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SOLUTION OF DIOPHANTINE EQUATIONS
BY SECOND ORDER LINEAR RECURRENCES

P. Kiss and K. Liptai (Eger, Hungary)

To the memory of Imre Kornye:
To the memory of Béla Kovdcs

Abstract. Solutions of many diophantine equations can be expressed by
the terms of linear recurrences. A collection of these equations is presented
in the paper. Furthermore it is shown that all positive integer solutions of
the equation z2 + z(y — 1) — y? = 0 are (z,y) = (F22h+1’ Font1 Fapya),
where F),, denotes the n-th Fibonacci number.

Let A, B, Gg, G; be fixed integers, such that AB # 0 and not both of Gy,
G are zero. Define a second order linear recurrence by a recursive formula

G, =AG,,_1 - BG,_9 for n>1

which will be denoted by G or G(A, B,Go,G}). A sequence H(A, B, Hy, Hy)
is the associated sequence of the sequence G(A, B, Go, Gy) if Ho = 2G1 — AGy
and H, = AG, — BGy. Special cases of sequence GG are the Fibonacci sequence
F = F(1,-1,0,1), the Lucas sequence L = L(1,—1,2,1) and the Pell sequence
P =P(2,-1,0,1).
The equation
2?2 - Dy* =N,

where N # 0, D is not a perfect square and D > 0, is called Pell equation.

We know many relationships between the Pell equation and second order
linear recurrences. D.E. Ferguson [4] proved, that the only solutions of the
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equation z? — 5y? = +4 are £ = +L,,y = +F,, where L, and F, are the
n-th terms of Lucas and Fibonacci sequences. E.M. Cohn, I.Adler, V.Thebault
[3,1,2,13] showed that there is similar connection between the equation z2—
—2y? = #1 and the Pell sequence.

P. Kiss and F. Varnai [10] proved that all solutions of the equation z?—
—-2y? = N can be determined by finitely many sequences P(2,1, Py, P;), such
that (z,y) = (£(Pan + Pan+1), £Pan+1) . P. Kiss [11] generalized this theorem.
Suppose that a > 0 is a fixed integer. If there exists a solution of the equation
z? — (a? + 1)y? = N, then all solutions can be given by the terms of finitely
many sequences G(2a, —1, Go, G1).

In the same paper P. Kiss generalized the result of D. E. Ferguson, that is
if there exists a solution of the equation z? — (a® —4)y? = 4N, then all solutions
can be given by the help of finitely many sequences G(a, 1, Go, G1), such that
(z,y) = (£Hon, £G2p), where H is the associated sequence of G, and if N > 0

then 0 < Gy < VN, 1fN<0then0<G’1<a\/a2 e

The above results can be generalized: the solutions of Pell equations for
any D (D > 0, D is not a perfect square) can be given by the help of second
order linear recurrences and all solutions can be determined by number pairs
of terms of second order linear recurrences.

K. Liptai [12] proved the following result: Let N, D be integer numbers,
N #0,D > 0, and D is not a perfect square. Let (ug, vp) be the fundamental
solution of the equation

22 - Dy? =1.

If the equation
2’ - Dy*=N

has a positive integer solution (zg,yo), then all solutions can be given by the
help of finitely many sequences G(2uq, 1, Go, G1), H(2uo, 1, Ho, Hy) such that

(z,y) = (Gn, Hn)
and
0< Ho < voVN for N >0,

2
~Nug

D for N < 0.

0<Ho<
Another type of results was shown by J.P. Jones. In [5, 6] he proved that the

sets of all Fibonacci numbers, respectively Lucas numbers, equal the sets of
positive values of polynomials

y(2—(y2—yx—22)2) and y(l— ((y"’—yr—rz)z—%)z),
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ifz>0,y>0.

P. Kiss [9] extended these results proving the following. Let R =
= R(A, B,0,1) be a second order linear recurrence, where 4 > 0, B = —1
or A > 3 and B = 1. Suppose that z > 0, y > 0 are integers. Then
|z?2 — Azy + By?| = 1 if and only if ¢ and y are consecutive terms of the
sequence K. Furthermore he proved, that the set of the all terms of sequence
R equals the set of non-negative values of polynomial

flz,y) =y (2 —(z? - Azy + By:’)z) ,

where z > 0,y > 0 are integers.

J. P. Jones [7] proved the following general theorem. Let A be the set
of non-Fibonacci natural numbers. There exists a P(z,z,y,v) polynomial of
4 variables such that z € A if and only if there exist z,y,v € N such that
P(z,z,y,v) = 0. If z € A is fixed, then z,y, v are uniquely determined.

V. E. Hoggatt Jr. [8] investigated a diophantine equation and stated the
following.

Theorem. All positive integer solutions of the equation

(1) 2 +x(y—1)—-y"=0
are
(2) (2,9) = (Ffuy1, Fanp1 Fanga).

However Hoggatt’s proof of this theorem is not perfect. After some
calculations he obtained an equation of the form

(v~ 1) +4y? = 22

and deduced from here that

y—1=m?-n? 2y=2mn and z=m?+n?
with some integers m and n. But it is correct only if y is even, since
(y— 1,2y) = 1 or 2. Thus the theorem is proved only when y = Fyp1 Fopya is
even, i.e. y is of the form y = Fery3F6k4+4 O Y = For+sFor+6-
In the following we complete Hoggatt’s proof.

Proof of the Theorem. In the case y is even, Hoggatt’s proof is correct,
that is all positive integer (z,y) solutions of (1) are the pairs in (2). Reducing



112 P. Kiss and K. Liptai

the Fibonacci sequence modulo 2, it can be easily seen that y is even if and
only if 2h + 1 has the form 6k + 3 or 6k + 5.

Now let (z,y) a solution of equation (1) such that y = 2t + 1 is odd. In
this case, by (1), = is an integer if and only if

(y_ 1)2 +4y2 = 22)

t2+y2=q2

with some integer z and ¢ = z/2. But (f,y) = 1, so there are integers m,n
such that

(3) t=2mn, y=m?’-n? and q¢=m?+n’
Using that y = 2¢ + 1, by (3)
m? —n? = 4mn + 1

and

\/_2—2'
(4) m:4n:t 16n2+4n +4:2n:t ezt 1

follows. It implies that

(5) 5n? +1 = s?

with some integer s and so we obtained the Pell equation
(6) s2 —5n? =1.

The fundamental solution of (6) is (so,n¢) = (9,4) and so, as it is well known,
all positive solutions (s,n) of (6) are determined by

s+nVE=(9+4v5)

and
s—nVvB=(9-4v5) (k=1,2..).

Thus we get

9+ 4v5) — (9 — 4v5)*

L, 0+4v5)" + (9 - 4v5)
_ NG

k
2 )
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and so, by (4) and (5),

(2+VB)(9+ 4v5) — (2— VB)(9 — 4vB)"
25

and after some elementary calculations it follows that

L L L4 VB 6k+1 VB 6k+1
y=mom =y 2 "\ T2 '
6k+2 6k+2
'((12\/5) —<n+2\/5) )=Fsk+1Fsk+2,
ne () - (59))
T 2 2

for g = 0,1,2... by the Binet formula.
We can similarly show that

since

—y+14+q n?2-m?+1+2m?+2n?
Ir — =
2 ‘ 2

— 2
= Férq

which completes the proof.
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