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I. Introduction

Let G be an abelian group. A function f defined on the set of the positive
integers N* is a G-valued additive arithmetical function if f(mn) = f(m)+ f(n)
when (m,n) = 1. In 1946 P.Erdds [1] proved that if a real-valued additive
arithmetical function f satisfies the condition (f(n+1)— f(n)) — 0, n — +oo,
then there exists a constant C such that the equality f(n) = C'logn holds for
all n in N*,

In his article [4] [.Z.Ruzsa has suggested to consider the problem of the
distribution of group-valued additive arithmetical functions, and in this context
I have extended the result of P.Erdds to the case of arithmetical additive func-
tions with values in a locally compact abelian group: an additive arithmetical
function with values in G satisfies the condition (f(n+1)—f(n)) — 0, n — 400,
if and only if there exists a continuous homomorphism ¢ : R — G such that for
any n in N*, f(n) = p(logn) [2]. And as proved by I.Z.Ruzsa and R.Tijdeman
[5] this cannot be generalized to all groups.

Answering a question of P.Erd6s asked for in the abovementioned article
[1], E.Wirsing [6] provided a characterization of a real-valued additive arith-
metical function satisfying the condition (f(n+1)— f(n)) = O(1): areal-valued
additive arithmetical function satisfies the condition (f(n + 1) — f(n)) = O(1)
if and only if there exists a constant C such that the sequence (f(n) — Clogn)
1s bounded.

In this article I shall consider the same question for arithmetical additive
functions with values in a locally compact abelian group G, and shall provide
a characterization of G-valued arithmetical additive functions satisfying the



162 J.-L. Mauclaire

condition: there exists a compact neighborhood V of zero such that for all n
in N* (f(n 4+ 1) — f(n)) belongs to V.

I1. The results

We have the following result:

Theorem. Let G be a locally compact abelian group with group law denoted
additively and f a G-valued arithmetical additive function. The following
assertions are equivalent:

1) there ezists a compact neighborhood V of zero such that for all n in N*
(f(n+1)— f(n)) belongs to V;

11) there ezists a continuous homomorphism ¢ : R — G and a compact
neighborhood of zero W such that for all n in N* (f(n) — p(logn)) belongs
to W.

Remark. To obtain the Theorem we shall use the following result.

Proposition. If G is an abelian group and f is a G-valued additive
arithmetical function such that the sequence (f(n + 1) — f(n)) takes only a
finite number of values, then the sequence (f(n)) takes only a finite number of
values.

N.B. This proposition is an answer to my naive question IV.2.1 in {3]

II1. Proofs of the results

II1.1. Proof of the proposition

If G 1s an abelian group and f is a G-valued additive arithmetical function
such that the sequence (f(n 4+ 1) — f(n)) takes only a finite number of values,
then clearly the sequence (f(n)) takes its values in a finitely generated Z-
module G'. Now as a finitely generated Z-module G’ is isomorphic to a product
Z" x (Z/mZ) x ...x (Z/n,Z), where 7 is a nonnegative integer, and the finite
sequence (n;), 1 < i < s, of positive integers greater than 2 is such that n;
divides n;_; for ¢ = 2 to s. To this isomorphism we can associate (f)i<j<r4s,
a decomposition of the function f, where f; is a Z-valued additive arithmetical
function for 1 < j < r and f; is a Z/n;_,Z-valued additive arithmetical
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function for r+1 < j < r+s. Now, forr+1< j < r+s, fj(N*)is
contained in the finite set Z/n;_,Z, and so to obtain the proposition it will be
sufficient to prove that a Z-valued additive arithmetical function f such that
the sequence (f(n + 1) — f(n)) takes only a finite number of values, takes also
only a finite number of values. To do that we recall the following recent result
of mine [3]:

Let f be a real-valued additive arithmetical function satisfying the condition
(H): There ezists a finite set Q such that

JLim min |f(n +1) — f(n) —w| = 0.

Then there ezists a constant C such that the sequence f'(n) = f(n) — CLogn
takes a finite number of values on N*.

Since a Z-valued additive arithmetical function can be viewed as a real-
valued additive arithmetical function, this result gives us that there exists a
constant C such that the sequence f'(n) = f(n)—CLogn takes a finite number
of values on N*. Since f(n + 1) — f(n) takes a finite number of values on N*,
by difference, we get that the number of values of C(Log(n + 1) — Logn) is
finite, too, which implies that the value of C is equal to zero, and so, that
f'(n) = f(n) and this gives that the number of the values of the sequences
f(n) is finite. This ends the proof of the proposition.

II1.2. Proof of the theorem

II1.2.1. Proof of ii) = 1)

We assume that there exists a continuous homomorphism ¢ : R — G and
a compact neighborhood of zero W such that for all n in N* (f(n) — ¢(log(n)))
belongs to W. Then we have ((f(n + 1) — ¢(log(n + 1)) — (f(n) — ¢(log(n))))
belongs to W/ = W — W, which is still a compact neighborhood of zero. This
gives that ((f(n+1)—f(n))—¢(log(1+1/n)) isin W', and since ¢ is a continuous
group homomorphism, ¢(log(l + 1/n)) tends to zero, and so there exists a
compact neighborhood W” of zero such that for all n in N* ¢(log(1 + 1/n))
is in W”. Hence we get that for all n in N* (f(n + 1) — f(n)) belongs to the
compact neighborhood of zero V' defined by V = W' — W”.

II1.2.2. Proof of i) = i)

We assume that there exists a compact neighborhood V' of zero such that
for all n in N* (f(n+ 1) — f(n)) belongs to V and shall prove that there exists
a continuous homomorphism ¢ : R — G and a compact neighborhood of zero
W such that for all n in N* (f(n) — ¢(log(n))) belongs to W.
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Since G is a locally compact abelian group, the structure theorem gives
that G can be written as R™ x G’, where G’ contains an open compact
subgroup H. Now, as above in the proof of the proposition, we associate
to f a decomposition f = (f1,..., fm,g), where f;, 1 < j < m, are real valued
additive functions and g is a G’-valued additive function. Since there exists a
compact neighborhood V' of zero in G such that for all n in N* (f(n+1)— f(n))
belongs to V, we get that there exist m compact neighborhoods V; of zero in
R, 1< j <m, and W, a compact neighborhood of zero in G’ such that for all
nin N* (fj(n + 1) — f;(n)) belongs to V; and (g(n + 1) — g(n)) belongs to W.
Now, by the original result of Wirsing, we get that for all j, 1 < j < m, there
exists a real number C; such that the sequence (fj(n) — C;logn) is bounded.

It is clear that to end the proof of the theorem it will be sufficient to prove
it for the special case of a function f taking its values in a group G’, where G’
contains an open compact subgroup H.

Let K be the subgroup of G’ generated by W. K is open and closed in
7' and H’, the intersection of H and K is also open and closed since H is so,
and compact as a closed subgroup of H. As a consequence, the quotient group
K/H' is discrete. Let T be the canonical homomorphism K — K/H’. The
sequence T'(f(n)) is a K/H'-valued additive arithmetical function, and for all
n T(f(n+ 1)) — T(f(n)) belongs to T(W). But T is continuous and so T(W)
is compact, hence finite since K/H' is discrete. This gives us that T'(f(n+
+1)) — T(f(n)) takes only a finite number of values, and by the Proposition
the sequence T'(f(n)) takes also a finite number of values, say @y, u € U, a
finite set. This implies that f(n) belongs to the union of a finite number of
cosets a, + H', where e, is in a@;. But f(1) is equal to zero. This implies
that one of the a, is equal to zero. Now, since each of the cosets a, + H’ is
compact, their union W is also compact and is a compact neighborhood of zero
since it contains H’. Hence we have proved that for all n f(n) is in a compact
neighborhood of zero, and this ends the proof of the theorem.
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