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ON THE PERIODIC EXPANSION
OF ALGEBRAIC NUMBERS

A. Pethd (Debrecen, Hungary)

To the memory of B. Kovdcs and I. Kérnye:

1. Introduction

Let K be an algebraic number field of degree n with ring of integers Zg.
Let K(), i = 1,...,n denote the conjugates of K in the field of the complex
numbers C. Similarly o(*) will denote the i-th conjugateof « € K (i = 1,...,n).
For « € Zg and N' C Z the pair {a,N'} is called a number system NS, if
there exist uniquely for every 0 # 8 € Z[a] a nonnegative integer L(3) and
bo, .. 'abL(ﬂ) € N such that bL(,ﬁ) # 0 and

L(B)

(1) 8= Zb,-a".
1=0

After partial results Kovacs and Pethd [8] gave a complete characterization
of number systems in algebraic number fields. In [9] they gave asymptotic
estimate for L(8), which you find here as Lemma 1.

Having a number system it is natural to ask which elements of R(«a) have
an infinite power series expansion of o with ”digits” from N. Remark that the
field R(«) is R, the field of the real numbers and C, according as « is real or non-
real. Another natural question is whether the well-known rationality criterion
of the ordinary g-ary representation of real numbers may be generalized for the
new situation.
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To be more precise, let {a, N'} be a N'S such that K = Q(a). We shall
denote by S(a) the set of those complex numbers v for which either ¥ = 0 or

oo

(2) v = Z a_jo”

i=L(v)

with some a; € N, i = L(v),L(v) —1,... and a_p(y) # 0. We shall call (2)
the aN-expansion of v. This concept was introduced by Katai and Szabé (3].
They proved that if o is a Gaussian integer and {a,N'} is a N'S in Z[i] then
any complex number has an aN-expansion. Later Kovdcs [5] characterized
those {a, N'} number systems for which any ¥ € R(a) have aN-expansions.
Using this result and properties of interval filling sequences Kovacs and Maksa
[7] proved far reaching generalization of the theorem of Katai and Szabé. They
proved for example that if @ is real N' = {0,1,..., |[Norm(a)| — 1} then any
real v have aN-expansions. Norm(a) denotes the norm of a.

This problem was completely solved, even in more general setting, by Katai
and Kornyei [2]. By their result any v € R(a) has an aN-expansion. Using this
theorem Kovacs and Kornyei [6] proved that the e -expansion of a v € R(«a)
is periodic if and only if ¥ € Q(a). Unfortunately, the method of Kovécs and
Kornyei is not algorithmic, one can hardly compute the periodic expansion of
a given v € Q(a).

The aim of this paper is to prove that at least one periodic a N -expansion
of any v € Q(«) can be found by using the arithmetic of Zg. Our method
is independent from the abovementioned theorem of Katai and Kornyei, it is
essentially the same as the method which computes the periodic ¢-ary expansion
of rational numbers. We are stating now our result.

Theorem 1. Let {a,N'} be a NS such that K = Q(a). Then there ezists
an algorithm which computes a periodic aN -ezpansion for any v € K.

It is obvious from the theorem of Katai and Kornyei that any v € R(«a)
may have many different aN-expansions. On the other hand it is not clear
how many periodic aN-expansions of the elements of K may have. We shall
point out in Section 3 that even the periodic aN-expansion of the elements of
K is not unique. In all of the examples I studied, the different expansions were
closely related, more precisely they were different only in finitely many digits.
It remains an open question whether there exist essentially different periodic
expansions.
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2. Proof of Theorem 1

An important tool in the proof of Theorem 1 is the following theorem of
Kovacs and Pethd [9].

Lemma 1. Let {a,N'} be a NS, o being of degree n and 0 # v € Z[a).
Then there exist constants ci(a, N), ea(a, N') such that

log|7(i)| ’ logly( )I
e <L(y) <
22 Togla®] T c1(e N) < L(y) < max Togla®] T ca(a, N).

Remark that the constants ¢y and ¢y do not depend on 7.

In the proof of Theorem 1 we follow essentially the proof of the analogous
statement for the g-ary representation of real numbers as given in Bundschuh
(1]. Let 0 # v € K = Q(a). Write v = Z with 8,6 € Z[a].

Assume first that (6) + {@) = (1), where and in the sequel (§) denotes
the principal ideal generated by é in Zg. There exists an integer d > 0 such
that a? = 1 (mod 6) holds in Z[a]. Let fix d and put o — 1 = éx;. Then for
m > 1 integer & divides obviously a®™ — 1. Put a®™ —1 = é«,,. Then we have
Km € Z[a] and

Br1 BEm Bry(adm=1 4+ +1) Em

(3) TEad 1 T adm o1 adm — 1 Tadm 1

As 0 # €, € Z[a], thus €, can be represented in {a, N'} and

()4
1

log [e% | loe I
<max ————= +¢2 =
Llem) _1?idéxn log |a()] Te l?iaéxn log ||

+ ¢y <

log |(8K1)®")| — log o) — 1|
1<i<n log |a(¥)]

+ ¢o + dm.
Notice that the first two summands are independent from m, hence
|L(em) — dm| < c3
with c3 independent from m, and we can write
dm—1 L(em)

Em = E amia’ + E amia. =wm + adm

1=0 i=dm
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with am; € N, i=0,...,L(em). As the length of 7,,, is bounded by a constant,
which does not depend on m and the "digits” ami, ¢ = dm, ..., L(em) belong
to a finite set, there are only finitely many possibilities for r,, m = 1,2,...
Thus there exist 0 < £ < k integers such that 79 = 79» = 7. Let fix £ and & for
the sequel. We have

k 2 k
P a®? —1 3 a®? —1 a%? -1
Eqk = B ——— = Bk, - =
2 Vel —1 ald—1 a2 -1

d(z"-z')) —

=ep(l+0%? +. +a

= wge + (woe + T)ad'2l(1 + ad? 4 + ad(2* =21 + ad? 7

On the other hand .
Eok = Wok + lez T.

Both wye and 7 are assumed already represented in {a, N'}. If we write wye + 7
in {@, N} then it may happen that the length of wy: + 7 is longer than d-2¢—1.

et
2k=t_2

Nk = ((4)2[ + T) Z advz{l .
i=0
We get in this notation
— d-2* d-2*
Egk =Wt +a N+« T.

We have on the other hand

ok
d2,r

)

Eok = Wok + o

where both wyr and 7 are written in {&, N'}. Thus wox = wqe -}-(.v"""ln;c and we
have

(4) Line) < d(2* - 29) - 1

for the {a, N'} expansion of 7.

Let now t > 0 an integer and consider €ox 443k _3¢). We have similarly as
above
(t+1)(2*~4-1)

— d-2% _
€k pt(2k—2t) = Ent Z [o% =

i=0
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(t+1)2*7¢-1)
= wge + (wge + 7) Z ad2" . @ 2D -4

i=1
2k=t_2

t
= woe + Z ad»z‘(j(z“-'—l)ﬂ)(wzl +7) Z ad-i2‘+
j=0 1=0

+7 Q@2+ = +1)

t
= Woyt + T]k(]{d.zl Z aj'd(zk_zl) + Tad[(t+l)(2k_2l)+zl].
j=0
This is by (4) already the {o, N'} expansion of €gx(ax_2¢y if We insert the
{a, N'} expansions of wye, 7 and 7.

Let A = max{|b|, b € N}, then we have

13! Al L(B) |o|
(5) 1Bl < Aol -1

for any 3 € Z[a). Put B = max{L(wye), L(7), L(nk)} = max{d-2¢, cs, d(2*—
—28)}. Using (5) we get

(o)
a0k _ot ok k_ot
Egryp(2x—20) — | T+ leza J-d(2°=2) (ad[‘ +(27-20) _ 1) =
j=1

o0 oo
. k I3 . k 13
= |woe — Mk E : a—]d(Z -A2)+T+nk§ :a—Jd(Z -2 <
j=t+2 j=1

<t el () =

for any t > 0 with c4, which is independent from t. Taking now into
consideration (3) we have

o0
Y=T+ % Za"jd(zk"2l),
j=1

which is a periodic aN-expansion of 7. This proves Theorem 1 in the particular

case.
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In the second part of the proof we are dealing with the general situation,
Le. ify = % with 38,6 € Z[a], but () + (o) C (1) in Zg. Let the prime ideal
decomposition of the ideal (a, §) in Zx be

(a,8) =P ... P
where c1,...,c¢; are positive integers.
() =P ... P*Qs and (a)=P...PlQ,

with Qs 4+ (a) = (1). Denote by h the class number of Zg. Then P} = (=),
i=1,...,t; Q" = (ps) and Q! = (p,) with m;. ..., 7, ps, pa € Zg, and we
have

§h = a% . wpsns and ot = b T DaTa,

where 75 and 7, are units in Zg. We may assume without loss of generality,
eventually changing ps and p,, that ns = no = 1.
Let s be a positive integer such that sb; > ¢; hold for allz = 1,... ¢t and
put
b = shmstimor | gpibemacpt = gk

Then we have

y = ’B.éh—l,’r;bi—al '..,n-:bt_alpsa _ /31
o pg a’hps
As (ps) + (a) = 1, there exists a periodic aN-expansion of 81 Division with
ps
a*" does not change the periodicity of this expansion, only the place of the
"period”, hence v admits a periodic aN-expansion. Theorem 1 is proved.

3. Examples

To illustrate how one can compute in the line of the proof of Theorem 1 a
periodic aN-expansion we choose a a zero of the cubic polynomial z3 + 922+
+24z + 17. We proved with B.Kovacs in (8] that if A/ = {0,...,16}, then
{a, N} is a NS in Z[a]. Put v = 1/2. It is easy to check that o” = 1 (mod 2)
and o/ # 1 (mod 2) for any 0 < j < 7. We have

a’ = —7932a” — 33326 — 27387.
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Thus
l _ —3966a? — 16663a — 13694 _
2 71 -
8+12a+13a + 408 + a* + 8a% + 4af + o7

-1
4 8 1 4 13 12 8\<= _u
—<1+E+a—2+§+;+§+;§+?)§a =
b .
= a+ (40% 4 8a® + o* + 40® + 130? + 12a + 9)2&‘7'.
i=1

Finally we shall show that the periodic aMN-expansion is generally not
unique. Let p(z) = apz” + a12" "' + ...+ a, € Z[z‘] such that 1 = apg < a; <

< ...<an, an > 2, a azero of p(z )a.ndN—{O an — 1}. Then {a, N} is
a /\’S in Z[a] by B.Kovécs [4], hence |a} > 1.
Put

- o
7:(1,,201 ‘:a"a—l'

i=1

As a, € N this is not an aA-expansion of v, but we can easily find aN-
expansions of 7. Indeed, let 0 < j < n, then as p(a) = 0 we have

o0

-i Pl o —i
Y=an ) @ ——i-y)-La (41 4 pa) =
1=0

i=1
= aga® + ...+ aj_10" 7 4 (a; — ag)a! + (an — an-j)a’+

+ (an - an—-j—l)a-‘l + ...+ (an - an)a_j+

+ Z - aO cee + (an - an))a_i(n+l)—j;

where a_; = 0 if j = 0. It is clear that the coeflicients of this power series
belong to AV, hence v has at least n + 1 different, periodic aN -expansions.
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