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THE MEAN VALUES
OF MULTIPLICATIVE FUNCTIONS I.

G. Stepanauskas (Vilnius, Lithuania)

Dedicated to the memory of Professor I. Kornye:

1. Results

Let g; : N — C, 7 = 1,2, be multiplicative functions (gi(mn) =
= g;(m)gi(n) for (m,n) = 1, ¢;(1) = 1). Throughout the paper p and ¢ denote
primes; m, n, and k are natural numbers; ¢, ¢z, ... are positive constants.

In this paper we shall be concerned with the mean values of multiplicative
functions

(1) M:(91,92) = %Zgl(n+1)92(n).

n<zc

Particular cases of this kind have already been studied in [3,4,5,2,8]. Estimates
of (1) can be used to obtain the information on the behaviour of the distribution
of the sum

filn + 1) + fa(n)

where f, and fo are real-valued additive functions (see [2,8]). In the proofs
we shall follow ideas and methods of A. Rényi [6], A. Hildebrand [2] and
R. Warlimont [7].

Let us put

Stry= Y 2@ =1 letp) 2 1

r<p<=z
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The main result of this article is the following

Theorem. Let the moduli of multiplicative functions ¢y and go do not
ezceed 1. Then there ezists a positive absolute constant ¢ that forxz > r > 2

(3) Me(g1,92) = P(x) + O(x™ 2 exp (r*/2) + (r logr)™V/% + (S(r,2))'?)

where the constant in the symbol O is absolute, too.

Let us note that the powers of z and r in the first summand of the
remainder term of (3) can be changed by another ones (see (23)).

As an application we shall formulate a few corollaries.

Let ¥ mean the Euler function, o(n) be the sum of the positive divisors of
n, and
Ar={n lpmHn implies m < k}

denote the set of kfree natural numbers.

Corollary 1. Forz > 2
1 P(n+1) p(n) _ 2 1
Z (n+ 1)n _I;[ ! p? +0 (logz)~ )’

e(n+1) so(n) 2 112 1
“z‘; (n + Do(n) l;I(l'E”(l—E) Zl+p+---+P’”>+

n<z
n n+—16Ak
1 ®(n) ( 1 1 > 1
- = 1— — — — Ol —
z 72 n I;-[ p? pr + (log z)*
n+1_EAk

where £, 0 < k < 1, is arbitrary. The constants in the symbols O may depend
on Kk only.
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Let us designate

(4) > m, i=1,2,

gt P
1
(5) > ; i=1,2,
fi(p)I>1
(6) ) filp) + falp)
15 (myl< P
|f2(p)I<1

Corollary 2. Let fi and fy be real-valued additive functions and let the
sertes (4), (5), (6) converge. Then the distribution functions

1 .
(7) q# {rln s e A )+ f0) < o}

converge weakly towards a limil distribution as £ — oo, and the characteristic
function of this limit distribution is equal to

2 1\ = exp (itfi(p™)) + exp (it f2(p™))
(8) H(1—5+(1——)Z )

m
o P p

m=1

From Corollary 2 it follows immediately

Corollary 3. The distribution functions

1 pnt ) oln) _
g {lnses TEm < 2
1L e _
m#{ n <o = S }

L[ et e
AR s }
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converge weakly towards limit distributions as * — oo. The characteristic
functions of these limit distributions equal

(5 (03" 1),

I 1—§+2(1—%) > (HP—%T(I—E}”)Y

I;I 1—2+2(1—1)i< A— ,

P p/ = pm
respectively.
2. Proofs
Proof of Theorem. Let us put
P(r,z) = I;E:))

for 2 < r < z. Define multiplicative functions g;» and g}, ¢ = 1,2, by

g:(p™) f p<r,

gir(Pm) =
1 if p>r,
" gi
gir = g?)

and multiplicative functions h;,, 1 = 1,2, by

gi(P™) — gi(p™ ') if p<r,
hir(pm) =
0 if p>r,
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so that g;, = 1 * hy;.

Now we can write

Melo1,00) = P(2) = P(r,2)( 1 3 el + Daar(m) = P7) )+
n<r

(9)

7

+ % Z g1-(n + 1)g2-(n) (g5, (n + 1)g5.(n) — P(r, z)) .

n<r

The moduli of the multiplicands under the multiplication sign of (2) do not
exceed 1. Thereby it follows from (9) that

[Mo(01,02) - P@)] < 1= 3 gueln + Do) = P+
l n<z

(10)

r(n+ 1Dgs.(n) — (r,z‘)i:R1+R2.

n<z

First let us estimate R;. [t follows from the definition of the functions h;,
that

—Zgun+1gzr = ZZhu ) har(d) =

n<zr n<:cd|n+1 d'in
(11 hyr(d)h
DD IHCINCIDIREDY il
d<:c+1 d'<z n<z d<z+1 d' <
din+1 (dd) 1
d'In

< Z Z ihlr hgr d/)l) =P+ R3.

d<z+1  4'<z
(d,d")=1

It is easy to see that

hir(d) hor(d')|
2012]1( |Z|2;,(a

d'=1
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where the value of @, 0 < @ < 1, will be chosen later. Since

glhzid H(Hzlh,r(p )I) H( pQQ_I)S

p<r p<r

< c Z ! < ex (627-1—0
sexpila pa ) = p\logr

p<r

with suitable ¢; and ¢3, then

l—a
Rs < 2% lexp (QCZT —) )
log r

Return to (11). We have

po S @)

d=1 g'=1
(d,d")=1
| h1r(d)] §- Ihrd’)l | har(d)] <~ | har(d)]
09 o el $5 1Al 5 Ihald) 55 D)
d>z d'=1 a'>zx d=1
=11 (1 4y M) J;hz(pm)> Ry
p<r m=1 p

The product in the last equality is equal to P(r).
For the estimation of R4 we get analogously as in {12)

and

where 3, 0 < 8 < 1, will be chosen later as well. Thus

B
Ry < £7P(logr)® exp (fcir) :
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From the obtained estimates of R3 and R4 and from (13) and (11) it follows

now that
2 l-«a B
Ry < z?* lexp cal +z Pexp Ty
logr logr

For the estimation of Ry we shall repeat the way used by R. Warlimont
[7]. Put

, 1 1
N, = {n]Epm||n+l,p >rl-g1(p™)| > 3 °F 3¢k|In, ¢ > 1, |1—g2(¢")| > 5}

and decompose Ry into two sums:

1 = 1 *
Ry = ; Z ‘glr(n + l)921‘(’”) - P(T‘,.’L‘)|+
nnef:'\.]rr

1 -

+ =
: 2
n<z
n@Nr

g;r(n + l)gar(n) - P(T‘,.’L‘)l = Rs + Rs .

Let us estimate the sum Rs5. We have

(15) Z 1< Z 3 1<<E

n<z+1
ﬂE ’Vr ’"||n

where the sign * means that the summation is extended over all prime powers
p™ < z + 1 where p > r and

DO

) 1
1= a1(p™) >5 or [1-g2(™)| >

Continuing (15) we obtain

R5<<Z—+ZZ < 2 ""(p)'112:lgz(p)—ll2+

p>rm= 2 r<p<z+1

(16)
+Z < S(r,z) + (rlogr)™ ! +z*

P>"
For the estimation of Rs we shall use the inequality

(17) le¥ — e[ < |u—v
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which is true with Reu < 0, Rev < 0. If n ¢ N, it follows from (17)

|91+ (n + 1)g3,(n) — P(r,z)| <

|
<| Y loggi(p™)+ Y logga(p™) —log P(r,z)| <
pTlIn+1 p™ lin
p>T p>r
<l Y (a™ =1+ Y (g2(p™) = 1) —log P(r,2)|+
P |In+1 P™ In
p>r po>r
+0( Yo lae™ -1+ Y Igz(p’”)—llz)»
P I+l P lin
p>r po>T

and we have

1
RGS;Z

Yo (a™-1)- ) Lp’”);l_'+

pm
n<z ' p™ |In+1 pT <z
p>r p>r
g92(p™) — 1
Y[ S -0 ¥ B
n<z ' p™||n pT" <z
p>r p>7
+
(18) L1 Z > g1(p™) gz(p) ~log P(r,z)|+
n<z p" <z
p>r

+0(%Z< Yo lae™ -1+ Y !gz(p'")—llz>) =
n<z

p™ |n+1 p™In
p>T p>T

= Rs+ Rg+ Ro+ Rio .

For the estimation of R7 and Rg we shall use the Turan—Kubilius inequality
([1] Lemma 4.4):

DY

n<zr

T (™) a(p™ )l <3 |a(11:;")!2

p™n P"‘<r pm<z
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where a(p™) are complex numbers for all p™ and the constant in the symbol
< 1s absolute.

Thus, using the Cauchy inequality additionally, we have that Rz (i = 1)
and Rg(i=2)

< L] wom-0- ¥ g—f%"#r)m-( y )"

n<z+1' p™|n p"<z+1 n<z+1
p>r p>r
1/2
(™) -1
(19) H-l«( 5 M—') rel e
pT L+l P
p>r
2\ 1/2 1/2
. Igz‘(P) - Hz ! 1 —1/2
< 3 BRI (S0 e,
r<p<Lz p>r
Therefore
(20) R7+ R & (S(r,z:))l/2 + (rlogr)™ Y% 4 z=1/2,
Further
(21)
qi(p +gz(P)“3 1
r<p<cz p>r
2 +
- (__+( )ZQI(P) g2(p™ )>'<<Z < (rlogr)~!
r<p<z p P p>r
and
(22)
m _l? m _12 _ B
Ro< 3 lg:1(p™) lptllgz(p ) =1 < S(r,z) + (rlogr)! + 2~
pT<z+1

in a similar way as in (19).
Finally collecting all needed estimates we obtain

C T'ﬂ
[Mz(g1,92) = P(a)] < ™" exp <1§gr>+

(23)

l—a
+ 2% lexp (2—01_2crgr ) +(S(r,2))""* + (rlogr)~1/?
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and choosing @ = @ = 1/3 finish the proof of Theorem.

The proof of Corollary 1 follows from Theorem using the estimate of
remainder term (23). We have to choose for example

. 1 3
ﬁ_l—a_mm(ﬁ,z)

r = c1g(log z loglog z)1/#

and

with sufficiently small ¢;g > 0 and to make some simple calculations.

The proof of Corollary 2. This proof is well-known but we shall give
it because of completeness.

It is known from the probability theory that a sequence of distribution
functions Fj(z) converges weakly towards a limit distribution F(2) if the
sequence of characteristic functions

wr(t) = /exp(itz) dFy(2)

has the limit
e(t) = Jim ga()

for every real t and ¥(t) is continuous at t = 0. Furthermore the function ()
is the characteristic function of the distribution F(z).

The characteristic functions of the distributions (7) equal

(24) [1—] S exp (it(filn + 1) + fo(n))

n<z
Since

Z exp (it f1(p)) + exp (it f2(p)) — 2 _y E f1(P)+f2(P)+

? P (@< P
I72(p)|<1
2 2
+0<tz 5 M@>+O( > Dol ¥ )
11 ()<t P h@I>1 P famI>1 P

[f2(p)1<2
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then from the convergence of the series (4), (5), and (6) we deduce that
the infinite product (8) converges for every ¢. Furthermore this product is
continuous at ¢ = 0 because it converges uniformly for |¢| < T where T > 0 is
arbitrary.

Since forz =1,2

. : _ 2 : 2
Z [exp (Zt flp(p)) ll < 12 Z lf:(P)l n E ;
p [F:(p)I>1

e P

then from the convergence of (4) and (5) it follows that S(r,z) — 0 when
7 tends to infinity together with #. Choosing for example » = logz in our
Theorem we get that the remainder term in (3) disappears when £ — oo.

Thus the characteristic functions (24) have the limit (8) for every real ¢
and this limit is continuous at ¢ = 0. Corollary 2 is proved.
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