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Abstract. It is proved that if , G : IN — {0, 1} are completely
multiplicative functions such that G(an + b) = F(An + B) is satisfied
for some integers a > 0, b, A > 0, B with A = Ab — aB # 0 and for
every positive integer 7, then either F(An + B) = G(an + b) = 0 for all
n € IN or F(n) = G(m) =1forall n,m € IN, (n,A’A) = (m,d'A) =

=1, where a’ = (aab) and A’ =

(4,B)

1. Introduction and results

Notations. Let IN denote the set of all positive integers. The letters p,q, 7
with and without suffixes denote prime numbers. (m,n) denotes the greatest
common divisor of the integers m and n. Here m || n denotes that m is an
unitary divisor of n, i.e. that m|n and (X, m) = 1. For each n € IN we denote
by n* the product of all prime divisors of n. Let P(n) denote the greatest
prime divisor of n. Let M (M™) be the set of complex-valued multiplicative
(completely multiplicative) functions.

P.Erdés proved in 1946 [2] that if f : IN — IR is an additive function
such that Af(n) := f(n+1) — f(n) = o(1) as n — oo, then f(n) is a constant
multiple of logn. This assertion has been generalized in several directions
(e.g. see [1]). The characterization of multiplicative functions f : IN — @
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under suitable regularity conditions even in the simplest case Af(n) = o(1)
1s much harder. More than 15 years ago I.Katai stated as a conjecture that
f €M, Af(n) = o(l) as n — oo imply that either f(n) = o(1) or f(n) =
=n*(n € IN), 0 <Res < 1. This was proved by E.Wirsing in a letter to Katai
(September 3, 1984) and in a recent paper [14]. It is not hard to deduce from
Wirsing’s theorem that if f, g € M, g(n+ 1) — f(n) =0o(1) as n — oo,
then either f(n) = o(1), or f(n) = g(n) (n € IN), and in the last case
f(n)=n*(neIN),0<Res<1.

Recently, improving the above results, we proved in [9] that if k € IN is
given and f, g € M satisfy the condition

g(n+k) - f(n) =o(1) as n— oo,

then either f(n) = o(1) as n — oo or there are F, G € M and a complex
constant s such that

f(n) =n’F(n), g(n)=n'G(n), 0<Res<1

and
G(n+k)=F(n)

are satisfied for all n € IN. In [7]-[8], by using the result of [4], the equation
G(n+ k) = F(n) is solved completely.

The general case concerning the characterization of those f, ¢ € M for
which
glan+b)— Ef(An+ B) = o(1) as n — oo,

wherea > 0, b, A > 0, B are fixed integers and F is a complex constant, seems
to be a hard problem. The main difficulty is that we are unable to determine
all those F, G € M for which G(an+b) = EF(An+B) (n € IN) is satisfied,
even under the assumption that the values are taken from the set {0, 1}.
The above question was solved in [11]-[12] for B = 0 under the conditions
[f(n)] = |g(n)] =1 (n € IN). A similar result was obtained in [13] under the
conditions f = g, |[g(n)] =1 (n € IN), g(n + b) — g(n) = o(1) as n — oo,
(n,b) = 1. Recently, N.L.Bassily and I.Kétai [6] showed that if f, g € M
satisfying g(2n + 1) — Df(n) = o(1) (n — oo) with some constant D # 0,
then either f(n) = o(1) (n — o) and g(m) = o(1) (m — o0, (m,2) =1)or
D = f(2), f(n) =n*, 0 <Res <1, and f(n) = g(n) for odd integers n.

In order to determine those multiplicative functions f, g which satisfy the
relation g(an +b) — Ef(An+ B) = o(1) as n — oo, the first problem is to
give all solutions of multiplicative functions F' and G for which G(an + b) =
= F(An+ B) (n € IN) is satisfied under the assumptions that the values are
taken from the set {0, 1}. Excluding the case G(an +b) = F(An+ B) = 0 for
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all n € IN, the solution of the last equation will use a result concerning the
characterization of suitable reduced residue systems.

For fixed integers a > 0,5, A > 0 and B with A := Ab—aB # 0, weshall
denote by S = S(a,b; A, B) the subset of positive integers which is subjected
to the following properties :

(1) if z,ye€S and (z,y)=1, then zy€ S,
(2) if z€S and yl| z, then y€S,

and

(3) an+b€eS ifandonlyif An+BEe€S.

It is obvious that if f € M and f(an+b) = Ef(An+ B) is satisfied for all
n € IN, then the set S; := {n € IN | f(n) # 0} satisfies the conditions (1)-(3).

Our purpose in this paper is to prove

Theorem 1. Let S = S(a,b; A,B) be a set subjected to the conditions
(1)-(3). If there are a prime m and positive integers w = w(w), M such that

(4) (r. ad) = 1,
(5) {n¥, 7v¥ gu+2 ) CS,
and

(6) AM + BEe€S,

then we have
{nl| (n,dd) =1} C S,
where d = (a, A).
Theorem 2. If F € M™ and G € M* such that

G(an+b) = F(An+ B) forall n€ N,

and the set of values of F(An + B) and of G(an + b) is contained in {0, 1},
where a >0, b, A > 0, B are integers with A := Ab—aB # 0, then one of
the following assertions holds:

(i) F(An+B)=G(an+b)=0 forall ne N,
(i) F(n)=G(m)=1 forall n, me N, (n, A/A)=(m, a'A) =1,

where @’ = (a‘fb) and A’ = (A[,;B)'
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2. Lemmas

The proof of Theorem 1 is based on Lemmas 1-2.

Lemma 1. If there are a prime q and a positive integer M for
which (¢g,aA) =1, AM+B€S and

(7) {1,¢,¢%,..} C S,

then
{n] (n,dAN) = 1} C &,

where d = (a, A) and N = N, is a positive integer defined by qv(a4) = aANg+1
and ¢(-) denotes the Euler-function.

Proof. Assume that the set & = S(a,b; A, B) satisfies the conditions
(1)-(3), furthermore there are a prime ¢ and a positive integer M for
which (¢,aAd) = 1, AM + B € § and (7) holds. First, by using (3), we
can assume that A = Ab—aB > 0. Let

q°*4) = g AN +1.

Since
(aAN + 1)(an +b) = a[(aAN + 1)n + bAN] + b,

it follows from (1)-(3) and (7) that
An+ B €S ifandonlyif A[(aAN +1)n+bAN]+BE€ S,
which implies

(8) An+Be€S ifandonlyif (adAN +1)(An+ B)+ AAN € S.

It is clear from (7) that (aAN +1)¥~! € S holds for all positive integers
k, and so by using the fact AM + B € § and (8), we have

(9) (aAN + )*(AM + B) + AAN € 8

for all positive integers k. Let AM + B + AAN = ¢ D, where C is a non-
negative integer and (D,aAN + 1) = (D,q) = 1. It follows from (7) that

(10) €S
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On the other hand, since (D,aAN + 1) = 1 it follows from the Euler-Fermat
theorem and (9) that

Dl ((aAN + 1) — 1) (AM + B) + (AM + B + AAN)

and
((aAN +1)¢PD 1) (AM + B) + (AM + B + AAN) =

= (aAN +1)*®)(AM + B) + AAN € S.
These relations, together with (2), imply
(11) DEeS.
Thus, by (1), (10) and (11), we have

AM + B+ AAN € S,
from which
(12) AANm+ (AM +B)€e S
is satisfied for all positive integers m. Let p be a prime number which is prime
to AAN, and let a be a positive integer. Then there is a positive integer m for
which the congruence
(13) AANmM + (AM + B) = p* (mod p**?)
holds. Thus, it follows from (1)-(3), (12) and (13) that p* € S, i.e
{n| (n, AAN)=1}CS.
To complete the proof of Lemma 1 it is enough to show that

(14) {n] (n, aAN)=1}CS.
Let p be a prime number which is prime to aAN, and let a be a positive
integer. By (3) and the fact AM + B € S, we also have aM +b € S. Let

e = e(p, a) be a positive integer for which

(13) (aAN +1)%(aM +b) :==aM' +b > aANp**t!.
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It is clear that aM’'+b € S. As we proved in the proof of (9), these relations
imply that
(aAN + 1)¥(aM’ +b) —aAN € S

holds for all positive integers k. The last relation, as the proof of (12), implies
that

(16) aM'+b—aANmeS

holds for all positive integers m for which aM’ + b —aANm > 0.
On the other hand, we can choose a positive integer mg for which

(17) aM'+b—aANmg=p* (mod p**?),

0 < mp < p**!

hold. The last relation with (15) and (16) shows that aM’ + b — aANmy > 0
and
aM'+b—-aANmg € S.

Finally, by using (2) and (17), we have p* € S. Thus (14) is proved.
The proof of Lemma 1 is finished.

Lemma 2. Assume that all conditions of Theorem I are satisfied. Then
there is a prime q such that (¢,aA) =1 and

(18) {l,g,¢*,..} C &S.
Proof. By (4), we have (m,a4) =1, and so
7ve(@4) — GAN, +1,

where w is the positive integer defined in (5).
As in the proof of Lemma 1, one can deduce that

if An+Be€S, then (aANr +1)(An+ B) + AAN; € S,
which, using the following assertions
(aANx +1)*"Y(An+ B)€ S, if An+B€S, ke N,

and
(aANz + 1)¥"}(An+ B)= B (mod A),



Reduced residue systems and a problem for multiplicative functions 41

unplies that
(19) if An+ B€S, then (aANy,+ 1)*(An+ B)+ AAN, €S

holds for all positive integers k.
By (5), (19) and using the argument used in the proof of (12), we also have

(20) if An+BeS, then 7¥¢CN! (An+ B+ AAN,)ES

for allt € IV.
It is well-known from [15] that

P(rwe(eAt _ 1) 00 as t — o0,

where P(y) denotes the greatest prime divisor of y. This shows that there are
a positive integer T and a prime ¢ such that

(21) g | 7¢@AT _ 1 and (q, aAAN;) = 1.

Now we deduce that (18) holds for such a g.

Let ¢ be a prime satisfying (21) and let I := 7%#(34)T  Let us choose
t = T in (20), using (4)-(6) we have

if AM+B€S, then I(AM + B+ AAN:) €S,

consequently

o -1

(22) I [H"‘(AM + B) + AAN; —

|es
holds for all positive integers m. Then it is easily seen that there is a positive
integer m(q) such that

p o™ —1

furthermore
m -1

¢\ Ry = F—7
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It is proved in [10, Theorem 4.1] that the last conditions imply that for each
positive integer a there exists a positive m(¢q®) for which

o m(q®) ) — 1
% || Gm(gey 1= 1T [IMU°)(AM + B) + AAN, ————

Im-1

This together with (22) completes the proof of (18), and so Lemma 2 is proved.
3. Proof of Theorem 1

Assume that the conditions of Theorem 1 hold. By Lemma 2, we can
assume that w = w(m) = 0 in the condition (5), i.e. all conditions of Lemma 1
are satisfied with ¢ = 7. Let

7°(4) = aAN, + 1.
Thus, by Lemma 1, we have
(23) {n] (n, dAN;) = 1} C S,

where d = (a, A).

Let N = N,N, and A = A'A”, where (N,, N,) = (A", A") =
= (a4, A'N,’,) = 1 and all prime divisors of A"N, are divisors of aA.
Since (a4, A’N,',) =1, there are N; € IN and N, = aAt + 1 such that

aAN; +1=-1 (mod A’N;) and aA(aAt+1)+1=-1 (mod AIN,:),
furthermore the numbers aAN; + 1 (i = 1,2) are primes. It is clear from (23)

that for the numbers aAN; + 1 (i = 1,2) all conditions of Lemma 1 are
satisfied, furthermore

(29) (N, Ni, No)= (N, - Ny, Ny, No)| 2.
One can deduce from Lemma 1 that

{n](n, dANz) =1}U{n | (n, dAN;) =1} U{n | (n, dAN;) =1} C S,
which with (24) implies

(25) {n|(n, 2dA) =1} CS.
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Thus, the proof of Theorem 1 is completed in the case when 2|A.
Assume now that (2,A) = 1. If aA is an even number, then

(2aA, 2A') =2 (a4 +2).
So, we can choose a positive integer t such that
aA(2t+1)+1=-1 (mod 2AI) and aA(2t+1)+1 is prime.
Let N3 = 2t + 1. We infer from Lemma 1 and (25) that
{n|(n, 2dA)=1}U{n | (n, dAN3) =1} C S,

which gives
{n|(n, dA)=1}CS.

Now let 2 {aAA. Then we can assumethata= A=B =1 (mod 2),b=

=0 (mod 2). Thus, for each non-negative integer o, we can find a positive
integer ng such that

(26) ang+b=2% (mod 2°%1).
It is clear that 2|ng. Since dA is odd and ng is even, an application of the

Chinese Remainder Theorem shows that in this case there exists a positive
integer n; for which

(27) (a2°*tn; + ang +b, dA) = (A2°F'n; + Ang + B, 2dA) = 1.
It follows from (25) and (27) that
A[2°tn; +no] + BES,
which with (3) and (26) shows that 2* € S. Thus
{1,2,22,..}CS,

and the proof of Theorem 1 is complete.
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4. Proof of Theorem 2

Assume that F' € M* and G € M™ satisfy the equation
(28) Glan+b)=F(An+ B) forall neIN
and the set of values of F(An + B) and of G(an + b) is contained in {0, 1},
where a > 0, b, A > 0, B are integers with A := Ab — aB # 0. Assume that
(1) is not true, i.e. there is a positive integer M such that

(29) G(aM +b) = F(AM + B) = 1.

It is obvious that in this case we may assume that (a,b) = (4,B) =1. Let p
be a prime, plaM +b. Then (p,a) =1, and so for each ¢t € IN we have

(30) P =p*® = T, +1, G(P)=1.
Hence, by (28), we infer that

F(An + B) = G(an +b) = G(P;)G(an + b) = G[Pi(an + b)] =

(31) =Gla(Pin+bTy) +b) = F[A(Pn + bTy) + B]
is satisfied for all n, ¢t € IN. Let
Sri={n€IN | F(n)=1} and Sg:={ne€IN | G(n)=1}.
It follows from (29) and (31) that
A(PM +bT;)+ BeSp forall te N,
which, using Theorem 1, implies
(32) INy:={n€eIN | (n, AAT})=1} C S forall teIN.

An application of the Chinese Remainder Theorem shows that there exists
a positive integer mq for which

(amg+1, AAT)) =1 and (mg, T1) =2
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Hence, by repeating the argument we used in the proof of (32), we get
{neN | (n, AAmy)=1} C Sp,

which together with (32) implies

(33) {neIN | (n, 24A)=1} C Sr.

The deduction of the following assertion

(34) {neN | (n,22¢A)=1} C 8¢

1s very similar to the above argument. We omit this part of the proof.

If 2 | aAA, then (ii) is proved. Let 2 faAA, and so 2 /B —b. Assume that
2| Band?2 fb. Since G(aM +b) = F(AM+B) =1and 2 | (aM +b)(AM + B),
therefore either F/(2) = 1 or G(2) = 1. It can be easily shown from (33)-(34)
that (ii) is true in both cases. Thus, this completes the proof of (ii). Theorem
2 is proved.
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