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DOUBLE BLOCK-PULSE SERIES SOLUTION
OF SECOND ORDER
PARTIAL DIFFERENTIAL EQUATIONS

Rafat Riad (Cairo, Egypt)

Abstract. This paper presents a technique for solving a second order
partial differential equation via block-pulse functions. A double block-
pulse series approximation of functions of two independent variables is first
introduced. The procedure reduces the computational effort to a minimum
while retaining accuracy.

1. Introduction

Approximating a function as a linear combination of a set of orthogonal
basis functions is a standard tool in numerical analysis. Recently, Corrington
(1] proposed a method of solving nonlinear differential and integral equations
using a set of Walsh functions as the basis. His method is aimed at obtaining
piecewise constant solutions of dynamic equations and requires previously
prepared tables of coefficients for integrating Walsh functions. To alleviate the
need for such tables Chen and Isiao [2-4] introduced an operational matrix
to perform integration of Walsh functions. This operational matrix approach
has been applied to various problems such as time-domain analysis [2] and
synthesis of linear systems [3], piecewise constant feedback gain determination
for optimal control of linear systems [4] and for inverting irrational Laplace
transform [5].

Block-pulse functions (BPF) and Walsh functions are closely related. As
basis functions in an approximation the two sets of functions lead to the
same results. Block-pulse functions have received less attention than Walsh
functions in applications to control problems [6]-[9]. In [10] Shih and Han
discuss the use of double Walsh series to find the solution to first order
partial differential equations. One disadvantage of this approach is the method
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requires computation of inverses of very large matrices. Here we replace Walsh
functions with block-pulse functions and solve second order partial differential
equations. Qur procedure results in lower triangular matrices whose inverses
can be computed explicitly. This makes our approach very practical.

2. Block-pulse functions (BPF)

A set of BPF on a unit interval [0, 1) is defined as follows: for each integer
i (0<i<mandme{l,2,...}) the function p; is given by

1 i/m<t< G+ /L,
(1) pi(t) ={

0 otherwise.

This set of functions can be concisely described by an m vector ®,,(t)

Qm(t) = (‘F'U(t)) ‘101(”1 ey pm*l(t))Ty

where ”T” means transpose.

A function f(t), which is absolutely integrable in the interval [0, 1), can
be approximately represented by block-pulse series

m-—1
(2) fit) = ‘z fipi(t) = fTon(1),
=90

where f is the block-pulse coeflicient vector f = (fo, f1,-.., fm—-1), fi’s are
obtained by the minimization of the integral square error

1 e 2
/ (f(t) - Z fiSOi(t)) dt,

fi’s are the mean values of f(t) in the interval [i/m, (i + 1)/m)

(i41)/m
3) fi=m / f()dt, 0<i<m.

ifm

Block-pulse functions have the following useful properties:
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- disjoint property

pi(t) forj=1i,

(4) pi(t)p;(t) =
0 for all j # 1,
- orthogonality
L I/m for j =71,
0 [ ettt =
0 0 for all j # 1.

The function t¥, ¢ € [0,1), k € {0,1,...} can be approximated as a BPF series
of size m. Indeed, using (2) and (3), we get

CONNE N

The first integration of BPF can be expressed by BPF. Indeed, from (1) we
have

(6) 1k

0, 0<t< &,
¢
. . 1 m=1 . 1
p@dz= - L= (- e+ 5T gi0), £ <t< i
0 j=i+1l
1 i+1
m’ 2m S t<1
From (6) and using the disjoint property in (4) we obtain
: 1 m-—1
[otae= oo+ > w0, osi<m
0 j=t

"Therefore we can write the relationship between BPF and their integrals in the
following matrix form

[ [ vo@)d
0

. 102 2 27 [ #ol?)

Jeiw(zydz | 1 {0 1 2 2 e1(2)

0 :% . )
000 1 Spm—l(t)

_Of’spm_l(z)dx
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or in compact form

) /(Dm(z)d:c > B ®m(t).

By, is called the operational matrix of dimension m which relates BPF and their
integrals. The operational matrix By, is triangular and it has some properties
which reduce the calculations in solving a second order partial differential
equation. An elementary calculation shows that the powers B, k > 1 has
the form

b p{H) bl bk
k) 0 i
(8) B,’;:'(Ql)k 0 Rk bt ||
m . . : .
0 0 0 b

where the elements bgk) are determined by the recursive formulae

V=1, =2 (i=23, ... m),

1

(9) N
b =STe0 N L =23,k i=1,2,...,m).
s=1

Moreover, for the inverse of B,, we get

P1 P2 P2 Pm
0 m p Pm-1
(10) Bll=om| . = T,
0 0 0 P1
where p; (i = 1,2,...,m) are obtained by the recursive formulae

1=-1
(11) p1 =1, pi = —Qij (1=2,3,...,m).
=1
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3. Double block-pulse series

A function of two independent variables f(z,y), which is integrable on the
unit square 0 < z,y < 1, can be approximately represented by a BPF series of
size n respect to y as follows

(12) f(z,y) = Zfl z)pil(y)-

Using the orthogonal property of BPF in (5) the coefficient functions f;(x)

become
(i+1)/n

fi(z) =n / fle,y)dy (i=0,1,...,n—-1).
i/n

Similarly, a BPF series approximation of f;(z) gives

m—1
(13) E <p.’l ch)
j=0
where ¢;; are coefficients obtained by
(G+1)/m (7+1)/m (i+1)/n
(14) ¢ji =m / fi(z)dz = mn / / f(z,y)dydz.
ilm jfm ifn

The combination of (12) and (13) yields

n—lm 1
(15) flz,y) = pj(z)cjipi(y)-
i=0 j=0
Letting the BPF vectors
(16) Bn(y) = (0o(¥), e1(¥), -, n-1(y) )T,

(17) B (z) = (po(2). 91(2), ., pm-1(z) )T



8 Rafat Riad

and coefficient matrix C of m x n dimension C = [¢;;], the equation (15) is
written in matrix form as

(18) f(z,y) = ®F(z) C ®n(y).

This is the double BPF series approximation of f(z,y). For the convenience of
computation we choose m = 2°, n = 2%, where s, w are positive integers. The
integration of BPF vectors of (16) and (17) gives respectively

(19) @, (t)dt = B, 0 (y),

—

0
(20) /(I'm(t)dt =~ B, &n(z).
0

4. Solution of second order partial differential equations

Consider a general second order partial differential equation PDE with
constant coeflicients

o2 f 0% f o°f  of Of _
(21) W+a1ax—%+azggﬁ+asa—r+a4%+a5f—g'

The boundary conditions are

(22) f(z,0) = u(z), fy(z,0) = up(z),
(23) f(O) y) = 1)1(y), fa:(o) y) = UZ(y);
where a; are constants and g(z,y) is the input function. We try to obtain an

approximate solution by BPF for £ € [0,1) and y € [0,1). From (18), the
double block-pulse series approximation of f(z,y) is given by

(24) f(z,y) = ®L(2) C L (y).
Similarly

(25) g(z,y) = @7, G @7 (y),
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where GG is an m X n matrix with components

(G+1)/m(i+1)/n
gji = mn g(z, y)dydz
ilm i/n
(5=01,....m=1, i=0,1,...,n-1).
A block-pulse series approximation of u;(z) (: = 1,2) of (22) is
(26) wi(z) = 0T (z) U;
where
(j+1)/m

Ui = (uio, i1, - -, Uim-1)] and u;; =m wi(z)de.

jfm
n-1
Since Y px(y) =1 for y € [0, 1), equation (26) can be written as
k=0

(27) wi(z) =07 EG @,(y)  (i=1,2),

where E¢) is an m x n matrix each column of which is U;. Similarly, a block-
pulse series approximation of v;(y) of (23) can be obtained

(28) vi(y) = VT @a(y) = 2L (x) FO @aly)  (=1,2),
where
G+1)/n
VT = (vio, vily -y Vin—1), vij =n vi(y)dy
jln

and F() is an m x n matrix each row of which is V7. The elements of E(),

F® (i =1,2) and G are known. Now we try to obtain the elements of C'.

Integration of equation (21) twice with respect to  and y gives

! '
T Yy

y
////{fﬁ+01fﬁ+a2fﬁ+aaff+a4f'y'+asf}dfd§dzldy’:
D000
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y =z z'

29) - /] [ steriztantay.

Using the block-pulse series approximation of (19), (20), (24), (25), (27) and
(28), the seven terms of (29) can be evaluated, respectively, as follows

Term 1= / / / / fo=(7, T)dzdgds'dy’ =

[fo(2',9) — fz(0,9))dyde’dy =

1
O\e
o\s
o\‘:

[fo:(2',9) = @F (a) F D0 (7)]dz'dydy’ =

l
S

O\@\ 0\@\ O\Q
O\H

(f(z,9) - £(0,9) = &7, (2) BR. F V) ®n (¥)ldydy’ =

I
o\‘c

(87, (2)C®n(Y) - O7. (2)F V2 ()~

Il
o\e

- &7 (z) BL, F® &,(g)ldgdy =
= @7 (z)[C - F — BT FI] B2 @,(y).

0 0 0

Yy z

=a [ [ v) - 10,) - 51,00+ 10, 0)ax'dy

0 0

m—1 n~1
Y pe(z)=1forz €[0,1) and Y @x(y) =1 for y € [0,1). Then f(0,0) can
k=0 k=0

be written as f(0,0) = ®2 F(® &,(y), where F(9) is an m x n matrix each
element of which is f(0,0). Hence

Term 2 = 0,97 (2)BL[C — F) — EM 4 pO®,,(y).
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Similarly,

Term 3 = 0,87 (2)(BL)%[C — E® — E@D B, 19,(y),
Term 4 = a3®7 (2) BT [C — FVB2®,(y),

Term 5 = 4@, (2)(BLC — ED)Baa(y),

Term 6 = as®T (z)(BL)2CB2®,(y),

Term 7= &,,(z)(BL)?°GB?®,(y).

Substitution of these terms into (29) gives an equation of the following form

(30) ®%(z)[ ... 1®a(y) = 0.

Since (30) is valid for any z and y in the domain of consideration, the quantity
in the brackets should be equal to zero. That is

(31)
CB? + a1 BT CB, + a3(BY)?C + a3BLCB? + a4(BL)2CB.+

+as(BT)?CB2 = [FV 4+ BT FCN\B? 4 o, BL[F() 4 EM) — pO))B, 4

+ aa(BL)?[EW + E®B,] 4 a3 BT FMB? + a4 (BT)?EWB, + (BT)*GB2.
The components of C are ¢;;,4=0,1,...,m—1and j =0,1,...,n— 1, which
can be obtained from the set of m x n linear algebraic equations (31) in matrix
form. The explicit form of the solution for C is of practical importance for

computer computation. Derivation of the explicit form of the solution for C is
as follows. First, multiply (31) by B;! from the right:

CBn + a1 BYC + a3(BL)’CB;! + a3BL.CB, + a4(BL)?C + as(BL)*CB, =

=@Q,

where

Q =[FW 4+ BT F®]B, + 0, BL[F(V) 4+ EM — FO)]4
+ax(BR) (BB + E®) + 63 BLFVB,+
+as(B1)PEM + (B])’GB,.

@ is an m x n known matrix. The first column of C is defined as cp, the second
column ¢y, etc. Similarly, the first column of @ is defined as g, the second
column ¢;, etc. Using the Kronecker product technique introduced by Chen
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and Hsiao [2], [10], we rearrange C as a vector Z with mn components and
rearrange @) as a vector W with mn components

Co qo

C1 q1

Z = , W = )
Cn-1 In-1

Finally, we have

[Im ® BY)Z + a1[BY ® I)Z + a2[(BR)* ® (B; )12+

32 ]
(32) +a3[BL ® BI)Z + a4[(BL)? ® I)Z + as[(BL)* ® B.]Z = W,

where A ® D is the Kronecker product, i.e. each element of D is multiplied by
the whole of A. Therefore, the solution for C comes directly from (32)

co g0
(33) Tl=o ) T
cn._l n-1
where
” D=1, ®BL +aBL @I + ax(B%)T ® (B; )T+

+a3By, ® By + as(BL)" @ as(B5)" © By

is mn X mn matrix and I is the identity matrix. If we use (33) directly
to determine the solution C, some difficulties might occur in obtaining the
inverse of a square matrix mn x mn, especially, if m and n are large values.
Depending on the special properties of the operational matrix B, an algorithm
1s established to reduce the calculations.

Using the definition of Kronecker product of matrices, the matrix D in
(34) can be written as

Dy Om O Om
Dy Dy Onm Om
0

D= |Ds D Dy

Dn ADn_l Dn_2 Dl
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where

a

_1 T a 2\T
o Dy = o-lm+ (a1 +52) BE + (20001 + s + 5-) (B2)T,

3 5
2n n
1
Di=~In+ a—ng:, + (QMQPi + a—5-> (BZ)T
n n n

are m x m matrices and Oy, is m x m zero matrix. The matrix D has a special
form and its inverse is easily obtained by

Ry Opn Om Onm
R; Ry Opn Om
D! = R3 Ry Ry Om ,
Rn Rﬂ.—l Rn—-Z Rl
where R;, i = 1,2,...,n, are m x m matrices determined by the following
recursive formulae
1—1
Ri=Di', Ri=-Ri|) DiijuRi|, i=23,..,n
;=1

From (35) the matrix D; can be written as

d; 0 0 0
ds dy 0 0
D =|d di 01,
dm dm—l dm—2 dl
where
1 a I’ o g ..
dy = — -— —_ di = - — (i -1 3 = 2)3) )
! 2n+2m+(2m)2’ m+m2(~z ) ’ m
and a5 as
a=a;+ —, B =2nay+as+ —.
2n 2n

Now, the inverse matrix D1—1 is obtained by

21 0 0 0
z9 2 0 0
Dl_l — | 23 29 z 0 ;

Zm  Zm-1 Zm-2 21
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1 i~1
zZ] = a, 2 = —2q E di—j+1zj , 1= 2,3, o,
j=1

This completes the derivation of the inverse of the matrix D. The solution C
is easily found by substituting D~ into (33), namely

J
cj:ZRj..,Hqs, 7=0,1,...,n—-1
$=0

Obviously, in this algorithm the calculation of matrix inverse of mn x mn is
avoided. Therefore, we have saved computing time, storage and, consequently,
have reduced the roundoff errors significantly. This algorithm is easy to
implement on computer. A program has been written in BASIC language
for solving a second order PDE. Computer output of an example is presented.

Example. Consider the second order PDE

62
a—é—5g—£+6f:121:.

The boundary conditions are

5 . 5
f@,0)=2+7  fOy) = y+yi+ 7

fy(z,0)=¢*,  f(0,y) =2y +3y" +2.

For the purpose of comparison the exact solution is

f(z,y) = ye* + y?e¥ + 2z + g
The following table (see on the next page) shows a comparison of the eight-
term (m = n = 8) approximation and the true value at each midinterval. The
accuracy is very good considering that the BPF series was truncated after the
eighth term.
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