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POWER INTEGER BASES
IN ALGEBRAIC NUMBER FIELDS

I. Gadl (Debrecen, Hungary)

Dedicated to the memory of I. Kérnyet and B. Kovdcs

Abstract. The main purpose of the paper is to give a survey of the
presently known algorithms on the resolution of index form equations,
especially on determining power integral bases of number fields. There
are satisfactory methods for lower degree number fields and some partial
results for higher degree number fields. The summary of these investigations
might be helpful for the further research of these and connected diophantine
equations.

1. Introduction

1.1. Basic concepts

It is a classical problem in algebraic number theory (dating back to Hasse)
to decide if an algebraic number field K admits a power integer basis, that
is an integer basis of the form

(1) {1,a,...,a™ 1}

generated by the powers of a single element «. In case such an element « exists,
the ring of integers Zg of K is a simple extension of Z, and is therefore called
monogene.
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For any primitive element a € Zg the index of a is defined as the module

index
I(a) := (Z% : Z%[a)).

Obviously, the discriminant and index of o satisfy
Dgjo(a) = I(a)’ Dk,

where Dy is the discriminant of the field K. The minimal index mg of K
is defined as the minimum of the indices of all primitive integers in K. The
integers «,3 € Zg are called equivalent if ¢« + f or a — 3 € Z. Any two
equivalent primitive integers of K have the same index. We also remark that
obviously a € Zg generates a power integer basis if and only if I(a) = 1.

Let {1,wsg,...,wn} be any integer basis of K. Then the discriminant of
the linear form Xows + ...+ X,w, can be written as

Dgo(Xawz2 + ...+ Xnwn) = (I(Xa2, ..., Xn))* Dk,
where I(Xs,...,X,) is a form in n — 1 variables of degree n(n — 1)/2 with
integer coefficients, called the index form corresponding to the above integer
basis. For any o € Zg represented as

a=2r)+wara+...+wWnTy,

we have
I(a) = |I(z2,...,zn)l,

independently of the value of the first coordinate z;.
1.2. Purpose

The most important question in this context is to decide if the number
field K admits power integral bases. This question is interesting both from a
theoretical and a practical point of view. To determine all generators of power
integral bases of K is equivalent to solving the index form equation
(2) I(zg,...,2,) =%1 in z,,...,2, € Z.

All generators of power integral bases can be represented in the form

(3) a=zr+t (132(«12 + ...+ xnwn),

where z, € Z is arbitrary, and (z2,...,z,) is a solution of (2).
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1.3. Baker’s method

Using Baker’s method upper bounds for the solutions of (2) were first given
by Gyéry [34], then by Gyéry and Papp [35], and independently by Trelina [50].
Let A be an upper bound for the absolute values of the conjugates of the basis
elements {1,ws,...,wn}. A typical theorem of this type is the following:

Theorem 1. (Gyéry [34]). All solutions of (2) satisfy

(4) Jax [2i] < exp{(5n°)*™ (m? 47)°™ (log(|m| 4))°""}.

The latest improvements on the bounds of the index form equations can
be found in [36]. These upper bounds imply that (2) has only finitely many
solutions, hence (up to equivalence) there are only finitely many integers in K
with index one. Unfortunately these bounds are so large, that in practice it is
impossible to determine the solutions just by testing all values of the variables
under the bound. For this reason it was necessary to develop constructive
algorithms for computing the solutions.

2. Constructive algorithms

The computer resolution of diophantine equations is a fast developing
branch of number theory involving efficient algorithms that make it possible in
practice to find all solutions of certain equations.

In solving index form equations if possible we follow a refined approach
taking into consideration the structure of the field and the factors of the index
form. This way we can often reduce the index form equation to simpler types
of equations. Such ideas make the resolution much more efficient. As we shall
see, Thue equations and their generalizations, relative Thue equations and
inhomogeneous Thue equations often play an important role. Fortunately
there are efficient algorithms for the resolution of such equations, cf. Bilu and
Hanrot [4], Gaal and Pohst [26], Gaal [8], respectively. If such equations occur,
they make the resolution much easier.

On the other hand there is a direct approach of solving index form
equations, namely, following the ideas of Gyéry [34] index form equations (as
well as many other types of decomposable form equations) can be reduced
to unit equations in two variables. This way Smart [47] (cf. also [49])
solved index form equations in certain sextic fields with a quadratic subfield,
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and Wildanger [53] in certain normal fields. Note that this direct approach
is not applicable for higher degree fields because the unit equations become
too complicated to solve. For lower degree fields the above refined approach
is much more efficient when applicable. The direct approach is useful in some
cases (e.g. for quintic fields cf. chapter 5) when no other method is known and
the degree is low.

Both using the direct approach and e.g. solving a relative Thue equation
we have to deal with a unit equation in two variables of type

(5) Vp‘l”...p;’+/,t'rl'"...:r:v_—_l
with algebraic bases, where p1,...,p, resp. 71,...,7, are multiplicatively
independent and the variables are a;,...,ap,b1,...,b, € Z. This equation

is appropriate to give a brief description of the algorithm we usually apply.
2.1. Application of Baker-type estimates

For simplicity we demonstrate the procedure for the totally real case.
Using elementary estimates equation (5) irnplies

(6) A = |log|v|+ arlog|pi| + ... + aplog|pp|| < exp(—c14),

where A = max(|a1],...,|ap]) and ci1,cq,... are explicitely given positive
constants. The above inequality holds by taking suitable conjugates that we
omit here for making the formulation simpler. In order to get an upper bound
for A we apply Baker-type estimates for the above linear forms in the logarithms
of algebraic numbers. For many applications the best known result of this type
is the theorem of Baker and Wiistholz [3]. This gives a lower bound of the form

exp(—eczlog A) < A

with a hugh constant ¢;. Comparing this with (6) we obtain an upper bound
Ap for A which is about 102° for p = 2 and goes up to 105 for p = 8, 9.

2.2. Reduction

Consider the lattice £ spanned by the columns of the matrix

1 0 0
0 1 0
0 0 1

Hlog|v| Hloglp:| H log |pp|
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where H is a large constant to be specified later. A typical lemma that makes
possible to reduce the bound Ap is the following (Gadl and Pohst [26] Lemma

1):
Lemma 1. If in inequality (6) A < Ao and for the first vector by of the
LLL-reduced basis of L

(M lb1] > V/(p+2)2°

< log H — lOng'
C1

(8) A

In the first step we set A = Ap. Usually an appropriate choice for H
is A2*! in order to satisfy (7). Then, by (8) we get a new bound for A of
magnitude log Ag. This procedure can be repeated about 4-5 times until the
new bound still improves the previous one. The final reduced bound Ag for A
1s of magnitude 100.

Note that here the LLL basis reduction algorithm plays an essential role
cf. [39] and its modified version [46]. Similar ideas were used by de Weger [52]
and Pethd and Schulenberg {45].

2.3. Enumeration

If r, s are larger than 3, it is still a nontrivial problem to test all possible
exponents ay,...,ap, b1, ..., b, laying under the reduced bound Ag, of magni-
tude, say 100. This problem can be solved by using sieve methods for small
values of p, ¢, cf. Tzanakis and de Weger [51], Smart [48]. Unfortunately these
sieve methods are also not applicable within feasible time for p,q > 5.

For p, q larger than 5 the main difficulty in the resolution of unit equations
(5) is in fact the test of ”small solutions”, the possible values of the exponents
under the reduced bound. Recently Wildanger [53] elaborated an enumeration
method that solves this problem up to unit rank about 10. This procedure
is based on the ellipsoid method of Fincke and Pohst [7]. This algorithm has
already several applications. Gadl and Pohst [26] worked out a suitable version
of 1t for the resolution of relative Thue equations. Using this version Gadl and
Gydry [16] solved index form equations in quintic fields (see Chapter 5) and
Gadl [15] solved certain norm form equations.

We give the essence of Wildanger’s enumeration method. The reduced
bound Ap for A implies a bound S such that each conjugate of vp{* ... pp” and
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prit . .Tqb“ are between 1/S and S in absolute value. Our purpose is to reduce
S since if S is small and the above property holds, then it is easy to test the
corresponding exponents.

Let s < S. Then either the above assumption holds for s instead of S, or
there exists a conjugate jo such that

Iy(jo) (pgio))“‘ (pgjo))“’ - 1’

is small (similarly for pr}... r;"), of magnitude 1/s. We build vectors
g,¢1,- &, from the logarithms of sufficiently many conjugates (their number
will be denoted by t) of v, p1, ..., pp, respectively. For a vector z = (z1,...,2¢)
set @ (z) = (A1z1,..., Aiz1), where the weights A; are equal to 1/log S except
the one corresponding to the jo-th conjugate that we set large so that

Heio(g) + a1pjo(er) + - - appjo(ep)ll <t

This inequality defines an ellipsoid. If we enumerate these ellipsoids for all
possible jo, then we can replace S by s. We can repeat this procedure several
times by taking s in the role of S in the following step until we get a sufficiently
small constant. For more details cf. Wildanger [53] or Gadl and Pohst [26].

In the following we give a list of our results on the resolution of index form
equations in an increasing order of field degree.

3. Cubic fields

The problem of the existence of power integer bases in number fields
was first considered in cyclic cubic number fields by M.N.Gras [29], [30] and
Archinard [1], who gave necessary and sufficient conditions for the monogenity.
Dummit and H.Kisilevsky [5] showed that infinitely many totally real cyclic
cubic fields have power integral bases, and on the other hand the minimum
index of such fields can be arbitrary large.

For cubic number fields the index form equation is a cubic Thue equa-
tion that can be solved by the methods described above. Gaal and Schulte [28]
gave a table of all power integral bases of totally real and also complex cubic
fields with small discriminants.

Example. Consider the cubic field K = Q(¢) generated by £, with
minimal polynomial f(z) = 23 — 2 — 6z + 7 having discriminant Dg = 361,
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with integer basis {1,£,£%}. The index form equation corresponding to this
integer basis is

(9) I(z,y) = 3 + 222y — 5zy® + y® = +1

with solutions (z,y) = (-7,2),(1,1),(9,7),(0,1),(2,9),(1,0).

4. Quartic fields

Also for quartic fields the question of monogenity was first investigated
in the cyclic fields. M.N.Gras [31] gave necessary and sufficient conditions for
the existence of power integer bases in such fields. She showed, that imaginary
cyclic quartic fields can have power integral bases only in two trivial cases.
Nakahara [43] proved, that the minimum index of cyclic quartic fields can be
arbitrary large.

Concerning quartic fields with Galois group V4 (Klein four group) Naka-
hara [42] showed, that infinitely many of such fields admit power integral bases,
and on the other hand, the minimal index of such fields can be arbitrary
large. M.N.Gras and Tanoe [33] gave necessary and sufficient conditions for
the monogenity of these fields.

For quartic number fields, Gaal, Pethd and Pohst developed constructive
algorithms for the resolution of index form equations in a series of papers [17]-
[231.

In [18] we reduced the index form equation in totally real cyclic quartic
number fields to unit equations in two variables over the same field.

Example. Consider the totally real cyclic quartic field K = Q(\/n),
p = 55 + 22v/5, with discriminant Dgx = 15125. An integer basis of it is
{1,w,y,w} withw = (1 +5)/2,¢ = (1 + \/#)/2. The corresponding index

form 1s
I(z,y,z) =(y* + yz — 22) - (=5z* — 10232 + 5522y? + 165zyz + 1302227+
+ 55zy%z + 165zyz? + 135223 — 121y* — 84732z — 2134222~
— 2288yz> — 8812%).

The solutions of the index form equation I(z,y,z) = %1 are (x,y,z) =
=(-1,-2,1),(-1,-1,1),(0,-2,1),(0,-1,1).
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In case of quartic fields with dihedral (D8&) Galois group the index form
equation was reduced to the problem of searching for elements of type z2 + ¢
in second order linear recurrence sequences, cf. [17], [23].

For quartic number fields with Galois group V4, the index form has three
quadratic factors. A theorem of K.S.Williams [54], giving the integer basis of
such fields in a parametric form, was very useful in investigating these fields (cf.
[20]). The index form equation was reduced to a system of two simultaneuos
Pellian equations [19).

Example. In case m = 2 (mod 4), n = 3 (mod 4) an integer basis of

K = Q(v/m,/n) is {1,/m,\/n,(v/m + \/min1)/2}, where n; = n/d,m; =

m/d with d = (n, m). The index form factorizes as
_(¢ 2_ "M 2 2_ M o 2 ™ 2
I(z,y,2) = (5(25’:"'2) _?z ) (Qdy _72 ) -(2n1y "-—2—(21:-’{-2) ),

where all factors are polynomials with integer coefficients. In case m = 2,n =
=11, the field K = Q(v/2, v/11) has discriminant Dg = 30976, and all solutions
of I(z,y,z) = 1 are (z,y,z) = (-1,0,1),(0,0,1).

4.1. A general theorem

Denote by f(z) = z* + a12® + a2z? + a3z + a4 the minimal polynomial
of the generating element of K = Q(£). Assume, that any a € Zg can be
represented in the form

(10) L S 3 AL
g )

with a,z,y,z € Z, and with a fixed common denominator g € Z. Set

F(u,v) = v® — ayu®v + (a1a3 — 4aq)uv? + (4azas — a2 — aay)0®,
Qi1(z,9,2) =22 —arzy + ary? + (a? - 2a5)zz+
+ (a3 — a1a2)yz + (—ajas + a2 + asq)2?,

Qa(z,y,2) = ¥ — 22 — a1yz + a2,
and consider the equation

(11) Ila)=m in o€Zg.
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The remaining possible Galois groups in the quartic case are A4 and S4,
when the index form is irreducible. These cases are also covered by the following
theorem [21]:

Theorem 2. The element a € Zg, represented in the form (10), is a
solution of (11) if and only if there ezists a solution (u,v) € Z? of

6

—49m_
(12) F(u,v)—il(e) =],
with
(13) Ql(x)yaz) =u,
(14) QRa(z,y,2) = v.

The polynomial F(u,1) is the cubic resolvent polynomial of f(z). If K has
proper subfields, then F(u,v) is reducible and (12) is trivial to solve. Otherwise
(for Galois groups A4 and S4) (12) is a cubic Thue equation, that can also
be easily solved. For all solutions (u,v) of (12) one has to solve the system
of equations (13), (14). We remark, that independently Koppenhofer [37]
obtained a result similar to Theorem 2 by algebraic tools.

4.2. Totally complex quartic fields

For totally complex quartic fields the system (13), (14) can be solved easily
[21]:

Theorem 3. If K is a totally compler quartic field, then the polynomial
F(u,1) has three real roots Ay < Az < Az. The quadratic form

Qi(z,y,2) + AQa(z,y, 2)

is positive definite if and only 1f Ay < A < Ag.

In view of this theorem, taking A € (A1, A2), for a given solution (u,v) of
(12) one merely has to enumerate and test the solutions of

Ql(-’”:y,z) +AQ2(zyy: Z) =u+ A'U in T,Y,z € Za

where the left hand side is a positive definite quadratic form.
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4.3. Families of totally complex quartic fields

Theorem 3 enables one also to solve completely index form equations in
orders of infinite parametric families of totally complex quartic fields. The
following example is one of the families investigated in [10]:

Example. Consider the infinite parametric family of fields K = Q(¢),
generated by £, with minimal polynomial f(z) = z* + z® + kz? — z + 1, where
0 < k € Z is a parameter. One can easily see, that f(z) is irreducible, totally
complex, D(f) = (k? — 4k + 8)(7 + 4k)?, the Galois group of f is D8 for k # 2,
and V4 for £ = 2. Unfortunately we cannot describe the integer basis of K in
a parametric form, hence we study the problem of power integer bases in the
equation order @ = Z[¢] (which often coincides with Zg). For this purpose we
apply Theorem 3 with ¢ = n = m = 1. The equation

F(u,v) = (u+ 2v)(u? = (k + 2)uv + (2k — 1)v?) = +1

has only the trivial solutions (u,v) = (+1,0). The roots of F(u, 1) = 0 satisfy
—2 = X1 <0< Ay < Az, hence we can take A = 0. Then we have to solve the
equation

Ql(zxy’ Z) =

((4k = 1)y — @k + 1)2)? + =22

w—1- "

}—1(21” —y+(1- 2/6)2)2 + M——_l—)

whence z = 0 or z = 1, and we get the corresponding solutions (z,y,2) =
=(1,0,0), and (k,1,1). Thus, up to equivalence, the only power integral bases
of O are generated by £ and k€ + €2 + €3.

4.4. Arbitrary quartic fields

Using an idea of Mordell [41] one can solve the system of equations (13),
(14) in any quartic field, as well. For a solution (u,v) of (12) set

(15) Qu(X,Y,Z) =uQa(X,Y, Z) — v (X,Y, Z).

If o of (10) is a solution of (11), then Qo(z,y,2) = 0. Let (zq, yo, 2q) € Z3 be
an arbitrary non-trivial solution of (15) with (e.g.) zg # 0. Then z,y,z can
be represented as

(16) T=rzo+p, Yy=ryg+gq, z2=r2Q

with p,q,r € Q. Now Qo(z,y, z) = 0 implies

(17) r(cip+c2q) = (03172 + capq + quz),



Power integer bases in algebraic number fields 71

with certain explicitely given integer coefficients ¢, c2,.... Multiplying the
equations of (16) by (¢1p + c29), equation (17) implies

(18) kz = fz(p,q), ky= fy(p,q9), kz= f.(p,q),

with a common factor k # 0, where fz, f, f. € Z[z, y] are quadratic forms. By
multiplying the above equations by the square of the common denominators of
p and ¢, we can replace p, ¢, k with integer parameters p, q, k. Further, it can
be shown, that k can only take a few values, namely k divides I|zg|3 (cf. (12)).
Substituting the forms (18) into (13), (14) we obtain quartic equations in the
integer variables p, ¢:

(19) Fi(p,q) =Q1(f=(p,q). fy(p,9), f:(p,q)) = k*u in p,q € Z,
(20) Fa(p,q) =Q2(f=(p,9). fy(p,9), f-(p,q)) = k*v in p,q EZ.

It was suprising to realize, that [22]

Theorem 4. At least one of the equations (19), (20) is a quartic Thue
equation in p,q € Z over the same field K.

It is important to remark that Theorems 2 and 4 imply, that the resolution
of index form equations in quartic fields can be reduced to the resolution
of a cubic Thue equation (12) and to some corresponding quartic Thue
equations (19), (20).

By using the above methaod we could solve index form equations in any
quartic field, also for Galois groups S4 and A4.

Example. Consider the totally real field K = Q(£), generated by &, with
minimal polynomial f(z) = z* — 23 — 16z? — 11z + 7, having discriminant
Dg = 848241, and Galois group A4. The index form corresponding to the
integer basis {1,£,£2, (1 + £3)/2}, is the irreducible form

I(z,y,2) = — 58z% + 101zyz + 13472%2% — 12623y — 161323y% 2 —
— 99z%yz? + 107302323 + 414z%y* — 449223z — 1363222y%2% -
—~ 9105z%yz° + 42617222* + 6157zyz + 1054521322 — 34771zy? 2>
— 45514zyz* + 1797y*2? + 251124323 — 5993y22*.

The minimal index of the field is mg = 2, all solutions of I(z,y, z) = +2
are (1,0,0),(2,2,-1),(7,1,-1), (406, 15, —50).

Using the above algorithms we made extensive calculations in quartic fields
with small discriminants. For tables about the distribution and behavior of the
minimal indices, see [21].
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5. Quintic fields

M.N.Gras [32] showed that a totally real cyclic field of prime degree p > 5
can only have power integral basis if the field is the maximal real subfield of a
cyclotomic field.

5.1. An infinite parametric family

Gaal and Pohst [25] considered the totally real cyclic quintic fields K, =
= Q(Vr), generated by a root ¥, of the polynomial
(21)
fa(z) =2° + n%z* - (2n3 +6n? 4+ 10n + 10)z3+

+ (n* + 503 + 1102 4+ 150 + 5)z? + (n® + 4n? + 10n + 10)z + 1.

This family was first inverstigated by Emma Lehmer [38]. Assuming that
m = n* 4 5n3 + 15n? + 25n + 25 is square free, we computed explicitely an
integral basis and a set of fundamental units of K,,. Using only congruence
considerations we proved that K, has a power integral basis only for n =
= —1,-2. Forn = —1, —2 (both values presenting the same field) all generators
of power integral bases were computed.

5.2. A general method

Gaal and Gyéry [16] gave a feasible algorithm for solving index form
equations in arbitrary quintic fields, based on Wildanger’s enumeration method
as worked out by Gaal and Pohst [26], and using ideas of Gyéry [36]. The
algorithm works in a field of degree 10, having at most 9 fundamental units.
The necessary CPU time is unfortunately too long, about 24 hours per example.

Example. Consider the totally real quintic field K = @Q(§) where £ is
defined by the polynomial f(z) = 2% — 523 + z? + 3z — 1. This field has
discriminant Dk = 24217, Galois group Ss and integral basis {1,&,£2,¢€3,¢4}.
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The coefficients of the generators of power integral bases with respect to this
integral basis are:

(29,23, 24,25) =(0,1,0,0), (0,2,1,-1), (0,4,0,—1), (0,5,0,-1),
(1,-5,0,1), (1,-4,0,1), (1,-1,0,0), (1,0,0,0),
(1,1,-2,-1), (1,4,0,—1), (2,-1,-1,0), (2,4,—1,-1),
(2,9,-1,-2), (2,15,—1,-3), (2,10,—1,-2), (3,4,—1, 1),
(3,5,—1,—1), (3,9.-1,-2), (3,10,—1,-2), (3,14,—1,-3),
(3,18,-2,—4), (4,-1,-1,0), (4,0,—1,0), (4,5,—1,-1),
(4,24,-2,-5), (4,29,-2,-6), (5,—4,—1,1), (5,8,—2, —2),
(5,33,-2,-7), (1,5,-2,-1), (7,9,-2,-2), (7,14,-2,-3),
(9,18, -3,—4), (11,-13,-2,3), (12,27, —4,—6),
(17,28.-6,-6), (33,30, —51,—26), (83,170, —25,—39),
(124, 246, —40, —55).

6. Sextic fields

As we shall see, in case the sextic field admits a quadratic subfield, the
index form has always a factor that implies a relative Thue equation of
degree 3 over the quadratic subfield. In case the sextic field has additional
special properties, the resolution of index form equations can be simplified
further.

6.1. Sextic fields with a quadratic subfield

Let M be a quadratic field with integral basis {1,w}. Let f(t) =
= 3479t +91t+70 € Zp([t] be the minimal polynomial of ¥ over M. Consider
the sextic field K = Q(¥). For simplicity we assume that K admits a relative
integral basis {1,9,9?} over M, by remarking that this is the case most often
and our method applies also in the opposite case, with minor changes in the
theory, but needs longer computation time.

Let o = 2o+ 219+ 2292 4+ yow + y1wVP + yow?? be an integer in K satisfying
I(a) = 1 and consider the corresponding index form equation

(22) I(zy,22,y0,41,y2) = 1 in 21,%2,%0,%1,¥2 € Z.
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Let ¥; and Y2 be distinct roots of f(z) and put p = —; — 9J,. For a solution
(z1,%2,Y0,Y1,y2) of (22) set X =1 +wy,Y = 23 + wys.

It is easily seen (cf. [12], [24]), that in our case the index form has at least
two factors with integer coefficients, implying, that our equation (22) splits into
a system of equations. Namely, we have

Theorem 5. If (z1,z2,Y0,¥1,Yy2) is a solution of (22), then (X,Y) =
= (z1 + wyr, T2 + wyz) is a solution of

(23) NK/M(X—pY)zl/ in X,Y €Zpy

where v 1s a unit in M.

For a fixed v equation (23) is a cubic relative Thue equation over M.
This equation can be solved completely by the known methods, and for this
purpose one has to make computations only in the field K.

6.2. Sextic fields with a real quadratic subfield

If M is a real quadratic field, there are infinitely inany possible values
for v. Despite of it, one can determine finitely many pairs (X,Y), such that
all solutions of (23) are of the form

(24) T +wy = ;l:pIX, T+ wy; = 'Y,

where (X,Y) is one of the abovementioned pairs, p is the fundamental unit of
M, and | € Z, whence

-1 =ly 1 =1y

X —witX X -i'X

o= XL, R
w—Ww W — W

op'Y —wi'y ly — @'y

POl fed ol SR o Sl
w —w w—w

where ¥ denotes the conjugate of an element ¥ € M. Substituting these
expressions into the other factor of the index form we obtain an equation of
the form

9
(25) H(Aiﬂl + Bifi' + Ciyo) = =1,

i=1

where A;,B;,C; € K (1 < i < 9) are explicitely given and I,y € Z are
unknowns. This equation has a similar structure, like an inhomogeneous
Thue equation of degree 9 (cf. [8]), and can be solved in a similar manner.
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(Assuming g > 1,1 > 0, the variables u',yo are dominating, while i’ is non-
dominating).

In [11] we worked out this method for totally real cyclic sextic fields (cf.
[40], [6]) when there is also a cubic subfield and equation (25) splits into a cubic
and a sextic equation of the same type.

Example. Let w = (14 1/5)/2, and let 9 be a root of f(t) =t + (—6—
—6w)t + (6 + 11w). The field K = Q(¥) is totally real, cyclic, with discriminant
Dg = 820125. The solutions of the index form equation (22) corresponding to
the integer basis {1, 9, 9?, w,wd,wd?} are

(21, 22,0, y1,v2) =(—10,8,4,6,=5), (—-4,3,2,2,—-2), (—4,11,16,2,-7),

(~1,0,0,1,0), (-1,1,3,0,—1), (~1,1,5,0,—1),
(0,-2,8,-3,0), (0,0,-2,1,0), (0,0,8,—2,~1),
(1,0,-4,2,0), (1,1,-5,1,0), (1,1,-3,1,0),
(1,2,-8,2,0), (2,—4,-10,0,3), (2,-1,-12,2,2),
(2,-1,-4.0,1), (2,0,-9,1,1), (2,0,-7,1,1),
(2,1,2,-2,-1), (3,2,-26,5,2), (3,2,-22,6,2),
(6,3,0,—4,-2), (8,4,—68,13,6), (9,4,—60,15,6).

6.3. Sextic fields with anlimaginary quadratic subfield

In this case the index form has in general only two factors, one of them
implying equation (23), where v can attain only a few possible values. By
solving this equation, we find the (finitely many) possible tuples (z1, y1,Z2, ¥2)-
We substitute these tuples into the equation we get from the other factor of the
index form, and obtain a polynomial equation of degree 9 in yo with integer
coefficients. This method is described in [24].

Example. Let w = (1 +1v/3)/2, and let J be a root of f(t) = t>+ (—1-
—w)t? 4wt + (1 —w). The field K = Q(V) has discriminant Dg = —9747, and
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integer basis {1,9,9? w,wd,wd?}. All solutions of the index form equation
(22) are

(z1,%2,50,y1,v2) =(=2,0,1,2,=1), (=1,0,0,1,-1), (=1,0,-1,2,-1),
(0,0,0,1,-1), (0,0,—1,2,—1), (-1,0,0,0,0),
(-1,0,1,0,0), (~1,0,-1,1,0), (-1,0,0,1,0),
(0,0,0,—1,0), (0,0,1,-1,0), (=2,1,0,1,-1),
(-2,1,-2,2,-1), (-1,1,0,0,-1), (-1,1,0,1,—1),
(0,1,0,0,-1), (~1,1,1,-1,0), (-1,1,0,0,0),
(0,1,1,-2,0), (0,1,0,—1,0), (0,1,1,0,0).

6.4. Totally complex cyclic sextic fields

Let ¥ be a totally real cubic algebraic integer and let m be a square-
free positive integer. Let us consider the sextic field K = Q(9,i/m), with
discriminant Dk and ring of integers Zg. Let M = Q(iy/m), and L = Q(9) be
the subfields of K. (We remark that our algorithm works not only in totally
complex cyclic sextic fields, but also in any sextic field containing both an
imaginary quadratic and a real cubic subfield.) Set

{(1+i\/m)/2 if —m = 1 mod 4,
w =

iv/m if —m = 2,3 mod 4.

(26)

We represent any a € Zg in the form

zo + 19 + 2292 4 yow + y1w?I + yawd?

(27) a= P

with zg, 21, 2, Yo, ¥1, Y2 € Z and with a fixed common denominator g € Z.

Set O = Z[1,9,9%,w,wd,wd?) and denote by Do the discriminant of this
order.

Index form equations over sextic fields of this type are considered in [12].
In the present situation the index form equation has three factors.

Theorem 6. If (z1,2,Y0,Y1,Y2) is a solution of (22), X = z, + wy,
Y = y1 + wys, then

(28) Ngm(X —pY) =v,
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and
(29) Nrjo(yo + ni9 + y2192) =d,
with v € Zpyr and d € Z, such that d - Nyjq(v) divides

Il = 915—_ M € Z.
VDol

Obviously there are only finitely many possible values for v, d.

The main goal of the investigations of index form equations in such fields
is, that we could show, that in this case the resolution of the relative Thue
equation (28) can be reduced to solving a single cubic Thue inequality over
Z (cf. Theorem 7).

Denote by v; (¢ = 1,2,3), the conjugates of any vy € L. Let p = -9, —
—9,. Assume, that (X,Y) is a solution of equation (28). Choose the indices
{r,s,t} = {1,2,3} according to
(30) X = pY{<|X = pY|<|X = pY]

Set

{2 if —-m=1 (mod 4),
Cm =

1 if —m = 2,3 (mod 4),

c1 =95 lvl, ez =min(lpr — psl, lor — pel), c3 = lpr — psl - lor — pel,

{2|u11/3 4cm|1/]} (8|u|)1/3
C4 = mMax v — (s Cs = - 3

Cy Cc3 \/—rﬁ_ C2C3

and put
3

F(z,9) = [[(z - pjv) € Zlz,9).
j=1

Theorem 7. Let X = z1+wy,Y = 2+ wyz € Zp be a solution of (28)
according to (30). Suppose |Y| > ca. We have

(31) Ti1Y2 = T2V
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Further, in case —m =1 (mod 4)

if 229+ y2| > 2c5 then |F(2z1+ y1,2z2 + y2)| < ey,
if ly2| > 2¢s/v/m then |F(y1,92)| < ci/(Vm)?

and in case —m = 2,3 (mod 4)

if |z2| > cs then |F(zy,z2)| < e,

if lyo| > cs/v/m then |F(y1,y2)| < e1/(vm)°.

In view of Theorem 7 we can determine the possible tuples (z1,z2,y1,¥2)
by solving a single cubic Thue inequality over Z. An efficient method based
on continued fraction expansion for solving Thue inequalities can be found in
Pethd [44). The corresponding values of yo are determined from equation (29).

6.5. An infinite parametric family of totally complex cyclic sextic
fields

As an application of the results of the preceeding section we consider
now the index form equation in a two parametric infinite family of
totally complex cyclic sextic fields, composed of Shanks’ simplest cubics with
imaginary quadratic number fields, [12].

Let a be a natural number, let ¥ be a root of
(32) f(z) =2° —az? — (¢ + 3)z - 1,

and let m be a square-free positive integer. Consider the two parametric family
K = Q(9,iy/m) of totally complex cyclic sextic fields. Define w as in (26) and
set O = Z[1,9,9% w,wd,wd?] with discriminant Do as before. Unfortunately
it seems to be difficult to describe an integer basis of K. On the other hand,
the order O is very often the principal order of K. Hence we restrict ourselves
to considering power integral bases in 0. Put

19 if —m =1 (mod 4),
mo =

5 if —-m=23 (mod 4).

Theorem 8. Assume that a > 3 and m > my. Then the order O has no
power integral bases.
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7. Octic fields with a quadratic subfield

Let K = Q(€) be a field of degree eight with a quadratic subfield M. Index
form equations in such octic fields were considered by Gadl and Pohst [27]. In
this case we represent the integers of the octic field in the form

o Xo+ X16 + X262 + X363
- d

with quadratic integers Xo, X;, X2, X3 in M and a common denominator d € Z.
We follow the main steps of Section 4.4 (the corresponding algorithm for quartic
fields [22]) in a relative sense. We obtain similar equations as in (12), (13), (14)
just with quadratic integers as variables. It can be shown (not trivial at all)
that the analogue of the transformation (16) can also be used similarly. One
of the equations analogue to (19), (20) is a quartic relative Thue equation over
M. Solving the above equations we can determine the coefficients (X, X2, X3)
corresponding to a up to a unit factor in M. To determine this unit factor and
the remaining variable X, we have to solve certain corresponding equations of
degree 16 that are similar to inhomogeneous Thue equations cf. [8], [11].

Example. Consider the field K generated by a root £ of the polynomial
f(z)=a8—2" +25+22° —22* + 222~z - L.

This field has signature (2,6) and discriminant
Dg = —4461875 = —5* - 11% - 59.

The field K has M = Q(/5) as a subfield. Set w = p = 5'@@ The relative
defining polynomial of € over M is

(@) =zt +(-14+w)2®+ 22+ (1 +w)z + w.
Equation (12) has the form
U+wV) (U2 + (-1 =w)UV + (1 -w)V?) =g,

where ¢ is a unit in M. The solutions are (U, V) = (1,0), (1 +w, 1), (0,w). The
corresponding quartic relative Thue equations are
Fi(P,Q)=P*+ (w—1)P3Q+ P?Q* + (w+ 1)PQ* +wQ* =¢,
Fo(P,Q) = (1 +w)(P*+ (3-3w)P3Q + (4 — 3w)P?Q* +2PQ* + Q%) = ¢,
Fo(P,Q) = (1 + 2w)(P* — 20wP3Q + 3wP2Q? + (-2 —w)PQ* + wQ?) =,
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where € is a unit. Finally, the following integers (and their translations by
elements of Z) generate power integral bases in K:

a=¢,
a:£+(_1+w)£27
a=(1-w)+(-14w)e

The total CPU time was about 8 hours on a PC.
8. Index form equations in composites of fields

Let L be a number field of degree r with integral basis {I; = 1,15,...,I.}
and discrimminant Dy. Denote the index form corresponding to the integral
basis {ly = 1,l...,1;} of L by Ir(x2,...,z,). Similarly, let M be a number
field of degree s with integral basis {m; = 1, ms, ..., m,} and discriminant Djps.
Denote the index form corresponding to the integral basis {m; =1,m, ..., m,}
of M by Inp(z2,...,z5).

Assume, that the discriminants are coprimes, that is
(33) (DL,Dy) = 1.

Denote by K = LM the composite of L and M. In [13] we considered index
form equations in this type of composite fields K. Any integer a of K can be
represented in the form

T s

(34) a = Zinjl,'mj
i=1j =1

with z;; €Z (1<i<r,1<j<s). Weproved

Theorem 9. Assume (Dp,Dpy) = 1. If a of (34) generales a power
integral basis in K = LM, then

(35) Nupjq (IL (Z rz,-m,-,...,z:cr;m,)) = +1
i=1

i=1
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and

(36) Nr/q <1M (Z 1’1‘211')---»2:1'1'511')) ==*1.
i=1

i=1

The above equations are relative indez form equations over the subfields of K.
These equation give very much additional information about the unknowns z;;.

8.1. Power integral bases in imaginary quadratic extensions of totally
real cyclic fields of prime degree

In the following p will denote an odd prime. Let L be a totally real cyclic
number field of degree p, with integral basis {{; = 1,13, ...,[;} and discriminant
Dy. Denote by Ir(zs,...,zp) the index form corresponding to the integral
basis {{1 = 1,13,...,l}. Also, let 0 < m € Z be square-free with m # 1,3 and
let M = Q(iy/m). An integral basis of M is given by {1,w} with w defined as
in (26). The discriminant of M is

—m if —m = 1 mod 4,
(37) Dy = {
—4m if —m = 2,3 mod 4.

As above, we assume that (D, Dp) = 1. Consider the field K = LM. The
integers of K can be represented in the form

(38) a=zy+zlo+ .. 2ol + 1w+ yowly + ..+ ypwlp

with zj,Yy; € Z, (1 <5< P)-

Theorem 10. (Gadl [13]) Assume m # 1,3 and (Dr,Dp) = 1. If the
integer « of (88) generates a power integral basis in K = LM, then

(39) IL(za, ..., zp) = £1,

yp=xlandy=... =y, =0.

An example. Consider the family of totally real cyclic quintic fields
L = Q(9Y,) generated by a root of the polynomial f,(z) as defined in (21) in
Section 5.1. Let

c=n*+5n3+15n2 +25n+25, d=n3+5n2+10n+7.

Let 0 < m € Z be square-free with m # 1,3 and let M = Q(i\/m). Let w and
Dy be the same as in (26), (37). As a consequence of Theorem 10 we showed
(cf. [13])
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Theorem 11. Assume that m # 1,3, c is square-free and coprime to
Dpr. Then the field K = Q(9,iy/m) contains no power integral bases.

9. Fields of degree nine with cubic subfields

As an application of Theorem 9 in [14] we considered fields of degree 9 that
are composits of cubic subfields of coprime discriminants. We developed the
method for complex cubic fields, but the same ideas work also in other cases.

Let L be a complex cubic field with fundamental unit €, integral basis
{1,15,13} and denote by Ir(z,y) € Z[z,y] the corresponding index form. Let
M be a complex cubic field with fundamental unit 5, integral basis {1, m, m3}
and denote by Ip(z,y) € Z[z,y] the corresponding index form. Assume that
the discriminants are coprimes, (D, Dp) = 1.

Any integral element a € K can be written as

3
E 1]lim]

with rational integers z; ;,1 < 4,7 < 3. Set

ll'Mu

X =z12+ z22l2 + 3203, Y = 213+ z23ly + z33l3,

U=z + z2my + Tozma,  V = 73, + T32m2 + T33m3.
If a generates a power integral basis in K then by Theorem 9 (cf. [13]) we have
NL/Q(IM(X,Y))Zil, NM/Q(IL(U,V))::E].

These equations are cubic relative Thue equations over cubic fields. By
solving these equations we can determine finitely many Xo,Yo,Up, Vo € Zp
such that all solutions are of the form

X ==%e'Xo, Y = x'Yo, U= 20*Up, V = 0¥V

with arbitrary [,k € Z. Considering the structure of X,Y, U,V observe, that
T3, T23, T32, £33 occur both in X or Y and U or V, that is by taking conjugates
and using Cramer’s rule we can express them both in terms of { and in terms
of k. This way we get equations that relate the unknown exponents k and I:

Qi1 (6(1))1-’:-&;2 (5(2))l+a,‘3 (6(3))I+a.'4 (n(l))k+a;5 (n(z))k+ais (r)(a))’C =0
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for i = 1,2,3,4, where ('), () denote the conjugates of ¢, resp. 75, with
explicitly given algebraic coefficients «;;. In the second part of the algorithm
we used these equations to determine the exponents !, k which was still a quite
complicated procedure requiring Baker’s method and reduction.

Using the algorithm described above we made calculations for the following
three examples:

lLf(z)=23-z+1, Dp=-23, g(z) =23 -2z +2, Dy = =176;
2f(z)=2+z+1, Dp=-31,g(z)=23+z2+z+2, Dy =-83;
3.f(z) =23+2z+1, Dy = =59, g(z) =234+ 2% — 2z - 3, Dpr = —87,

where f and g denote the minimal polynomials of generating elements of L
and M, respectively. In each step of the algorithm we had several solutions
of the involved equations. However, finally there were no elements in the field
R = LM having index 1. The total CPU time for an example was about 1.5
hours on a PC.

10. Concluding remarks

As one can see, the efficients methods are different for each type of number
ficlds. However, there are some common technics that were developed in the
course of solving index form equations in cubic, quartic and higher degree
number fields that have an important influence for the further development of
the algorithms. We do believe that these methods will be applicable for the
resolution of many other types of diophantine equations as well.
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