the way X; = X3 — X4 and Xy = X5 — X¢ let us introduce the notations:

rec -1 0 0
-1 z -1 0
Xs = 5 z S
0 -1 =z -1
L 0 0 -1 =z
0 0
0 0
Xa=1: S : )
00 0
L 0 0 -;——a
rp s 0
s p s 0
Xs= |1 SRR
0 s p s
0 0 s
0 0 0 0
0 0 0 O
Xe = : :
0 0 0 0
I 000 2+u
Now, we can rewrite (4.1) in the form
(‘16) (ZX3 - 2,\’4):(/ = (Xs - )('s)b.

The inverse G of the matrix z3 can be given directly [5]

(4.7)

I Yi.j lflf;]' i:j:]')Q)"‘n)
Gij = {"ﬁ,j 7>,

where in the case £ > 2

sh(9) sh(n + 1 — j)¥ _ T
, U =arch (2) .

(4.8) i = sh(¥) sh(n + 1)9
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To get a sufficient condition for the nonnegativity of (4.1) we recall (4.6) and
NN . . 1 . .
multiply 1t from its left side by Z Xs'l. We obtain

(4.9) (E-X3'X,)Y = %(X?;*X5 - X5 X6)b,

where E' is the identity matrix and

0 0 (%—a)‘yln

[z
X3‘1X4= 0 \f—fl)'mn
6 0 (%‘_;I)Vnn

is a matrix having nonzero elements only in its last column. Let us notice that
Ynn forms a monotonically increasing, convergent sequence with its limit

Since we need (E — X3_1X4) to be an Af-matrix and we know that v,,, =
= max“;n, we have the condition

f—a
/()1
This condition yields the restriction

(4.10) a<

IS

So, if (4.10) is fulfilled then the relation (E — X35 'X4)~! > 0 is valid. Using

. 1 : .
the results of [2] we can give the matrix —~ X; ' X5 in the explicit form
z

1 1
(4.11) ;X;lxs = ;[(:cs+ p)G — sE],

and formulate the condition of the nonnegativity of this matrix.
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It can be easily checked that

0 0 (B+u)mn

0 (5+ n

X3-1X6: ' (2 “) 72
0 0 (§+u) Tnn

Now, we are able to formulate the sufficient and necessary condition of the non-
negativity of the matrix standing on the right side of (4.9). Denoting by X7 =
= (X5 'Xs — X5'X¢) we need

(4.12) X7 > 0.

To this end we have to check the condition of the nonnegativity of the last
(n — 1) column vectors of X7, that is we need the condition

(4.13) (xs+p)‘y;m—(g+u) Yin >0, k£=1,2,...,n—1.
It yields the restriction

P
(4.14) ps+5 —u20,

and for k = n it yields the condition for the element (X7)nn:

(4.15) > °

29) = rs+ B —u

From the other side, we know [2], that for the nonnegativity of the matrix
X3'1X5, the necessary and sufficient conditions are

(4.16) zs+p >0,
s

(4.17) Tnn > .

{ ) Inn Z zs+p

So, we have the following

Theorem 3. If the conditions (4.10), (4.14), (4.15), (4.16) and (4.17)
are fulfilled then ({.1) have a nonnegative solution for arbitrary b > 0.

It is clear that (4.10) guarantees the nonnegativity of the matrix (E—
—X31X4)71, (4.14), (4.15) are the sufficient conditions of the nonnegativity of
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the last column of X7. Moreover, the conditions (4.16), (4.17) guarantee the
nonnegativity of all other remaining elements of the z7.

Remark 2. When n = 1, the conditions (4.15) and (4.17) turn into

p

(4.18) 3 u> 0.
and
(4.19) p>0.

The conditions (4.18) and (4.19) show that our sufficient condition is valid
for all n € N* only in the casc if X, is a nonnegative matrix. The relaxed
condition p < 0 is working only for n greater than 1. (We mention in practice
we have this version, that is, as usual, n is sufficiently large.)

Remark 3. Let us consider the case n = 2. By using (4.15) and (4.17)
we get

(4.20) —;p— s+ur <0,

(4.21) -p<

8|l»

So, if n > 2 and (4.10), (4.14), (4.16), (4.20i and (4.21) are fulfilled then (4.1)
conserves the nonnegativity.

Remark 4. The conditions (4.18), (4.19) and (4.20), (4.21) (valid for
n = 1 and n = 2, respectively) are sufficient conditions of the nonnegativity.
Moreover, for increasing n, always we can find a new sufficient condition for
the nonnegativity of (4.1), which is greater than the previous one. It can be
done by substituting the value of n into y,, which appears in (4.15) and (4.17),
since

sh(nv)

sh(n + 1)¥’

Tnn =

Hence (4.15) and (4.17) change into the conditions

sh(nd) s
4.22 >
(4.22) sh(n+1)0 = zs+ & —u’
(4.23) sh(nd) s

sh(n+1)9 ~zs+p



Nonnegativity of the numerical solution of parabolic problems 37

Knowing the limit value of v,, we have the following

Theorem 4. For the nonnegativity of the matriz X for any space division
the necessary conditions are (4.16),

(4.24) ! _— > +SR
)\ 2 ~ s - u
F+y(3) -1 2
and
(4.25) :

1
> .
z\2 Trs+
c /(3" -1 d
Since we have not ezplicit form for
(4.26) Xs=(E - X3'Xq)™" X,

in this case we can talk only aboul a new sufficient condition of the nonnega-
tivity of (4.1), but we cannot give any necessary conditions as it was done for
first boundary condition in [2].

Remark 5. If a = 0, then (4.10) always holds for z > 2.
Remark 6. If u = 0 then (4.14) and (4.15) yield

(4.27) s + g- >0,
S

492 > —

(4.28) Tnn = :cs—f—‘;1

respectively. Because the conditions (4.16) and (4.17) are more powerful than
(4.27) and (4.28) for the case p < 0, in this case we have to take (4.16) and
(4.17) to get a sufficient condition of the nonnegativity of X7.
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5. Sufficient condition of the nonnegativity of second boundary value
problems

We want to get a new sufficient condition for the nonnegativity of second
boundary value problem. Therefore we recall (2.7) and (4.1). In this case we
have for the parameters

1 §+27q
r=qy—z, T=- :
6 vq— %
(51) 1 2
: S:g+<1(1—7), P'—‘IE—QQ(l—V),

1
a=0, u=0, tm’#g.

1
It is clear that z > 2 iff y¢ > 3 So we have

Lemma 1. The FEM scheme can be nonnegative for any space division
only if

1
2 > —.
(52) 12 g

It is the same lower bound which was given :n Theorem 1.
Remark 7. The Lemma 1 implies the necessity of the condition 4 > 0.

Now we can formulate a new sufficient condition for the nonnegativity of
the numerical scheme (2.7) by using Remark 5, Remark 6 and (5.2).

Theorem 5. The conditions (4.16), (4.17) by the use of the notation
(5.1) guarantee the nonnegativity of the numerical scheme (2.7).

Remark 8. For the case n = 2 (4.17) turns to (4.21).

Using (4.21), (5.2) and notations (5.1) we can easily obtain the conditions
which preserve the nonnegativity for n > 2.

1 1
5.3 — << g<q* >
(5.3) 6y SIS 123
where
. 3(~1429)+ /9 167(1=
(5.4) ;=3 7) 1-7

129(1 =)
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Remark 9. The condition (5.4) is stronger sufficient condition than the
condition (2.11) in case n > 2. Moreover, for increasing n we can always get a
new sufficient condition, stronger than (5.4), by using (4.23). So, we have

Remark 10. The conditions (4.16), (4.23) and (5.2), by using of the
notations (5.1), give a new sufficicnt condition of the nonnegativity of the
scheme (2.7), by fixed n, stronger than (5.4).

6. Sufficient condition for the nonnegativity of third boundary value
problem

We can find also a new sufficient, condition of the nonnegativity of numeri-
cal solution for the third boundary value problem. Let us recall (3.6) and after
discretization we get a system of linear equations like (4.1), where

™y 1 1 T %+27h7—2
= —— = = = — —(1 — —
=Ty STt 2 Tyl
[+
6.1 _ _mT o=y oty 1
( ) a_%_%, h ) h2 6—0’
2 T
p=:-2(1-9)

In Chapter 4 there were given the conditions of the nonnegativity of the
cquation (4.1). Now, using these results we are able to get new sufficient
conditions guaranteeing the nonnegativity of numerical scheme to the problem

(3.6).

Remark 11. The nonnegativity of numerical scheme of the problem (3.6)
is guaranteed when using the notations (6.1), the conditions (4.10), (4.14),
(4.16), (4.20), (4.21) are fulfilled for n > 2.

Remark 12. By using Remark 4 we are able to find new stronger sufficient
conditions of the nonnegativity by increasing n.

Remark 13. The value ¢ (which appears in equation (3.4)) plays an
important effect in changing the upper bound for 7. For example, if ¢ is a
big value (¢ > 1) then 7, resulted from (4.20) is smaller than 7 resulted from
(4.21). If (¢ < 1) then 7 resulted from (4.21) will be smaller than 7 resulted
from (4.20). Therefore we have to select the minimum value of 7, resulted from
(4.20) and (4.21) to guarantee the nonnegativity of numerical scheme to the
problem (3.6).
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