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NUMBER SYSTEMS IN REAL QUADRATIC FIELDS

G. Farkas (Budapest, Hungary)

Dedicated to the memory of . Kérnyei and B.Kovdcs

1. Introduction

Let Q(vD) be a real quadratic extension of Q, I be the set of integers

in @(\/l—)) Let « € I and A = {0 = fo, f1,..., fig)-1} be a complete residue
system mod «. Furthermore let d = o - @ and @ the conjugate of «.

In Q(v/D) for each 7 € / exists a unique e € A and 7; € I such that
n = am + e. Let the function J : I — I be defined by J(7) = m;.

If 7 € I and m = J*(7) holds for some k > 0, we say that 7 is a periodic
element. Let P denote the set of periodic elements.

For some o € I and complete residue system A (mod «) it may happen
that each 8 € I has a finite expansion of form

B=ceo+ea+...+epak,

where ¢; € A, i = 0,1,...,k. Then we say that (A4,a) is a Number System
(NS) with coefficient system A.

[. Katai [1] proved that if o is an arbitrary integer in an imaginary
quadratic extension field Q(iv/D), such that |a| > 1 and |1 — a| # 1 holds,
then (F, @) is a NS with a suitable coefficient set F. Earlier this assertion for
Gaussian integer has been proved by G. Steidl [2].

The purpose of this paper is to prove an assertion in Q(\/B) It is a
natural question to find all the possible NS bases in real quadratic extension
fields. This seems to be a hard problem. As a partial result we shall prove our
Theorem.

We remark that
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(1.1) 0 e P.
(1.2) If 7 € P, then J(7) € P. If G(P) is the directed graph defined by = — J ()
for every m € P, then G(P) is a disjoint union of circles.

(1.3) (A, a) is a NS over Q(v/D) if and only if P = {0}.
2. Construction of the coefficient system

If D # 1 (mod 4), then {1,/D} is an integral basis in Z[v/D], while for
D =1 (mod 4) {1,w} is an integral base, where w = #.
If A is a coefficient system, then for each 8 € Z[V/D] we can write 8 =
= fra + f, where §; € Z[V/D] and f € A.
Then
Ba = fa+ pd
and  fa = fa+ fid.

If D # 1 (mod 4), then a=a+b/D,a=a-b/Dand f = k+ VD, where
a,b, k,l € Z. Then

fa& = (k +1VD)(a - bV/D) = (ka — bID) + (la — kb)v/D.

Let
r=ka—-blD and

s =la — kb.

If D =1 (mod 4), then a = a+bw =a+%+%ﬂ5,&:a+bu’:=a+%—% D=
=a+b-bw andf:k+lw:k+-;-+% D, where a,b,k,l € Z. Furthermore

we have
_ 1-D
fa=(k+lw)((a+d)—bw)=(a+b)k+ blT + (la — kb)w.

Now let
r=(a+ bk + 0112

and s = la — kb.
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Choose the elements of A so that the next conditions are valid for each

ki )
B e

(21) Ti, 8 € <_|%d[) !_;il] ’
(2.2) ri=rj (modd) & s;=s; (mod d)<=i=j.

We can do that always. This fact is well known in number theory.
3. Formulation of our theorem and its proof in simple cases

Theorem. Let a be an arbitrary integer in a real quadratic eztension
field Q(v/D) such that |a| > 2 and |&| > 2 holds. Then (A,c) is a NS with
coefficient set A constructed in Section 2.

Lemma 1. I[fa € Z or if a = b\/D in the case D # 1 (mod 4) or
a = bw in the case D = 1 (mod 4), then (A, a) is a NS for every ertension

field Q(v/D).

l
for which |,k € —M, lal} " Then we can expand each m,n € Z in a NS with
)

base a and coefficient system {c |ce (—%, I—;l] } Ifm=3 kia',n =3 Lat,
then

Proof. Ifa € Z, thenaj:.a+0~\/ﬁora=a+0-w,d:a2,A:{[k}}

B=m+ nVD = Z(kt + lt\/ﬁ)a'
or B=m+nw= Z(k‘ + Lw)a

is the corresponding expansion of the integers 8 € I. In the case a = /D
or @ = bw we can make the proof similarly. This completes the proof of the
Lemma 1.

Further we assume, that a # 0, and b # 0.
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4. Investigation of G(P)

Lemma 2. Assume that the conditions of the Theorem hold, and A 1s
the coefficient system constructed in Section 2. Then each nontrivial circle in
G(P), if any, contains an irrational node.

Proof. The proof is indirect. Assume that there exists a circle

Po—pP1 ... ™ Pk-1 Pk(z Pu),

where p, € P are rational integers v = 0,1, ..., k. We can write

Pv = apy41 + f(yl

4.1. The case D # 1 (mod 4)

We have
ap, = dpy41 + r) 4 s(y)\/_D_y

and from this

apy — bpu\/ﬁ =dpy41 + ) + S(”)\/B-
Then

ap, — dpy41 =),
(4.1.1)
—bp, = s).
Assertion 1. |d| > 2|a|.
Proof. Since a + & = 2a, |a| > 2, |&| > 2, therefore

(4.1.2) 2|a| < |d|
always holds.
Assertion 2. |pol = |p1| = ... = |pr-1]

Proof (indirect). Assume that the Assertion 2 is not true. Then there
exists v = | — 1, for which |p;| > |pi=1]. From (4.1.1)

d
lapul = ldpy + =1 > [dpi = 114=9] 2 | - 9]
1 . ‘
lap,,l 2 |d| (|Pll - 5) pi 1s an integer, therefore

lap,| 2 |dllpi-1l,  lallpi-1| > |d]|pi-1|
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and this contradicts to Assertion 1.

Assertion 3. No such p € Z N P\{0} ezists for which J(p) = p or
J(p) = —p holds.

If there would exist p — p circle in G(P), i.e. J(p) = p, then
p=aptf, feA

whence
ap=dp+r+ svVD would follow.

We get

la—d| <|r| < Idl

Similarly if J(p) = —p, then we get
|d]
a+dl < —.
atdl < 2
Both cases contradict to Assertion 1, therefore we proved Assertion 3.

4.2, The case D = 1 (mod 4)

Now we get ap, = dp, 41 + r*) + s(")w, and from this

(.,)

(a + 3 )Pu = dpu+1 + T(y) + 2
(4.2.1)

b s
_'g'pu — ’—2_-
Assertion 1°. |d| > 2|a + %[
Proof. Since @ = (a+ &) + ¢V/D, @ = (a + %) - VD, therefore
max(|e|, |&]) = |a+ 2| + 'bl\/_ D< l whlch implies Assertion 1°.
Assertion 2°. |po| = |p1| = ... = |pk—1].
Proof (indirect). Arguing the earlier we may assume that there exists

v =1—1, for which |pi| > |pi-;|. From (4.2.1)

(v)
vy s
T +2

b
(a+ 3)p Ipul dpyy1+ 7% + —’ > |d||py41| -

2)"

(++3)

b
= >
+g) 2 14)

3 3
12 el = |$) = 10 (Il = §) 2 bl |




52 G. Farkas

but this contradicts to Assertion 1°.

Assertion 3°. No such p € Z N P\{0} ezists for which J(p) = p or
J(p) = —p holds.

Proof. Observe that if J(p) = p, then
p=ap+f,

where f € A, from this
ap=dp+r+ sw.

((++2)-4)=rd

We get

We know that

b || s 3
a+§l<7 and |T+§‘S4—|d|
Hence ) dl
|
—\-d =l
ol (a+3) - d| > ol
and 3
s
—| < =|dj.
r+ 5| < 4|d|
We got
ldl 3
and from this 3
lpl < 5

It follows that |p| = 1. The case J(p) = —p yields the same result. Observe

that with these conditions p € A, because if [llc] = [(1]] € A, then
r=a+b
and s=-b
k -1
If [l] = [ 0 ] € A, then
r= —(a. + b),
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and in both cases r, s € (—%, 11;1] This follows from the inequalities
Id]

>
2

b b
a+ |+ l——I\/B, D> 4.

2 2
Then we can write p = a-0+p, therefore p — 0, i.e. pis not a periodic element.
We proved the Assertion 3’ and the Lemma 2.

5. Estimating the absolute values of the periodic elements

Lemma 3. If D % 1 (mod 4), r=p+ ¢v/D € P, then

6. < YD
2(1- %)
(5.2) 7| < _1+VD

e

IfD = 1 (mod 4), m=p+qu € P, then

14w
(5.3) )< e
2(1- )

(5.4) 7] < —+ 1l

Proof. We try to estimate the value of fa and fa. We know that if
D # 1 (mod 4), then fa = r + sv/D, where r,s € (——I%',l%l], From this

|fal = |r +svD| < % + lg—'ffj = %M, consequently

(5.5) Ifl < —5—lel,
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and similarly

1+vVD,_
o

(5.6) [l < ——lal

Now let 7 be an arbitrary periodic element. Then
= f+am, where m, € P and f € A.

From this
ra = fa + dm.

We will give an upper bound of the absolute value of the periodic elements.
Let 71 be such that || = maxzep |z|. Then

7| < |mil,
Ta — fa
d )
I7llal |fal
m| < +'———1
ml< S + g
]7!'1' 1+\/_5
<__
Im < || + 2

1+vD
|W1|S§Z1—:‘%—)~

™ =

We can prove the further assertion of Lemma 3 in a similar way.

Lemma 4. If 7 = p+ ¢V/D in the case D # 1 (mod §), or 7 = p + qw
in the case D = 1 (mod 4) is a periodic element, then neither |q| > 1 nor
lg| >0 & |p| > 0 holds.

Proof. If D # 1 (mod 4), Lemma 3 implies that |7| < 1+ +/D and
|7| < 14 v/D. Hence max(|=|,|7]) = |p| + l¢/V'D < 1+ v/D. The second
assertion is true.

If D = 1 (mod 4) we can proceed similarly. From Lemma. 3 it follows
that |7| < 1+ w and |7] < 1+ |@]. If sign(p) = sign(q), then |7| = |p| + |q|w,
lpl > 0 & |g| > 0 cannot hold, because |p| + |¢lw < 1 4+ w is impossible. If
sign(p) # sign(q), then |7| = |p| + |gw| hold, because @ < 0. |p| > 0 & |g| > 0
implies that |p| + |g@| > 1+ |@|. We got that |p| > 0 & |g| > 0 cannot hold.
Hlp| >0 & |g| > 1, then |7] = |gqw| > |2w| > 1 + w. This contradicts to
|7] < 14w, therefore we proved Lemma 4.

Hence we know that the irrational node, mentioned in Lemma 4, can only
be VDor —V/Dif D # 1 (mod 4) and w or —w if D = 1 (mod 4).
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6. Completing the proof of the Theorem for D # 1 (mod 4)

Assertion 4. If |q1| = |g2| = 1, then J(q1V/D) = q2v/D never holds.
Proof (indirect). Assume that J(g;vD) = ¢2v/D is true, then

Ql\/l_)I 01!12\/1_)+f

for some f € A. We get
qu\/B = aql\/—ﬁ - bgyD = dq2\/1_7+ r+ sVD.

From this it follows that ag; — dg2 = s, whence |agq; — dg2| < l%. This is a

contradiction, because |agq; — dqa| > %. We proved the Assertion 4.

Lemma 5. No such py, py € ZN P\{0} ezist for which J(p2) = ¢v/D and
J(¢v/D) = p; hold simultaneously, where || = 1.

Proof. Assume indirectly
(6.1) J(p2) = ¢VD
(6.2) and J(gVD) =p1,

where |g| = 1 and py,p2 € 20 P\{0}. Then from (6.1) ps = dqvV'D + f for
some f € A, whence

aps = apy — bpoV'D = dgvV'D + r + sVD.
We get bpy + dg = —s and from this it follows that

|d| |d|
9] = - —_— > —_——— = —,
bpa| = | — s — dg| > |d] 7 =3

Hence
(6.3) 2/bpal > |d].

On the other hand max(|al,|a]) = |a| + |b|VD < l—g'— implies that |d| > 2|a|+

+2|b]v/D. Thus from (6.3) 2|bpa| > 2|a| + 2|b]v/D follows. We get |ps| — vD >

la|

e and from this

(6.4) lp2| > VD.



56 G. Farkas

From (6.2) we get that ¢v/D = p; + f', where f' € A. Hence

aqV'D = av/Dq — bDq = dp; + ' + s'VD.

Hence dp, + bDq = —r'. If we assume that |p;| > v/D, then
|dp1| > (Ja| + 2/6|VD)VD > |bD|, and

> |~ | = 1dp: + bDa| 2 ldpi| ~ D]
holds. We got that |d|(|p:| — $) < [bD], but this contradicts to |p;| > VD,
therefore we can state that |p;| < V/D.

Observe that if our directed circle contains a transition of type p; —
— /D — pi, or a transition p; — (—\/5) -— p1, then it must contain a
transition t; — tz, where ¢1,t, € ZNP\{0} and |¢;| < |t2]. It is clear, because in
the case py — qv/D — p; we have |ps| > |p1|, and on the other hand ¢v/D — p,
implies that |ps| < v/ D, and this contradicts to Ip2| > V/D. But, if there exists
t1 — to, transition with the abovementioned conditions, then t; = aty + f

holds from some f € A. We get at; = at) — btyvVD =dty+ 1+ 5\/5, whence

(6.5) lat; — dts| < %.

Since |d| > 2|a| and [tz] > |t1] hold, consequently |at; — dta| > %, and this
contradicts to (6.5). We proved the Lemma 5.

We know from the Lemma 2 that there no exists nontrivial circle in G(P),
therefore P = {0}. This completes the proof of the Theorem for D # 1 (mod
4). '

7. Completing the proof of the Theorem for D # 1 (mod 4)

Assertion 5. If |¢1| = |g2| = 1, then J(qw) = gow never holds.

Proof (indirect). Assume that |¢;| = |g2| = 1 and J(q1w) = qaw is true,
then

Qw = aqw + f
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where f € A. Thus aqiw = dqow + 7 + sw. From this we get that

la+ﬁ _b d s
5 D) q1 4111 2‘12—5,

whence

ld|

lag: — dgs| = |s| < =~
2
From |a| = |a+bw| & |&| = |a+bw]| it follows that || > a or |&| > a, therefore
ld| > 2|a| and then |ag; — dg2| > l—‘;l. This contradicts to |ag; — dgo| < I—gl.
Hence the Assertion 5 follows.
We got that there are not w — w, w — (—w), (~w) = w, (~w) — (-w)

transitions. Therefore we must to verify only those circles, which contain
pys — z — p; transitions, where p;,p; € P are rational integers and |z| = w.

Lemma 6. No circle of periodic elements exist, which contain py — z —
— p) transitions, where |z| = w and p;, ps nonzero rational integers.

Proof (indirect). Assume there exists pp — qw — p; with the above-
mentioned conditions, further |¢| = 1 and p3, p2 # 0. Then, from qw = ap; + f1
it follows that

1 b b s

(7.1) 59 (a+ ’i)_qu_dpl:rl""?l’

. 1 b b a_ s
(7.2) 57 (a+§)_q3_q§——2—’
and from p; = aqw + f> we obtain

b d s
(7.3) <a+ 5) pz—q§:r2+?2,
b d S92

(7.4) oP2 =15 =7

where f1, fo € A. (7.4) implies that

>d_‘32>ﬁ_i_i
=18 1B 1= 4] T 28] T |28

On the other hand assume that there is an arbitrary 7 € P, 1 = p+ 0 -w for
which |p| > w. Since 7 € P, # € P and |7| < 1 + |@|, therefore |p| < 1 + |@].

qd + s2
b

el =|
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Hence |p| < 1 —@ = w. This is impossible, therefore we can state in a concrete
case that |ps| < w. We get

|d|
. > —.
(7 5) w>lp2l_ 2|b|
We have @ = a + 2 + %\/5, a=a+ % - %\/l_) Observe that either |a| >
> |2+ %\/ﬁ] or |a| > |2+ %\/l—)l holds with the exception of two cases:

(7.6) b>0&a>2&a<-2&a<0,
(7.7) b<0&a<-2&a>2&a>0.

If neither (7.6) nor (7.7) hold, then |d| > 2|bw| > 2|bjw. This contradicts to
(7.5).

If (7.6) or (7.7) are valid, then |a+ 4| < '-Z—I\/B— 2, because either a + 2+
+:VD>2&a+t-4VD<20ra+4+4V/D<-2&a+i-4VD>2
are true. Hence (a + %)1 < IP;D — 2|b|v/D + 4|, therefore we get

(7.8) |d| > 2|b|V/D — 4.
Then (7.5) and (7.8) imply, that 2|bjw > |d| > 2|b|v/D — 4, from this we get
(7.9) 0> [b|(VD —1)—4.

(7.9) never holds if D > 21 or D > 5 & |b| > 1 or in the case D =5 & |b| > 3.
This the exceptional cases remainded to prove.

(1) D=5 & |b| = 1. Then (7.6), (7.7) imply that a > 0 & a < 0, but this
1s impossible.

(2) D=5 & |b| = 2. Then from (7.6) a = —1 follows, and from (7.7) we
obtain a = 1. Subtracting (7.1) from (7.2), we deduce

b b
q4—D+ dp; 4y =T

from this we have ;
qZ(D ~1)+dp; = -1,

whence

=9

|d|

b
(7.10) 97(D=1)+dpy| <

|
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Hence |a| = 1, |b] = 2, sgn(a) # sgn(b) and D = 5 hold, therefore |q%(D— 1)+
+dp;| > |dp1| — |q%(D —1)| = |5p1| —2 > 3. But % = 2.5 and this contradicts
to (7.10).

(3) D=5 & |b| = 3. Then from (7.6) and (7.7) it follows that |a| = 1
or |a| = 2. Hence |d| = 11, therefore |q%(D —1)+dpi| > [11p1| — 3 > 8, and
% = 5.5. This also contradicts to (7.10).

(4) 13< D <21 & || =1. From (7.6) we obtain that

1 1
(7.11) a>2-=-=VD,
2 2
and from (7.7)
1 1
(7.12) a<—2+§+§\/5
follows.

Observe that (7.11) contradicts to (7.6), because 2 — 1 — %\/l—) > —1 and
(7.12) contradicts to (7.7), because —2+ 1 4+ 1v/D < 1.

Since we conducted to contradiction in all cases, we obtained that neither
ps — w — p; nor py — (—w) — p; transition exist. We proved the Lemma 6.

Hence a circle of periodic elements contains only rational integers, and the
Lemma 2 implies that P = {0}.
The proof of the Theorem is completed.
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