NUMBER SYSTEMS IN REAL QUADRATIC FIELDS

G. Farkas (Budapest, Hungary)

Dedicated to the memory of I.Környei and B.Kovács

1. Introduction

Let $\mathbb{Q}(\sqrt{D})$ be a real quadratic extension of \mathbb{Q} , I be the set of integers in $\mathbb{Q}(\sqrt{D})$. Let $\alpha \in I$ and $A = \{0 = f_0, f_1, \dots, f_{|d|-1}\}$ be a complete residue system $mod \ \alpha$. Furthermore let $d = \alpha \cdot \overline{\alpha}$ and $\overline{\alpha}$ the conjugate of α .

In $\mathbb{Q}(\sqrt{D})$ for each $\pi \in I$ exists a unique $e \in \mathcal{A}$ and $\overline{\pi}_1 \in I$ such that $\pi = \alpha \pi_1 + e$. Let the function $J : I \to I$ be defined by $J(\pi) = \pi_1$.

If $\pi \in I$ and $\pi = J^k(\pi)$ holds for some k > 0, we say that π is a periodic element. Let \mathcal{P} denote the set of periodic elements.

For some $\alpha \in I$ and complete residue system $\mathcal{A} \pmod{\alpha}$ it may happen that each $\beta \in I$ has a finite expansion of form

$$\beta = e_0 + e_1 \alpha + \ldots + e_k \alpha^k,$$

where $e_i \in \mathcal{A}$, i = 0, 1, ..., k. Then we say that (\mathcal{A}, α) is a Number System (NS) with coefficient system \mathcal{A} .

I. Kátai [1] proved that if α is an arbitrary integer in an imaginary quadratic extension field $\mathbb{Q}(i\sqrt{D})$, such that $|\alpha| > 1$ and $|1 - \alpha| \neq 1$ holds, then (\mathcal{F}, α) is a NS with a suitable coefficient set \mathcal{F} . Earlier this assertion for Gaussian integer has been proved by G. Steidl [2].

The purpose of this paper is to prove an assertion in $\mathbb{Q}(\sqrt{D})$. It is a natural question to find all the possible NS bases in real quadratic extension fields. This seems to be a hard problem. As a partial result we shall prove our Theorem.

We remark that

- $(1.1) \ 0 \in \mathcal{P}$.
- (1.2) If $\pi \in \mathcal{P}$, then $J(\pi) \in \mathcal{P}$. If $G(\mathcal{P})$ is the directed graph defined by $\pi \to J(\pi)$ for every $\pi \in \mathcal{P}$, then $G(\mathcal{P})$ is a disjoint union of circles.
- (1.3) (A, α) is a NS over $\mathbb{Q}(\sqrt{D})$ if and only if $\mathcal{P} = \{0\}$.

2. Construction of the coefficient system

If $D \not\equiv 1 \pmod{4}$, then $\{1, \sqrt{D}\}$ is an integral basis in $\mathbb{Z}[\sqrt{D}]$, while for $D \equiv 1 \pmod{4} \{1, \omega\}$ is an integral base, where $\omega = \frac{1 + \sqrt{D}}{2}$.

If \mathcal{A} is a coefficient system, then for each $\beta \in \mathbb{Z}[\sqrt{D}]$ we can write $\beta = \beta_1 \alpha + f$, where $\beta_1 \in \mathbb{Z}[\sqrt{D}]$ and $f \in \mathcal{A}$.

Then

$$etaar{lpha}=far{lpha}+eta_1d$$
 and $ar{eta}lpha=ar{f}lpha+ar{eta_1}d$.

If $D \not\equiv 1 \pmod{4}$, then $\alpha = a + b\sqrt{D}$, $\bar{\alpha} = a - b\sqrt{D}$ and $f = k + l\sqrt{D}$, where $a, b, k, l \in \mathbb{Z}$. Then

$$f\bar{\alpha} = (k + l\sqrt{D})(a - b\sqrt{D}) = (ka - blD) + (la - kb)\sqrt{D}.$$

Let

$$r = ka - blD$$
 and $s = la - kb$.

If $D \equiv 1 \pmod{4}$, then $\alpha = a + b\omega = a + \frac{b}{2} + \frac{b}{2}\sqrt{D}$, $\bar{\alpha} = a + b\bar{\omega} = a + \frac{b}{2} - \frac{b}{2}\sqrt{D} = a + b - b\omega$ and $f = k + l\omega = k + \frac{l}{2} + \frac{l}{2}\sqrt{D}$, where $a, b, k, l \in \mathbb{Z}$. Furthermore we have

$$f\bar{\alpha}=(k+l\omega)((a+b)-b\omega)=(a+b)k+bl\frac{1-D}{4}+(la-kb)\omega$$

Now let

$$r = (a+b)k + bl\frac{1-D}{4}$$
and $s = la - kb$.

Choose the elements of $\mathcal A$ so that the next conditions are valid for each $\begin{bmatrix} k_i \\ l_i \end{bmatrix} \in \mathcal A$:

$$(2.1) r_i, s_i \in \left(-\frac{|d|}{2}, \frac{|d|}{2}\right],$$

$$(2.2) r_i \equiv r_j \pmod{d} & s_i \equiv s_j \pmod{d} \iff i = j.$$

We can do that always. This fact is well known in number theory.

3. Formulation of our theorem and its proof in simple cases

Theorem. Let α be an arbitrary integer in a real quadratic extension field $\mathbb{Q}(\sqrt{D})$ such that $|\alpha| \geq 2$ and $|\bar{\alpha}| \geq 2$ holds. Then (\mathcal{A}, α) is a NS with coefficient set \mathcal{A} constructed in Section 2.

Lemma 1. If $\alpha \in \mathbb{Z}$ or if $\alpha = b\sqrt{D}$ in the case $D \not\equiv 1 \pmod{4}$ or $\alpha = b\omega$ in the case $D \equiv 1 \pmod{4}$, then (A, α) is a NS for every extension field $\mathbb{Q}(\sqrt{D})$.

Proof. If $\alpha \in \mathbb{Z}$, then $\alpha = a + 0 \cdot \sqrt{D}$ or $\alpha = a + 0 \cdot \omega$, $d = a^2$, $\mathcal{A} = \left\{ \begin{bmatrix} k \\ l \end{bmatrix} \right\}$ for which $l, k \in \left(-\frac{|a|}{2}, \frac{|a|}{2}\right]$. Then we can expand each $m, n \in \mathbb{Z}$ in a NS with base a and coefficient system $\left\{c \mid c \in \left(-\frac{|a|}{2}, \frac{|a|}{2}\right]\right\}$. If $m = \sum k_t a^t$, $n = \sum l_t a^t$, then

$$eta=m+n\sqrt{D}=\sum(k_t+l_t\sqrt{D})a^t$$
 or $eta=m+n\omega=\sum(k_t+l_t\omega)a^t$

is the corresponding expansion of the integers $\beta \in I$. In the case $\alpha = b\sqrt{D}$ or $\alpha = b\omega$ we can make the proof similarly. This completes the proof of the Lemma 1.

Further we assume, that $a \neq 0$, and $b \neq 0$.

4. Investigation of G(P)

Lemma 2. Assume that the conditions of the Theorem hold, and A is the coefficient system constructed in Section 2. Then each nontrivial circle in G(P), if any, contains an irrational node.

Proof. The proof is indirect. Assume that there exists a circle

$$p_0 \rightarrow p_1 \rightarrow ... \rightarrow p_{k-1} \rightarrow p_k (= p_0),$$

where $p_{\nu} \in P$ are rational integers $\nu = 0, 1, ..., k$. We can write

$$p_{\nu} = \alpha p_{\nu+1} + f^{(\nu)}.$$

4.1. The case $D \not\equiv 1 \pmod{4}$

We have

$$\bar{\alpha}p_{\nu} = dp_{\nu+1} + r^{(\nu)} + s^{(\nu)}\sqrt{D}$$

and from this

$$ap_{\nu} - bp_{\nu}\sqrt{D} = dp_{\nu+1} + r^{(\nu)} + s^{(\nu)}\sqrt{D}.$$

Then

(4.1.1)
$$\begin{cases} ap_{\nu} - dp_{\nu+1} = r^{(\nu)}, \\ -bp_{\nu} = s^{(\nu)}. \end{cases}$$

Assertion 1. |d| > 2|a|.

Proof. Since $\alpha + \bar{\alpha} = 2a$, $|\alpha| > 2$, $|\bar{\alpha}| > 2$, therefore

$$(4.1.2) 2|a| < |d|$$

always holds.

Assertion 2. $|p_0| = |p_1| = ... = |p_{k-1}|$.

Proof (indirect). Assume that the Assertion 2 is not true. Then there exists $\nu = l - 1$, for which $|p_l| > |p_{l-1}|$. From (4.1.1)

$$|ap_{\nu}| = |dp_{\nu} + r^{(l-1)}| \ge |dp_{l}| - |r^{(l-1)}| \ge |d||p_{l}| - \frac{|d|}{2},$$
 $|ap_{\nu}| \ge |d| \left(|p_{l}| - \frac{1}{2}\right)$ p_{l} is an integer, therefore
 $|ap_{\nu}| \ge |d||p_{l-1}|,$ $|a||p_{l-1}| \ge |d||p_{l-1}|$

and this contradicts to Assertion 1.

Assertion 3. No such $p \in \mathbb{Z} \cap P \setminus \{0\}$ exists for which J(p) = p or J(p) = -p holds.

If there would exist $p \to p$ circle in G(P), i.e. J(p) = p, then

$$p = \alpha p + f, \qquad f \in A,$$

whence

$$\bar{\alpha}p = dp + r + s\sqrt{D}$$
 would follow.

We get

$$|a-d| \le |r| \le \frac{|d|}{2}.$$

Similarly if J(p) = -p, then we get

$$|a+d| \le \frac{|d|}{2}.$$

Both cases contradict to Assertion 1, therefore we proved Assertion 3.

4.2. The case $D \equiv 1 \pmod{4}$

Now we get $\bar{\alpha}p_{\nu}=dp_{\nu+1}+r^{(\nu)}+s^{(\nu)}\omega$, and from this

(4.2.1)
$$\begin{cases} (a + \frac{b}{2})p_{\nu} = dp_{\nu+1} + r^{(\nu)} + \frac{s^{(\nu)}}{2}, \\ -\frac{b}{2}p_{\nu} = \frac{s^{(\nu)}}{2}. \end{cases}$$

Assertion 1'. $|d| > 2|a + \frac{b}{2}|$.

Proof. Since $\alpha = (a + \frac{b}{2}) + \frac{b}{2}\sqrt{D}$, $\bar{\alpha} = (a + \frac{b}{2}) - \frac{b}{2}\sqrt{D}$, therefore $\max(|\alpha|, |\bar{\alpha}|) = |a + \frac{b}{2}| + \frac{|b|}{2}\sqrt{D} < \frac{|d|}{2}$, which implies Assertion 1'.

Assertion 2'. $|p_0| = |p_1| = ... = |p_{k-1}|$.

Proof (indirect). Arguing the earlier we may assume that there exists $\nu = l - 1$, for which $|p_l| > |p_{l-1}|$. From (4.2.1)

$$\begin{aligned} \left| (a + \frac{b}{2}) p_{\nu} \right| &= \left| a + \frac{b}{2} \right| |p_{\nu}| = \left| d p_{\nu+1} + r^{(\nu)} + \frac{s^{(\nu)}}{2} \right| \ge |d| |p_{\nu+1}| - \left| r^{(\nu)} + \frac{s^{(\nu)}}{2} \right|, \\ \left| \left(a + \frac{b}{2} \right) \right| |p_{\nu}| \ge |d| |p_{\nu+1}| - \left| \frac{3}{4} d \right| = |d| \left(|p_{\nu+1}| - \frac{3}{4} \right) \ge |d| |p_{\nu}|, \\ \left| a + \frac{b}{2} \right| \ge |d|, \end{aligned}$$

but this contradicts to Assertion 1'.

Assertion 3'. No such $p \in \mathbb{Z} \cap P \setminus \{0\}$ exists for which J(p) = p or J(p) = -p holds.

Proof. Observe that if J(p) = p, then

$$p = \alpha p + f$$

where $f \in A$, from this

$$\bar{\alpha}p = dp + r + s\omega.$$

We get

$$p\left(\left(a+\frac{b}{2}\right)-d\right)=r+\frac{s}{2}.$$

We know that

$$\left|a+\frac{b}{2}\right|<\frac{|d|}{2}\quad\text{and}\quad \left|r+\frac{s}{2}\right|\leq\frac{3}{4}|d|.$$

Hence

$$|p|\left|\left(a+\frac{b}{2}\right)-d\right|>|p|\frac{|d|}{2}$$

and

$$\left|r + \frac{s}{2}\right| \le \frac{3}{4}|d|.$$

We got

$$|p|\frac{|d|}{2}<\frac{3}{4}|d|,$$

and from this

$$|p|<\frac{3}{2}.$$

It follows that |p|=1. The case J(p)=-p yields the same result. Observe that with these conditions $p\in A$, because if $\begin{bmatrix} k\\l\end{bmatrix}=\begin{bmatrix} 1\\0\end{bmatrix}\in A$, then

$$r = a + b$$
 and $s = -b$.

If
$$\begin{bmatrix} k \\ l \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix} \in A$$
, then
$$r = -(a+b),$$

$$s = b$$

and in both cases $r, s \in (-\frac{|d|}{2}, \frac{|d|}{2}]$. This follows from the inequalities

$$\frac{|d|}{2} > \left| a + \frac{b}{2} \right| + \frac{|b|}{2} \sqrt{D}, \qquad D > 4.$$

Then we can write $p = \alpha \cdot 0 + p$, therefore $p \to 0$, i.e. p is not a periodic element. We proved the Assertion 3' and the Lemma 2.

5. Estimating the absolute values of the periodic elements

Lemma 3. If $D \not\equiv 1 \pmod{4}$, $\pi = p + q\sqrt{D} \in P$, then

$$|\pi| \le \frac{1 + \sqrt{D}}{2\left(1 - \frac{1}{|\alpha|}\right)},$$

$$|\bar{\pi}| \le \frac{1 + \sqrt{D}}{2\left(1 - \frac{1}{|\bar{\alpha}|}\right)}.$$

If $D \equiv 1 \pmod{4}$, $\pi = p + q\omega \in P$, then

$$|\pi| \le \frac{1+\omega}{2\left(1-\frac{1}{|\alpha|}\right)},$$

$$|\bar{\pi}| \le \frac{1 + |\bar{\omega}|}{2\left(1 - \frac{1}{|\bar{\alpha}|}\right)}.$$

Proof. We try to estimate the value of $f\bar{\alpha}$ and $\bar{f}\alpha$. We know that if $D \not\equiv 1 \pmod{4}$, then $f\bar{\alpha} = r + s\sqrt{D}$, where $r, s \in (-\frac{|d|}{2}, \frac{|d|}{2}]$. From this $|f\bar{\alpha}| = |r + s\sqrt{D}| \leq \frac{|d|}{2} + \frac{|d|}{2}\sqrt{D} = \frac{(1+\sqrt{D})|d|}{2}$, consequently

$$(5.5) |f| \le \frac{1 + \sqrt{D}}{2} |\alpha|,$$

and similarly

$$|\bar{f}| \le \frac{1 + \sqrt{D}}{2} |\bar{\alpha}|.$$

Now let π be an arbitrary periodic element. Then

$$\pi = f + \alpha \pi_1$$
, where $\pi_1 \in P$ and $f \in A$.

From this

$$\pi\bar{\alpha} = f\bar{\alpha} + d\pi_1.$$

We will give an upper bound of the absolute value of the periodic elements. Let π_1 be such that $|\pi_1| = \max_{x \in P} |x|$. Then

$$\begin{split} |\pi| &\leq |\pi_1|, \\ \pi_1 &= \frac{\pi\bar{\alpha} - f\bar{\alpha}}{d}, \\ |\pi_1| &\leq \frac{|\pi||\bar{\alpha}|}{|d|} + \frac{|f\bar{\alpha}|}{|d|}, \\ |\pi_1| &\leq \frac{|\pi_1|}{|\alpha|} + \frac{1 + \sqrt{D}}{2}, \\ |\pi_1| &\leq \frac{1 + \sqrt{D}}{2(1 - \frac{1}{|\alpha|})}. \end{split}$$

We can prove the further assertion of Lemma 3 in a similar way.

Lemma 4. If $\pi = p + q\sqrt{D}$ in the case $D \not\equiv 1 \pmod{4}$, or $\pi = p + q\omega$ in the case $D \equiv 1 \pmod{4}$ is a periodic element, then neither |q| > 1 nor |q| > 0 & |p| > 0 holds.

Proof. If $D \not\equiv 1 \pmod{4}$, Lemma 3 implies that $|\pi| < 1 + \sqrt{D}$ and $|\bar{\pi}| < 1 + \sqrt{D}$. Hence $\max(|\pi|, |\bar{\pi}|) = |p| + |q|\sqrt{D} < 1 + \sqrt{D}$. The second assertion is true.

If $D\equiv 1\pmod 4$ we can proceed similarly. From Lemma 3 it follows that $|\pi|<1+\omega$ and $|\bar{\pi}|<1+|\bar{\omega}|$. If sign(p)=sign(q), then $|\pi|=|p|+|q|\omega$, |p|>0 & |q|>0 cannot hold, because $|p|+|q|\omega<1+\omega$ is impossible. If $sign(p)\neq sign(q)$, then $|\bar{\pi}|=|p|+|q\bar{\omega}|$ hold, because $\bar{\omega}<0$. |p|>0 & |q|>0 implies that $|p|+|q\bar{\omega}|\geq 1+|\bar{\omega}|$. We got that |p|>0 & |q|>0 cannot hold. If |p|>0 & |q|>1, then $|\pi|=|q\omega|\geq |2\omega|>1+\omega$. This contradicts to $|\pi|<1+\omega$, therefore we proved Lemma 4.

Hence we know that the irrational node, mentioned in Lemma 4, can only be \sqrt{D} or $-\sqrt{D}$ if $D \not\equiv 1 \pmod{4}$ and ω or $-\omega$ if $D \equiv 1 \pmod{4}$.

6. Completing the proof of the Theorem for $D \not\equiv 1 \pmod{4}$

Assertion 4. If $|q_1| = |q_2| = 1$, then $J(q_1\sqrt{D}) = q_2\sqrt{D}$ never holds.

Proof (indirect). Assume that $J(q_1\sqrt{D}) = q_2\sqrt{D}$ is true, then

$$q_1\sqrt{D} = \alpha q_2\sqrt{D} + f$$

for some $f \in A$. We get

$$\bar{\alpha}q_1\sqrt{D} = aq_1\sqrt{D} - bq_1D = dq_2\sqrt{D} + r + s\sqrt{D}.$$

From this it follows that $aq_1 - dq_2 = s$, whence $|aq_1 - dq_2| \le \frac{|d|}{2}$. This is a contradiction, because $|aq_1 - dq_2| > \frac{|d|}{2}$. We proved the Assertion 4.

Lemma 5. No such $p_1, p_2 \in \mathbb{Z} \cap P \setminus \{0\}$ exist for which $J(p_2) = q\sqrt{D}$ and $J(q\sqrt{D}) = p_1$ hold simultaneously, where |q| = 1.

Proof. Assume indirectly

$$(6.1) J(p_2) = q\sqrt{D}$$

$$(6.2) and J(q\sqrt{D}) = p_1,$$

where |q| = 1 and $p_1, p_2 \in \mathbb{Z} \cap P \setminus \{0\}$. Then from (6.1) $p_2 = dq\sqrt{D} + f$ for some $f \in A$, whence

$$\bar{\alpha}p_2 = ap_2 - bp_2\sqrt{D} = dg\sqrt{D} + r + s\sqrt{D}.$$

We get $bp_2 + dq = -s$ and from this it follows that

$$|bp_2| = |-s - dq| \ge |d| - \frac{|d|}{2} = \frac{|d|}{2}.$$

Hence

$$(6.3) 2|bp_2| \ge |d|.$$

On the other hand $\max(|\alpha|, |\bar{\alpha}|) = |a| + |b|\sqrt{D} < \frac{|d|}{2}$ implies that $|d| > 2|a| + |a| + 2|b|\sqrt{D}$. Thus from (6.3) $2|bp_2| > 2|a| + 2|b|\sqrt{D}$ follows. We get $|p_2| - \sqrt{D} > \frac{|a|}{|b|}$, and from this

$$(6.4) |p_2| > \sqrt{D}.$$

From (6.2) we get that $q\sqrt{D} = p_1 + f'$, where $f' \in A$. Hence

$$\bar{\alpha}q\sqrt{D} = a\sqrt{D}q - bDq = dp_1 + r' + s'\sqrt{D}$$
.

Hence $dp_1 + bDq = -r'$. If we assume that $|p_1| > \sqrt{D}$, then

$$|dp_1| > (|a| + 2|b|\sqrt{D})\sqrt{D} > |bD|$$
, and

$$\frac{|d|}{2} \ge |-r'| = |dp_1 + bDq| \ge |dp_1| - |bD|$$

holds. We got that $|d|(|p_1| - \frac{1}{2}) \le |bD|$, but this contradicts to $|p_1| > \sqrt{D}$, therefore we can state that $|p_1| < \sqrt{D}$.

Observe that if our directed circle contains a transition of type $p_2 \to \sqrt{D} \to p_1$, or a transition $p_2 \to (-\sqrt{D}) \to p_1$, then it must contain a transition $t_1 \to t_2$, where $t_1, t_2 \in \mathbb{Z} \cap P \setminus \{0\}$ and $|t_1| < |t_2|$. It is clear, because in the case $p_2 \to q\sqrt{D} \to p_1$ we have $|p_2| > |p_1|$, and on the other hand $q\sqrt{D} \to p_2$ implies that $|p_2| < \sqrt{D}$, and this contradicts to $|p_2| > \sqrt{D}$. But, if there exists $t_1 \to t_2$, transition with the abovementioned conditions, then $t_1 = \alpha t_2 + f$ holds from some $f \in A$. We get $\bar{\alpha}t_1 = at_1 - bt_1\sqrt{D} = dt_2 + r + s\sqrt{D}$, whence

$$(6.5) |at_1 - dt_2| \le \frac{|d|}{2}.$$

Since |d| > 2|a| and $|t_2| > |t_1|$ hold, consequently $|at_1 - dt_2| > \frac{|d|}{2}$, and this contradicts to (6.5). We proved the Lemma 5.

We know from the Lemma 2 that there no exists nontrivial circle in G(P), therefore $P = \{0\}$. This completes the proof of the Theorem for $D \not\equiv 1 \pmod{4}$.

7. Completing the proof of the Theorem for $D \not\equiv 1 \pmod{4}$

Assertion 5. If $|q_1| = |q_2| = 1$, then $J(q_1\omega) = q_2\omega$ never holds.

Proof (indirect). Assume that $|q_1| = |q_2| = 1$ and $J(q_1\omega) = q_2\omega$ is true, then

$$q_1\omega = \alpha q_2\omega + f$$

where $f \in A$. Thus $\bar{\alpha}q_1\omega = dq_2\omega + r + s\omega$. From this we get that

$$\frac{1}{2}\left(a + \frac{b}{2}\right)q_1 - \frac{b}{4}q_1 - \frac{d}{2}q_2 = \frac{s}{2},$$

whence

$$|aq_1 - dq_2| = |s| \le \frac{|d|}{2}.$$

From $|\alpha| = |a+b\omega|$ & $|\bar{\alpha}| = |a+b\bar{\omega}|$ it follows that $|\alpha| > a$ or $|\bar{\alpha}| > a$, therefore |d| > 2|a| and then $|aq_1 - dq_2| > \frac{|d|}{2}$. This contradicts to $|aq_1 - dq_2| \le \frac{|d|}{2}$. Hence the Assertion 5 follows.

We got that there are not $\omega \to \omega$, $\omega \to (-\omega)$, $(-\omega) \to \omega$, $(-\omega) \to (-\omega)$ transitions. Therefore we must to verify only those circles, which contain $p_2 \to z \to p_1$ transitions, where $p_1, p_2 \in P$ are rational integers and $|z| = \omega$.

Lemma 6. No circle of periodic elements exist, which contain $p_2 \to z \to p_1$ transitions, where $|z| = \omega$ and p_1, p_2 nonzero rational integers.

Proof (indirect). Assume there exists $p_2 \to q\omega \to p_1$ with the above-mentioned conditions, further |q|=1 and $p_1,p_2\neq 0$. Then, from $q\omega=\alpha p_1+f_1$ it follows that

(7.1)
$$\frac{1}{2}q\left(a+\frac{b}{2}\right)-q\frac{b}{4}D-dp_1=r_1+\frac{s_1}{2},$$

(7.2)
$$\frac{1}{2}q\left(a+\frac{b}{2}\right)-q\frac{b}{4}=q\frac{a}{2}=\frac{s_1}{2},$$

and from $p_2 = \alpha q \omega + f_2$ we obtain

(7.3)
$$\left(a + \frac{b}{2}\right) p_2 - q \frac{d}{2} = r_2 + \frac{s_2}{2},$$

$$\frac{b}{2}p_2 - q\frac{d}{2} = \frac{s_2}{2},$$

where $f_1, f_2 \in A$. (7.4) implies that

$$|p_2| = \left| \frac{qd + s_2}{b} \right| \ge \left| \frac{d}{b} \right| - \left| \frac{s_2}{b} \right| \ge \left| \frac{b}{d} \right| - \left| \frac{d}{2b} \right| = \left| \frac{d}{2b} \right|.$$

On the other hand assume that there is an arbitrary $\pi \in P$, $\pi = p + 0 \cdot \omega$ for which $|p| > \omega$. Since $\pi \in P$, $\bar{\pi} \in P$ and $|\bar{\pi}| < 1 + |\bar{\omega}|$, therefore $|p| < 1 + |\bar{\omega}|$.

Hence $|p| < 1 - \bar{\omega} = \omega$. This is impossible, therefore we can state in a concrete case that $|p_2| < \omega$. We get

$$(7.5) \omega > |p_2| \ge \frac{|d|}{2|b|}.$$

We have $\alpha = a + \frac{b}{2} + \frac{b}{2}\sqrt{D}$, $\bar{\alpha} = a + \frac{b}{2} - \frac{b}{2}\sqrt{D}$. Observe that either $|\alpha| > |\frac{b}{2} + \frac{b}{2}\sqrt{D}|$ or $|\bar{\alpha}| > |\frac{b}{2} + \frac{b}{2}\sqrt{D}|$ holds with the exception of two cases:

$$(7.6) b > 0 \& \alpha > 2 \& \bar{\alpha} < -2 \& a < 0,$$

$$(7.7) b < 0 \& \alpha < -2 \& \bar{\alpha} > 2 \& a > 0.$$

If neither (7.6) nor (7.7) hold, then $|d| > 2|b\omega| > 2|b|\omega$. This contradicts to (7.5).

If (7.6) or (7.7) are valid, then $|a + \frac{b}{2}| < \frac{|b|}{2}\sqrt{D} - 2$, because either $a + \frac{b}{2} + \frac{b}{2}\sqrt{D} > 2$ & $a + \frac{b}{2} - \frac{b}{2}\sqrt{D} < -2$ or $a + \frac{b}{2} + \frac{b}{2}\sqrt{D} < -2$ & $a + \frac{b}{2} - \frac{b}{2}\sqrt{D} > 2$ are true. Hence $(a + \frac{b}{2})^2 < |\frac{b^2}{4}D - 2|b|\sqrt{D} + 4|$, therefore we get

$$(7.8) |d| > 2|b|\sqrt{D} - 4.$$

Then (7.5) and (7.8) imply, that $2|b|\omega \geq |d| > 2|b|\sqrt{D} - 4$, from this we get

$$(7.9) 0 > |b|(\sqrt{D} - 1) - 4.$$

(7.9) never holds if D > 21 or D > 5 & |b| > 1 or in the case D = 5 & |b| > 3. This the exceptional cases remainded to prove.

- (1) D = 5 & |b| = 1. Then (7.6), (7.7) imply that a > 0 & a < 0, but this is impossible.
- (2) D=5 & |b|=2. Then from (7.6) a=-1 follows, and from (7.7) we obtain a=1. Subtracting (7.1) from (7.2), we deduce

$$q\frac{b}{4}D+dp_1-q\frac{b}{4}=-r_1,$$

from this we have

$$q\frac{b}{4}(D-1)+dp_1=-r_1,$$

whence

$$\left| q \frac{b}{4} (D-1) + dp_1 \right| \leq \frac{|d|}{2}.$$

Hence |a| = 1, |b| = 2, $sgn(a) \neq sgn(b)$ and D = 5 hold, therefore $|q^{\frac{b}{4}}(D-1) + dp_1| \geq |dp_1| - |q^{\frac{b}{4}}(D-1)| = |5p_1| - 2 \geq 3$. But $\frac{|d|}{2} = 2.5$ and this contradicts to (7.10).

- (3) D=5 & |b|=3. Then from (7.6) and (7.7) it follows that |a|=1 or |a|=2. Hence |d|=11, therefore $|q\frac{b}{4}(D-1)+dp_1|\geq |11p_1|-3\geq 8$, and $\frac{|d|}{2}=5.5$. This also contradicts to (7.10).
 - (4) $13 \le D \le 21 \& |b| = 1$. From (7.6) we obtain that

$$(7.11) a > 2 - \frac{1}{2} - \frac{1}{2}\sqrt{D},$$

and from (7.7)

$$(7.12) a < -2 + \frac{1}{2} + \frac{1}{2}\sqrt{D}$$

follows.

Observe that (7.11) contradicts to (7.6), because $2 - \frac{1}{2} - \frac{1}{2}\sqrt{D} > -1$ and (7.12) contradicts to (7.7), because $-2 + \frac{1}{2} + \frac{1}{2}\sqrt{D} < 1$.

Since we conducted to contradiction in all cases, we obtained that neither $p_2 \to \omega \to p_1$ nor $p_2 \to (-\omega) \to p_1$ transition exist. We proved the Lemma 6.

Hence a circle of periodic elements contains only rational integers, and the Lemma 2 implies that $P = \{0\}$.

The proof of the Theorem is completed.

References

- [1] Kátai I., Number systems in imaginary quadratic fields, Annales Univ. Sci. Bud. Sect. Comp., 14 (1994), 91-103.
- [2] Steidl G., On symmetric representation of Gaussian integers, BIT, 29 (1989), 563-571.

G. Farkas

Department of Computer Algebra Eötvös Loránd University P.O.B. 32 H-1518 Budapest, Hungary farkasg@compalg.inf.elte.hu