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ON THE CONVEXITY OF FUZZIFIED FUNCTIONS

M. Kovidcs (Budapest, Hungary)

Dedicated to Imre Kornyei

Abstract. In this paper we will discuss the convexity concept of the fuzzy
functions given by Nanda and Kar in [8]. We will apply this concept to
the fuzzy functions obsained from parametrical functions by the extension
principle changing the parameters by fuzzy numbers. We will show that
in the most cases the fuzzified linear function will neither be convex nor
concave. We introduce a new convexity concept under which the convex
functions preserve the convexity property after their fuzzification.

1. Introduction

The convexity of the functions is a basic property needed in a lot of
applications (e.g. in optimization) of classical analysis. It is waited that the
concept of convexity of fuzzy functions will also be a useful tool for the fuzzy
mathematical investigations.

The convex fuzzy sets have been discussed in several papers (e.g. [1],(6],
[7]). The convexity concept of fuzzy functions was first introduced by Nanda
and Kar [8]. Their concept is based on the fuzzy version of the classical Jensen
inequality. In the classical analysis the convexity of a differentiable function
can also be characterized as follows: f is convex if an only if it is above on
every tangent plain. The first question is how this concept can be extended
to the fuzzy functions. After answering for this question we can discuss the
following problems, too:
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1. Are the characterizations by the different convexity concept equivalent or
not?
ii. When is the convexity property of a function preserved after fuzzification?
The aim of the present paper is to answer for these questions.

2. Preliminaries

In this section we collect those definitions and basic theorems which will
be needed in the sequel.

Let I be the unit interval of the real line IR, X C IR™ and let IR} be
the nonnegative half line of IR. A fuzzy set on X is given by its membership
function

p:X -1

The support of p is the subset of X given by
supp 41 = {z € X : u(z) > 0.
The A-cut of p is

" {ze X plx)>0} ifA>0,
p =
cl(supp p) if A =0,

where cl(supp ) is the closure of the support set.

A fuzzy set is convex, if all A-cuts are convex subsets of X and it is normal,
if [u]' # 0.

The convex, normal fuzzy sets of the real line with continuous membership

function will be called fuzzy number. The set of all fuzzy numbers will be
denoted by F.

Let g : I — [0,00] be a continuous, strictly decreasing function with the
boundary properties g(1) = 0 and tlin'()) g(t) = go < 0.

Let F; denote the subset of fuzzy numbers with the membership function
¢"Y(Jla = al/d), ifd>0,

p(a) =
X{a}(a), ifd=0
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for all « € IR, d € IR, where

{g7(=) ifz€10,9(0)),

g V(2) =

Here and in the following x 4(a) denotes the characteristic function of the set
A. The elements of 7, will be called quasi-triangular fuzzy numbers generated
by g with the center o and spread d and we will recall for it by the pair («, d).

Let p € [1,00) and let T,, be an Archimedean t-norm given by the
generator function ¢?, i.e.

Typ(a,b) = gD((gP (a) + g7 (b)) /7).

Since lim Typ(a,b) = min(a. t), we will also use the notation Ty, in the case
p— 00

p = oo meaning min-norm for Ty.
The T,p-Cartesian product of n quasi-triangular fuzzy numbers generated
by g will be called (g, p, D)-fuzzy vector on Fg e 0

p(a) = (p1 x ... x pn)(a) = Tgp(p1(a), - - -, pnlan)),

where p; = (i, di) € Fg, i=1,...,n. It is obvious that p € F C F(IR"). It
is easy to show that

gCV(|D#(a - a)llp,) if Ji:di #0,
w(a) = uar, .. an) =
X{a1,...an}(@1,...,@,) otherwise,

where D = diag(dy,...,dn), a = (a1,...,an), a=(o1,...,0n), D# denotes
the pseudoinverse of D, i.e. D# is a diagonal matrix, the i-th element of which
is 1/d; if d; # 0 and 0 if d; = 0, and

n
(3 lailP)/? i 1< p< oo,
llall, = =1
_max a; if p=oc0.
s

We will often refer to a fuzzy vector by the notion pu = (a, D) € F instead
of describing its membership function.



128 M. Kovics

3. Fuzzy functions

Definition 1. Let X C IR". The fuzzy subset on X x IR with the
membership function f(x,y) is a fuzzy function on X if for every fixed z € X

ﬁ\m/)(y) = f(w,y) is a fuzzy number.

Definition 2. A fuzzy function f{(\z/) is a (g,Q)-fuzzification of a real
function f: IR™ — IR if its membership function is

— o (=L@ i fra) - N i ]
f(z)(y):{g ( 0(z) ) f f(=) ~ 9(0)2(=) <y < f(z) +9(0)Q=),

0 otherwise
with some positive function Q(z).

Definition 3. Let fo(z) be a parametrical function on X C IR™ with the
parameter vector a, i.e. fq : X — IR. Let fq(z) be fuzzified in the parameter
by a (g,p, D)-fuzzy vector g using the Zadeh extension principle [9], i.e.

J%(y) = sup ula)

yzfa(:)

———

Then fu(x) will be called the (g, p, D)-parametrical fuzzification of fq(x).
Ifae IR™ and p = (a,D) € FJ*, then

@) = o= (| int_ID*(@- ol

Definition 4. The (g, p, D)-fuzzification is proper if d; > 0 for all 4, and
partial if there exists index ¢ such that d; = 0.
As it was shown in the paper [5], if the fuzzified function linearly depends

m

on the parameters, i.e. hq(z) = ) ajhj(z), then

i1=1

ly—_ ajhj(z)l
— (-1) i=1

hu(z)(y) = | DR(=)|l,

if Dh(z) # 0,

0 otherwise,
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where h(x) = (hi(z),..., hm(x)), ¢ = p/(p—-1)if 1 < p<ooand g =1
if p = oo. Particularly, if the parametrical function is linear in z, too, i.e.

lo(x) = anl ajzj + ag then [2]-[5]
i=

lv— (D ajzj + o)l

—~ -1 =i ¢ Dla
f#(m)(y) =<7 |D(z, I)T“q if D(=, l)T 70,

0 otherwise.

It is seen from these results, that for those functions, which linearly depend
on the parameters, the (g,p, D)-fuzzification is equivalent with the (g,)-
fuzzification with Q(x) = ||Dh(z)||,-

—

Let f(z) be a fuzzy function on X. Let us introduce the lower and upper
bound functions of its A-cuts, namely

—————

Li(=) = inf{y : 7(@)(v) > )

and
UMNz) = sup{y : f(z)(y) > A}.

It is obvious, if f(z) is a (g, Q)-fuzzification of f(zx), then
L} () = f(z) — g(N)Q(z)

and
Up (=) = f(=) + g(1)Q(=).

4. The Nanda-Kar convexity of fuzzified functions

In the paper [8] Nanda and Kar introduced the convexity of fuzzy map-
pings. They based their convexity concept on the fuzzified version of the
Jensen-inequality. Namely,
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—~——

Definition 5. Let X C IR™ be a convex set. The fuzzy function f(z) is
convex on X if the inequality

[Flua) )] < alf@)]* + (1 - a)[F(o]*

is fulfilled for all w,v € X, o, A € I and uq = au+ (1 — a)v.

—~— ———

The fuzzy function f(z) is concave on X if —f(x) is convex.

—~——

Since [f(x)]* = [L_’}(:c), U}(m)], the following statement is a trivial conse-
quence of the Definition 5.

Proposition 1. The fuzzy function f(x) is convex (concave) on the convez
X if and only if both L’f\(m) and U;‘(m) are convez (concave) functions on X.

Let us now deal with the fuzzification of linear functions.

Proposition 2. The (g,Q)-fuzzification of a linear function £,(x) is
convezr (concave) on X C IR™ if and only if one of the following properties
1s fulfilled: '

i. Q=) is a positive constant function on X;
. Q(x) is a positive linear function on X.

Proof. From the convexity (concavity) of L?(m) follows the concavity
(convexity) of g(A)Q(x) and from the convexity (concavity) of UJ:\(a:) follows

the convexity (concavity) of g(A)Q(x), what is possible only in the cases 1. and
11., and in these cases the convexity 1s really satisfied.

Corollary 2.1. Let £4(x) be a linear function. It has neither convez nor
concave proper parametrical fuzzification on the whole IR™.

Proposition 3. Let z € IR™ be a veclor with nonzero coordinates, and let
N; C IR™ be a convez neighborhood of z such that any coordinate of its points
does not change sign on 1t. Then

i. any (9,00, D)- or(g,1, D)-fuzzification of a linear function £4(x) 1s locally
convexr on Ny;

. there is neither locally conver nor locally concave (g, p, D)-fuzzification of
a linear function £q(x) if 1 < p < co.

Proof. i. Since ||Dzl| and ||Dz||; are piecewise linear or constant on
N_, the condition of convexity is fulfilled.
u. For every 1 < p < oo the function ||Dz||, is convex, therefore L’f\(:r,) is

concave, and U}\(:c) is convex on N;.
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Proposition 4. Let Q) be a strongly conver function on IR™ with

modulus of convezrity & > 0. Let f(x) be the (g, Q)-fuzzification of the convez

function f. A necessary condition for convezity of f(x) is the strong converity
of f with the modulus of converity at least g(0)k.

Proof. A function ¢(z) is strongly convex with the modulus of convexity
« if and only if p(x) — «||z||? is convex.
We have for all X € [0, 1]

Ly(z) = f(z) ~ gN)=) = f(z) = gMNxllzl|> — 9(A)(Q=) - &llz||?)

and hence with A =0
f() — g(0)xl|=|? = L} (=) + ¢(0)() — «llzl|*).

From the last equality follows the strong convexity of f(x) with the modulus of
convexity at least g(0)x because of the convexity of L?(m) and Q(z) — «l|z||?.

For illustration the subfigures a)-c) of Figure 1. show the A-cuts of the
parametrical fuzzifications of the linear function y = ¢ 4+ 2 by the fuzzy vector
1 =((1,0.5),(2,0.5)) in the cases p = 1,2, 00.

5. A new convexity concept for fuzzy functions .

In the classical analysis the convexity of a differentiable function can be
characterized as follows: it is convex on X C IR" if and only if its epigraph
is a subset of any its support halfspace or in other words the epigraph of the
function is a subset of the epigraph of its support plane. To generalize this
idea to the fuzzy functions we have to define the fuzzy support plane of fuzzy
functions and their epigraph.

——

Let f(z) be a fuzzy function on IR".

Definition 6. The fuzzified epigraph &)Tf is a fuzzy set on IR" x IR
obtained by Typ-fuzzification of the inequality y > f(z) with the extension
principle, i.e.

epl f(z,y) = sup Top(x{y3 (u), f@) ().
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Proposition 5. The membership function of the fuzzified epigraph is
1 ify> L}(z),
epi f(z,y) = { fl=,y) if LY(=) Sy < Lj(=),
0 ify< L? ().

Proof. The statement of the proposition follows immediately from the
inequality

epi f(z,y) = sup Top (X131 (w), F(@)(v)) =

= sup f(z)(v).

y2v

In the paper [4] the computation of valued inequalities has been proved,
from there one can obtain the following propositions:

Proposition 6. Let %“(m)(y) be the (g, p, D)-fuzzification of hq(x). Then

max(0,y — zajhj(z)) ,

EPih)(@,y) = sup p(a)=g(™)
a:y>ha(z) “Dh(:E)Hq

Corollary 6.1. Let Z:(:z:,y) be the fuzzification of the linear function
la(z) = Y ajzj +ag. Then
j=1

max(0,y — (Z a;z; + ag))
(epi £)(z)(y) = ¢~V

1Dz, )7l

Let now ?(\a-:/) be obtained by (g,)-fuzzification from the function f :
IR™ — IR. Let us assume that f(z) is convex on [R".
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A support hyperplane of f(i) in the point z € IR™ is given by the equality
sz(x) = f(z) + " (z - 2)

where ¢ is a subderivative of f.

Definition 7. s.(z)(y) is a fuzzy support plane of f(z)(y) at z if it is
the (g, 2)-fuzzification of the support plane s, (z).

——

Definition 8. The (g, 2)-fuzzified function f(z) is Q-convex at the point
z if _ _
epl f Cepi s,.
It 1s Q2-convex on IR™ if it is Q2-convex for all z € IR™.

It is obvious that any (g, 2)-fuzzified linear function is -convex since its
support hyperplane at every point z coincides with the given function, so the
inclusion for their fuzzified epigraph is trivially fulfilled.

Proposition 7. Let f: IR" — IR be a convez function. Then any (g,)-
fuzzification preserves the convezity in the sense of Q-convexity.

Proof. epi f C epis, fulfills if L}(z) > L (z) for all X € [0,1] and
x € IR™. From the convexity cf f follows

L)(z) = f(2) - ¢(N\)Q(z) >

> f(2) + cT(x - 2) — gN)Q(x) =
= s:(z) — g(N)Q(=) = L} (=)

for all A €0, 1].

For illustration the Figure 2 shows the fuzzified support functions for the
parametrically fuzzified quadratical function y = z? — 3z + 2. The fuzzy
parameters are (1,0.5), (=3,0.5), (2,0.5). So, Q(z) = 0.5z2 + 0.5|z| + 0.5.
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