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APPROXIMATION OF REAL NUMBERS
BY RATIONALS VIA SERIES EXPANSIONS

J. Galambos (Philadelphia, USA)

To the memory of Imre Kornye:
To the memory of Béla Kovdcs

Since both Imre Kornyei and Béla Kovacs were interested in and con-
tributed to different aspects of series expansions of real numbers, it is just
fitting to write on series expansions in this memorial volume.

Let an = an(j) and b, = b,(j), n > 1, be two sequences of positive integer
valued functions of the positive integers j such that the function

1) ha) = 295Gy, e,

~—

is integer valued for every n > 1. Let z be a real number from the interval
(0, 1], and expand by the following algorithm: we define the positive integers
dy = di(z) and real numbers z; by

(2) T =z, 1/dy < zx < 1/(dx — 1), and

(3) Te41 = (zk — 1/dk) be(di)/ak(d).
Upon setting

p_n__ 1 al(dl) 1 al(dl)...an_l(dn_l)

1
= — 4+ —,
gn  di bi(dy) da bi(dr).. . bn-1(dn-1) dn

(4)
where we choose

(5) gn = b1(d1)ba(d2) . . .bn_1(dn-1)dn,
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and thus do not aim at making p, and ¢, relatively prime, we have from the
algorithm

(6) an (z _ p_,,) —r, ai(di)az(dz) - . . an(dn)dn

qn

= bn(dn) Tn4t.
Under the condition stated at (1)
T—Pn/gn =Tn/qn — 0 as n — +oo,

that is the infinite series resulting from the algorithm (2) and (3) always
converges to z. In other words (2) and (3) leads to an expansion of z into
an infinite series, which expansion is known as an Oppenheim expansion. See
Chapter 1 in Galambos (1976) for further details.

A special case obtains when we choose a,(j) = 1 and b,(j) = j(j —1), and
thus h,(j) = 1 for all n > 1 and j > 2. The resulting series expansion is called
Luroth expansion. A recent result on Liiroth expansion by Barrionuevo et al.
(1996) can be refined and generalized as follows. We use Lebesgue measure on
the Borel sets of (0, 1] as the underlying probability P(.).

Theorem 1. In the special case of Liroth ezpansion the value r,, of (6)
has the same distribution function

(7) P(rn <y) = F(y)

for each n > 2, where, with i(z) signifying the integer part of z,

i(1/y)+1 1

1
(8) F(y):y kgz E‘*’m)—_ﬁ, O0<y<l

Remark. Because of the special choice of ¢, at (5), a direct comparison
with continued fractions concerning the speed of convergence of r,/q, as a
function of g, is not possible, but a remarkably fast convergence is implicit in
Theorem 1. As a matter of fact, one can expect large common factors of p,
and g, in (4) when ¢, is chosen by (5) because b,(j) = j(j — 1) for each n, and
thus each b,(d,) is an even number. Furthermore, for every z, one has several
indeces n for which d,, take the same value k, say (see below). One can also
set up recursive formulas for p, /g, from which one can get further estimates.

Proof of Theorem 1. In the case of Liiroth expansion a,(j) = 1 and
ba(j) =j(j —1),alln >1and j > 2. Thus r, in (6) becomes

(9) Tn = Zpy1/(dn — 1).
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Now, by Theorem 6.1 of Galambos (1976), zn41 and d, are stochastically
independent, ,41 is uniformly distributed and P(d, = k) = 1/k(k — 1) for
k > 2 (for this last result see Theorem 4.14 in Galambos (1976)). Hence, by
the total probability rule (see Galambos (1984), p.48)

1

+oo
P(r <) = 3 Planis < yldn = 1) | dn = B) g

k=2
Now, by the independence of .41 and d,
P(ens1 < Y(dn— 1) | dn = k) = P(znss < y(k - 1))

where, by (9), we have 0 < y < 1. Finally, the uniform distribution for x4,
entails that the right hand side above equals either y(k — 1) or 1, depending
whether y(k — 1) < 1 or y(k — 1) > 1. Our computations thus yield, for
0<y<,

i(1/y)+1 k—l) 400 1
< -
P <y) = Z kE-D) T Z k(k—1)
k=i(17y)+2
which does not depend on n, and, indeed, equals F(y) of (8). The proof is
completed.
We can combine Theorem 1 with the specific form of ¢, at (5), yielding

(10) P L rpe” 1084
dn

where r,, is distributed as F'(y) at (8), and the cited distributional properties
of b;(d;) = dj(dj — 1), combined with the strong law of large numbers, entail
that

log g, = n(1/n)(logd1(d; — 1)+ ...+ logdn_1(dn-1 — 1) +logd,) =

=n(c+o0(1)),
where
(11) Z log k(lc_—l)l)_
We thus have the asymiptotic form
(12) z - Pr oy gmnleto()))

qn
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valid for almost all z for the case of Luroth expansion. In this form one can
of course simplify by the common factors of p, and g¢,, allowing comparison
with any other expansion. It should also be pointed out that at (12) the role
of r, diminishes because of the unspecified error term o(1) in the exponential
factor. On the other hand, in the exact form (10) (or (6)), the property of r,
as expressed in Theorem 1 plays the dominant role. With this in mind, we
compare Liiroth expansions with another special Oppenheim expansion, called
Engel series.

If we choose a,(j) = 1 and b,(j) = j forall n > 1 and j > 2, the algorithm
(2) and (3) lead to the Engel series expansion of z. The function h,(j) of (1)
becomes h,(j) = j — 1, satisfying the requirement of its being integer valued.
The expressions (5) and (6) become

qn =didy...d, and ¢ (I - &> =Tn = Tn4l.

n

We set
Un41 = hn(dn) Tnil = (dn - 1):L'n-+-1-

Then 7, = un41/(dn — 1). Appealing to Theorem 6.1 of Galambos (1976)
again, we have that u,4; is uniformly distributed on (0,1) and u,4+; and d,
arc independent. We could proceed as with the case of Liiroth expansion,
however, the distribution of d, itself is no longer of simple form because the d,
are not independent among themselves; rather, they satisfy d,_; < d,,. Hence,
rn strongly depends on n, which in fact converges to zero. The asymptotic
formula also differs from (12): by Corollary 6.25 of Galambos (1976) one gets

PR L exp {—n(n+1)(1/2 + o(1))}.

n

We conclude the paper by noting that a theorem corresponding to Theorem 6.1
of Galambos (1976) remains valid for the alternating Liiroth-type expansion as
defined in Kalpazidou et al. (1990). We therefore have that for such expansion,
with the obvious change in the definition of p, and g¢,,

Pn
r — —
qn

qn

=Tn

has the same distribution for all n > 1. We have

i(1/2) 2

1
P(rn <2)=Fa(z) = Y 1T s
k=2
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which distribution function was introduced in Barrionuevo et al. (1996) in
connection with a related limit theorem.
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